DRAFTVERSIONJANUARY5,2012 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 UNDERSTANDINGCOMPACTOBJECTFORMATIONANDNATALKICKS.III.THECASEOFCYGNUSX-1 TSING-WAIWONG1,FRANCESCAVALSECCHI1,TASSOSFRAGOS2,VASSILIKIKALOGERA1 1CenterforInterdisciplinaryExplorationandResearchinAstrophysics(CIERA)&DepartmentofPhysicsandAstronomy,NorthwesternUniversity, 2145SheridanRoad,Evanston,IL60208,USA;[email protected],[email protected],[email protected] 2Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02138,USA;[email protected] DraftversionJanuary5,2012 ABSTRACT 2 In recent years, accurate observationalconstraints become available for an increasing number of Galactic 1 X-raybinaries. Togetherwithpropermotionmeasurements,wecouldreconstructthefullevolutionaryhistory 0 of X-ray binaries back to the time of compact object formation. In this paper, we present the first study of 2 thepersistentX-raysourceCygnusX-1thattakesintoaccountofallavailableobservationalconstraints. Our n analysis accounts for three evolutionaryphases: orbital evolution and motion through the Galactic potential a aftertheformationofblackhole(BH),andbinaryorbitaldynamicsatthetimeofcorecollapse. Wefindthat J the mass of the BH immediate progenitor is 15.0- 20.0 M⊙, and at the time of core collapse, the BH has 4 potentially received a small kick velocity of ≤77 km s- 1 at 95% confidence. If the BH progenitor mass is less than∼17M⊙, a nonzero natalkick velocityis requiredto explainthecurrentlyobservedpropertiesof ] CygnusX-1. Since the BH hasonlyaccretedmass fromitscompanion’sstellar wind, the negligibleamount E ofaccretedmassisimpossibletoexplaintheobservationallyinferredBHspinofa∗>0.95,andtheoriginof H this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find h. thattheBHcompanionisa19.8- 22.6M⊙ mainsequencestar,orbitingtheBHataperiodof4.7- 5.2days. Furthermore, recent observationsshow that the BH companionis currently super-synchronized. This super- p synchronismindicatesthatthestrengthoftidesexertedontheBHcompanionshouldbeweakerbyafactorof - o atleasttwocomparedtotheusuallyadoptedstrength. r Subjectheadings:binaries:close—X-rays:binaries—X-rays:individual(CygnusX-1) t s a [ 1. INTRODUCTION cases. Both donors in GRO J1655-40 and XTE J1118+480 are transferring mass to the BH under Roche lobe overflow, 2 In recent years, the number of observed black hole (BH) v X-raybinaries(XRBs)hasgrownsignificantly. Forthesebi- whereas the BH in Cygnus X-1 is accreting mass from the 5 naries,thereexistsawealthofobservationinformationabout stellarwindofitscompanion. 8 theircurrentphysicalstate: BHanddonormasses,orbitalpe- Theplanofthepaperisasfollows. InSection2,wereview 5 riod,donor’spositionontheH-Rdiagramandsurfacechem- CygnusX-1’scurrentlyavailableobservationalconstraints.A 5 generaloutlineoftheanalysisusedtoreconstructthesystem’s icalcomposition, transientor persistentX-rayemission, and . evolutionaryhistoryispresentedinSection3,whileindivid- 7 Roche lobe overflow (RLO) or wind-driven character of the ualstepsoftheanalysisarediscussedinmoredetailinSection 0 mass transfer (MT) process. Furthermore, proper motions 4- 7. InSection8,wederiveconstraintsontheformationof 1 have been measured for a handful of these binaries (e.g. theBH.Thefinalsectionisdevotedtoasummaryofourre- 1 Mirabeletal. 2001, 2002; Mirabel&Rodrigues 2003). To- : gether with the earlier measurements of center-of-mass ra- sultsanddiscussionofsomeoftheassumptionsintroducedin v ouranalysis. dialvelocitiesanddistances,wecanobtaininformationabout i X the three-dimensionalkinematicpropertiesofthese binaries. 2. OBSERVATIONALCONSTRAINTSFORCYGNUSX-1 r Given this plethora of observation results, the current ob- a servedsampleofBHXRBsprovidesuswithauniqueoppor- CygnusX-1wasfirstdetectedinAerobeesurveysin1964 tunitytounderstandtheformationandevolutionofBHsinbi- by Bowyeretal. (1965). Soon after the discovery, it was naries.Thispaperisthethirdinaserieswhereweinvestigate identified as an XRB, which consisted of a compact object in detail the BH formation in XRBs, especially focusing on and a visible star HDE 226868 (Murdin&Webster 1971; themassrelationshipbetweenBHsandtheirimmediatepro- Webster&Murdin 1972; Bolton 1972a). Spectroscopic ob- genitorsand the possible BH natal kick magnitudeimparted servationsledWalborn(1973)toclassifyHDE226868asan duringthecorecollapseevent. O9.7Iabsupergiant.Bregmanetal.(1973)estimatedthedis- In the firstpaperof this series, Willemsetal. (2005, here- tancetobe2.5kpcandsetalowerlimitof1kpc,basedonthe afterPaperI)showedhowusingthecurrentlyavailablecon- colorsoffieldstarsinthevicinityofthesupergiant. Usinga straints one could uncover the evolution history of an XRB combinationofdatafromDavidDunlapObservatory(DDO) from the present state back to the time just prior to the core andtheRoyalgreenwichObservatory,Bolton(1972b)derived collapse event. They applied their analysis to the BH XRB the orbital period, eccentricity and systemic radial velocity GROJ1655-40.Inthesecondpaper,Fragosetal.(2009,here- (V0)tobe5.5995±0.0009days,0.09±0.02and- 6.0±0.1 afterPaperII)performedthesameanalysisforthecaseofthe kms- 1, respectively. BasedontheabsenceofX-rayandop- BHXRBXTEJ1118+480.Inthiswork,wefocusonthecase ticaleclipses,theauthorgavealowerlimitof7.4M⊙ onthe of the BH XRB CygnusX-1. The mass transfer mechanism massofthecompactobject. Thisimpliedthecompactobject inCygnusX-1isdifferentfromtheXRBsstudiedinprevious wastoomassivetobeawhitedwarforaneutronstar. Thus, theauthorconfirmedWebster&Murdin(1972)’sfindingthat 2 T.-W.Wongetal. thecompactobjectisaverystrongBHcandidate. 1 is a persistent X-ray source. Since the supergiant is cur- Usingtheorbitalperiodobtainedfromspectrometryanda rently not overfilling its Roche lobe (Gies&Bolton 1986a), range in the assumed degree of Roche filling of the super- the observedX-raysare mainly poweredby the accretion of giant,Gies&Bolton(1982,1986a)foundalowermasslimit stellarwind. TheX-rayluminosityofCygnusX-1variesbe- of7M forthecompactobject.Thisconfirmedthatthecom- tween two discrete levels, namelythe "hard(low) state" and ⊙ pact object observed in Cygnus X-1 was a BH. The same the"soft(high)state". Asthesystemspendsmostofitstime authors also refined the orbital period and eccentricity to be (∼90%,seeCadolleBeletal.2006)inthehardstate, wefo- 5.59974±0.00008and0.021±0.013,respectively,andmea- cus on the hard state X-ray luminosity (L ). Fronteraetal. X suredV to be - 2.0±0.7km s- 1. Ninkovetal. (1987) used (2001) observed Cygnus X-1 with the Narrow Field Instru- 0 therelationshipbetweentheequivalentwidthoftheHγ spec- mentsoftheBeppoSAXsatelliteatdifferentepochsin1996. trallineandtheabsolutemagnitudeofearly-typesupergiants TheauthorsobtainedtheLX (0.5- 200keV)andtheextrapo- toestimatethedistanceas2.5±0.3kpc. latedbolometricluminosity(L )as2.0×1037and2.4×1037 bol Herreroetal. (1995) performed a detailed spectroscopic ergs- 1,respectively,assumingadistanceof2kpc. Usingob- analysis on the supergiant, and derived the masses to be servational data obtained by the Compton Gamma Ray Ob- 10.1M⊙ and17.8M⊙ fortheBH (MBH) andthe supergiant servatory(CGRO)between1991and2000,McConnelletal. (M2), respectively, if an orbitalinclinationangle of 35◦ was (2002)derivedLboltobe(1.62–1.70)×1037ergs- 1,withthe assumed. Using the Isaac Newton telescope, LaSalaetal. distancetothesourcefixedat2kpc.CadolleBeletal.(2006) (1998) measured the orbital period as 5.5997±0.0001 days observedCygnusX-1withtheInternationalGamma-RayAs- andV0 as- 5.4±0.1kms- 1. Withalltheaccumulatedradial trophysicsLaboratory(INTEGRAL)between2002and2004 velocitymeasurementsandtheirownspectroscopyofthesu- and measured L (20- 100 keV) as 6.5×1036 erg s- 1, as- X pergiant,Brocksoppetal.(1999)refinedtheorbitalperiodto suming a distance of 2.4 kpc. The authorsalso gave L as bol 5.599829±0.000024. ThepropermotionofCygnusX-1was 2.2×1037ergs- 1. observedwiththeVeryLargeBaselineInterferometry(VLBI) For the systemic parameters relevant to our analysis, we between 1988 and 2001 (Lestradeetal. 1999; Stirlingetal. adoptthe mostrecentobservationalconstraints, with the ex- 2001; Mirabel&Rodrigues 2003). During this period, the ception of L . We consider all the L values mentioned system’s position shifted at a rate of - 4.2±0.2 mas yr- 1 in above, assumboilng they represent the typboilcal X-ray variabil- rightascension(R.A.)and- 7.6±0.2masyr- 1indeclination ity range for this system. After rescaling their values to the (dec.). Meanwhile, a trigonometric parallax of 0.73±0.30 parallaxdistancemeasurementbyReidetal.(2011)andcon- maswasalsomeasuredwithVLBI,whichgaveadistanceof sideringthe uncertaintyin thatdistance, we adoptL to be bol 1.4+- 00..94kpc(Lestradeetal.1999). (1.17- 2.35)×1037ergs- 1.Foreaseofreference,ouradopted By studying the spectra obtained with the 0.9 m coudé observationalconstraintsaresummarizedinTable1. feed telescope of Kitt Peak National Observatory, the 2.1 m telescope of University of Texas McDonald Observatory, 3. OUTLINEOFANALYSISMETHODOLOGY andthe1.9mtelescopeofUniversityofTorontoDavidDun- Inouranalysis,weassumethatCygnusX-1formedinthe lap Observatory between 1998 and 2002, Giesetal. (2003) Galacticdisk,fromtheevolutionofanisolatedprimordialbi- derived V as - 7.0±0.5 km s- 1 and estimated M /M 0 BH 2 naryatsolarmetallicity. Infact,Mirabel&Rodrigues(2003) ≈ 0.36±0.05. Caballero-Nievesetal. (2009) examined suggestthatCygnusX-1belongstoCygnusOB3(CygOB3), the supergiant’s ultraviolet spectra from the Hubble space whichisanOBassociationlocatedclosetotheGalacticplane. telescope. Their results gave masses of 23+8 and 11+5 - 6 - 3 WealsoassumethatnomasstransferviaRochelobeoverflow M for the supergiant and the BH, respectively. On the ⊙ occurredintheevolutionaryhistoryofthisbinary. otherhand,Shaposhnikov&Titarchuk(2007)usedtheX-ray According to our current understanding, in order to form quasi-periodicoscillationandspectralindexrelationshipand a∼15M⊙ stellar BH atsolar metalicity,the BH progenitor deducedMBH tobe8.7±0.8M⊙,whichoverlappedwiththe in the primordialbinary needs to be more massive than 120 lowerendoftheM rangederivedbyCaballero-Nievesetal. BH M⊙ (Belczynskietal. 2010). Such a massive star loses its (2009). hydrogenrichenvelopeviastellarwind,andexposesitsnaked Recently, Reidetal. (2011) measured the trigonometric heliumcore. Attheendofnuclearevolution,itcollapsesinto parallax of Cygnus X-1 with the National Radio Astron- aBH.Duringthecorecollapseevent,theorbitisalteredbythe omy Observatory’s Very Long Baseline Array (VLBA) and asymmetric mass loss from the system and a possible recoil founda distance of 1.86+- 00..1121 kpc. The authorsalso reported kick imparted to the BH. If the binary survives through the proper motion measurements of Cygnus X-1, which were corecollapseevent,angularmomentumlossviagravitational - 3.78±0.06mas yr- 1 in R.A. and - 6.40±0.12mas yr- 1 in radiationandtidaleffectscausestheorbittoshrink,although dec. Meanwhile, Xiangetal. (2011) studied the X-ray dust wind massloss leads to orbitalexpansion. In the meantime, scatteringhaloofCygnusX-1anddeterminedthedistanceto the more evolved BH companionis losing mass via its own be 1.81±0.09 kpc, after considering the compatibility with stellarwindatahigherrate. ThesystembecomesaBHXRB theparallaxresult.Buildingonthetrigonometricparallaxdis- whentheBHcapturesanon-negligibleamountofmassfrom tance measurement of Reidetal. (2011), Oroszetal. (2011) itscompanion’sstellarwind. performed optical data modeling of CygnusX-1, and found Inthispaper,we restrictourselvesto the formationof BH themassofthesupergianttobe19.2±1.9M⊙ andtheblack XRBsthroughtheaboveevolutionarychannel. Likethefirst hole to be 14.8±1.0 M⊙. Using the results of Reidetal. two papers, our goal is to track the evolutionary history of (2011)and Oroszetal. (2011), Gouetal. (2011) determined Cygnus X-1 back to the time just prior to the core collapse that CygnusX-1 hosts a near-extreme Kerr BH, with a spin event. Our analysis incorporates a number of calculations parametera∗>0.95. whichcanbesummarizedinfoursteps. UnlikemostoftheXRBsknowntohostaBH,CygnusX- First, we identifythecurrentevolutionarystageofthe BH UnderstandingCompactObjectformation.III. 3 Table1 PropertiesofCygnusX-1 Parameter Notation Value References Distance(kpc) d 1.86+0.12 (9) - 0.11 Galacticlongitude(deg) l 71.3 (2) Galacticlatitude(deg) b +3.1 (2) PropermotioninR.A.(masyr- 1) µR.A. - 3.78±0.06 (9) Propermotionindecl.(masyr- 1) µdecl. - 6.40±0.12 (9) Systemicvelocity(kms- 1) V0 - 7.0±0.5 (5) Orbitalperiod(days) Porb 5.599829±0.000016 (1) Orbitaleccentricity eorb 0.018±0.003 (8) Inclinationangle i 27.06±0.76 (8) Blackholemass(M⊙) MBH 14.81±0.98 (8) Blackholespin a∗ >0.95 (10) Companionmass(M⊙) M2 19.16±1.90 (8) CompanionRadius(R⊙) R2 16.50±0.84 (8) CompanionLuminosity(L⊙) L2 (1.91–2.75)×105 (8) CompanionEffectivetemperature(K) Teff 30000–32000 (8) Companionsurfacerotationspeed(kms- 1) Vrotsini 95±6 (7) BolometricluminosityoftheX-raysource(ergs- 1) Lbol (1.3- 2.1)(cid:16)1.86dkpc(cid:17)2×1037 (3),(4),(6) References.—(1)Brocksoppetal.1999,(2)Lestradeetal.1999,(3)Fronteraetal.2001,(4)McConnelletal.2002,(5)Giesetal.2003,(6)CadolleBelet al.2006,(7)Caballero-Nievesetal.2009,(8)Oroszetal.2011,(9)Reidetal.2011,(10)Gouetal.2011 companion,sothatalltheobservationalconstraintsaresatis- eachsuccessfulsequence. fied. UndertheassumptionthattheBHcompanionmasshas Finally, we follow the orbitalevolutionof these simulated notbeenalteredby masstransferin the past, we modelit as binaries to the current epoch. Our calculation accounts for an isolated star. Using a stellar evolutioncode, we calculate tides, wind mass loss, wind accretion onto the BH, and or- a grid of evolutionary sequences of isolated stars at differ- bital angular momentum loss via gravitational radiation. At ent zero age main sequence (ZAMS) masses. We examine theendofthecalculations,werequireagreementbetweenthe eachsequencetofindwhetherthereexistsapointintimethat observedandcalculatedorbitalperiodandeccentricity. thecalculatedstellarproperties,i.e. mass,radius,luminosity andeffectivetemperature,areallsimultaneouslyinagreement 4. MODELINGTHEBHCOMPANION withthecurrentlyobservedpropertiesoftheBHcompanion. Under the assumption that the companion mass has not If such a period of time exists, we classify that sequence as beenalteredby masstransferin itspast, we modelthecom- "successful".ThecurrentageoftheBHcompanioncanbees- panionasanisolatedstarusingamodifiedversionofthestel- timatedfromthesesuccessfulsequences,andthetimeexpired larevolutioncodeEZ(originallydevelopedbyPaxton2004). sincetheBHformationcanthenbederivedbysubtractingthe We calculate the evolution of our stellar models at solar approximatelifetimeoftheBHprogenitor. metallicity, which is the same metallicity that Oroszetal. Next,weconsiderthekinematicevolutionaryhistoryofthe (2011)usedinderivingthepropertiesoftheBHcompanion. XRBintheGalacticpotential.Startingfromthecurrentloca- Whenweplacethecompanion’sobservationalconstraintson tion, we follow the methodologyof Gualandrisetal. (2005) anH-Rdiagram,wefindthatthecurrentlocationofthecom- and use the observedthree-dimensionalvelocity to trace the paniondoesnotseemto beconsistentwithanyevolutionary Galactic motionof CygnusX-1 backwardin time. Together trackscalculated by the stellar evolution code. As shown in withtheconstraintsonthecurrentageofthesystemderived Figure1,thecompanionisoverluminousforastarofitsmass. in the first step, this allows us to determinethe location and ThiscannotbeexplainedbyearliermasstransferfromtheBH velocityofthebinaryatthetimeofBHformation(wedenote progenitor to the companion. Braun&Langer (1995) stud- theseas"birth"locationandvelocity). Bysubtractingthelo- iedtheeffectsofmassaccretionontomassivemainsequence cal Galactic rotational velocity at the "birth" location from stars,andfoundthattheaccretingstarswouldnotappearover- the systems’s center-of-mass velocity, we derive constraints luminous for their new masses during the rest of their main onthepeculiarvelocityofthebinaryrightaftertheformation sequencelifetime. Ifmassaccretionleadstoasocalled"reju- oftheBH. venation"oftheaccretingstar,whichmeansitscentralhydro- In the third step, we analyze the orbital dynamics of the genabundancesubstantiallyincreases,itwouldhavethesame corecollapseeventduetomasslossandpossiblenatalkicks luminosityasastarofitsnewmass. Ifrejuvenationdoesnot imparted to the BH. In this paper, we refer to the instants occur,the accretingstar would appearunderluminousforits right before and after the formation of the BH by the terms newmassduringtherestofitsmainsequencelifetime. "pre-SN"and"post-SN",respectively. Westartwiththecon- One possible solution for matching the observedcompan- strainedparameterspaceof(M ,M )derivedinthefirststep BH 2 ion’sluminosityis increasingthe coreovershootingparame- andperformaMonteCarlosimulationscanningoverthepa- ter α to ∼0.45. Although this value is relatively high, it rameterspaceofthepre-SNbinaryproperties.Thisparameter ov is not unphysical. Claret (2007) comparedthe data from 13 spaceislimitedbyrequirementsoforbitalangularmomentum double-lineeclipsingbinarysystemswiththeoreticalpredic- andenergyconservations,andbythepost-SNbinarypeculiar tions of stellar modeling and found α could be as high as velocity constraint derived in the second step. This calcu- ov 0.6formassivestars. We varyα from0.35to0.5,insteps lation yields a population of simulated post-SN binaries for ov of0.01. We notethattheneedforsuchhighervaluesofα ov 4 T.-W.Wongetal. thewindmasslossrateofthecompanioninourmodels.F wind isaparametersuchthatM˙ neverexceeds- 0.8M˙ ,andα acc 2 wind is the accretionefficiency,which variesbetween1.5and 2.0 (Boffin&Jorissen 1988). A and e are the orbitalsemi- orb orb majoraxisandeccentricity,respectively.A isderivedfrom orb themeanmeasuredorbitalperiodP ,whichis orb G(M +M )P2 31 A = BH 2 orb , (3) orb 4π2 (cid:20) (cid:21) where M is the companion mass in our models. e is set 2 orb equal to the mean measured orbital eccentricity. V de- wind notesthewindvelocity. V2 equalstoV2 /V2 ,whereV2 BH wind BH is the orbitalvelocitysquare of the BH and is approximated as G(M + M )/A . We adopt the spherically symmetric BH 2 orb windvelocitylawgiveninLamers&Cassinelli(1999), β R V (r) = V + (V - V ) 1 - 2 (4) wind esc ∞ esc r (cid:18) (cid:19) where r is the distance from the companion to the BH and Figure1. TheevolutionarytracksforisolatedstarsontheH-Rdiagram.On is set equal to A . β is a free parameter varying from 0.6 orb eachtrack, themassofthestarinM⊙ isindicated atvarious points. The to 1.6 (Gies&Bolton 1986b; Lamers&Leitherer 1993), in grayshapedarearepresentstheobservationalconstraintsoftheBHcompan- ion. AtTeff≈31000K,themodelwithaninitialmassof20M⊙ (dashed steps of 0.1. V∞ is the wind velocity at infinity, while Vesc line)wouldhaveamass≈19.64M⊙,whichisingoodagreementwiththe istheeffectiveescapevelocityatthesurfaceofthecompan- measuredmassofthecompanion. However,itdoesnotmatchthemeasured ion. Within the typical range of O star surface temperature, luminosity.Ontheotherhand,themodelwithaninitialmassof30M⊙(dot- V isscaledas2.65V (Kudritzki&Puls2000). Following tthedeslitnaer)dmoeastcnhotthmeamtcehastuhreecdolmumpainnoiosnit’ys.aTthTeeffm≈od3e1l0w0i0thKa,nbiuntittihaelmmaassssooff La∞mers&Cassinelli(1e9sc99), 20M⊙andαov=0.45(solidline)couldmatchboththemeasuredmassand luminosityofthecompanionatTeff≈31000K. Vesc= 2(1- Γe)GM2/R2, (5) inthemodelingofmassivestarsmayverywellbeconnected where p tothesignificantpresenceofinternalrotationandassociated σ L rotationalmixing.Effectivelyincreasingαovleadstostronger Γe = 4πceGM2 (6) internalmixing and in a way allows the stellar modelto be- 2 havemorelikearotatingmodel. is the mass correcting factor for the radiative force due to Besides the observational constraints on the companion’s electron scattering, and c is the speed of light in vacuum. properties,therearethreeadditionalconstraints.Thefirstone Lamers&Leitherer(1993)scaled theelectronscatteringco- comesfromthefactthatthecompanioniscurrentlynotover- efficientperunitmassσe as filling its Roche lobe (Gies&Bolton 1986a). Thus, we re- 1 + qǫ quirethestellarradiusR2inourmodelstobe σe = 0.401 1 + 3ǫ , (7) R ≤ A r +∆R, (1) (cid:18) (cid:19) 2 orb Egg whereq is the fractionof He++ and (1 – q) is the fractionof where rEgg is the effective Roche lobe radius given by He+,withq=1ifT ≥35,000K,q=0.5if30,000K≤T Eggleton (1983). Here, we make an approximation that the eff eff <35,000K,andq=0ifT <30,000K.Theabundanceratio orbit is circular and synchronized. The parameter ∆R is a eff ǫ=He/(H+He)isfixedat0.15,whichisappropriateforan constant accountingfor the differencein the calculated stel- OstarwithaspectraltypeofClassI.UsingM˙ fromequa- larradiiamongstellarevolutioncodes(Valsecchietal.2010). acc tion(2),wefollowBelczynskietal.(2008)andcalculatethe Weset∆Rto2.5R . ⊙ bolometricluminosityresultingfromthecompanion’sstellar Another constraint is that the calculated bolometric lumi- windbeingaccretedontotheBHas nosity(L )resultingfromthestellarwindaccretionprocess bol needstofallwithintheobservationalrange,whichis(1.17- 1GM M˙ 2.35)×1037ergs- 1. ByadoptingtheBondi&Hoyle(1944) Lbol= BH acc, (8) 2 R accretion model and following Belczynskietal. (2008), the acc orbital-averagedaccretionrateisgivenby where R denotes the radius of the accretor. For the case acc ofBH,R istheradiusoftheinnermoststablecircularor- M˙ =- Fwind GMBH 2 αwind M˙2 (2) bit,whichacwc ecalculatewithEquation(2.21)inBardeenetal. acc 1- e2orb(cid:18) Vw2ind (cid:19) 2A2orb(1+V2)3/2 ((1G9o7u2e).taGl.i2v0e1n1)th,eweobasdeorpvtatthioenmalelydiainnfear∗re=d0s.9p7inanad∗fi>nd0.95 q tHheer1e,σMraBnHgiesothfethBeHobmsearsvsaitnioonuarlmcoondsetlrsa,inwt,hiinchstveaprsieosfw0i.t0h9in8 Racc=2.57 MBH km. (9) M M⊙. Since the total mass that the BH could have accreted (cid:18) ⊙ (cid:19) from its companion stellar wind is negligible, MBH in each This calculated Lbol needs to fall within the observational evolutionarysequenceisfixedthroughoutouranalysis. M˙ is range. 2 UnderstandingCompactObjectformation.III. 5 Figure2. Systemicbehavioroftwoselectedevolutionarysequences,whichhavethesameαov=0.44,MBH=14.81M⊙,αwind=1.5,andβ=1.0. Sequence 1(solid)and2(dashed)haveM2,zamsof21and22M⊙,respectively. TheleftpanelshowstheevolutionarytracksontheH-Rdiagram,whilethemiddlepanel illustratesthebehaviorsofthemassandtheradiusofthestar.Therightpanelshowsthevariationsofthecalculatedstellarluminosityand fL,where fLisdefined inEquation(10). Thegrayshadedareasrepresenttheobservationalconstraintsontherelevantquantities,andthethickpartoftheevolutionarytracksindicates thepartofthesequencethattheobservationalconstraintsontheH-Rdiagramaresatisfied. Thelastadditionalconstraintisthattheobservationalcon- straintsonL andL havetobeevaluatedatthesamedistant 2 bol estimation.Toexaminethis,wecalculatetheratio L L - 1 f = 2 bol , (10) L 105L 1037ergs- 1 ⊙ (cid:18) (cid:19)(cid:18) (cid:19) which is independent of distance. From Figure1 in Oroszetal.(2011),L2is2.09×105L⊙atTeff=30000K,and is2.51×105L⊙atTeff=32000K,assumingadistanceof1.86 kpc. TogetherwiththemeasuredrangeofL rescaledatthe bol samedistanceestimation,theupperandlowerlimitsof f are L 1.01and1.90,respectively.Wecanassurethatbothluminos- ityconstraintsareevaluatedatthesamedistanceestimationif f fallswithinthatrange. L In order to find the current evolutionary stage of the BH companion,we apply these constraintsto a set of evolution- arysequences, whichcoverthe parameterspace of thecom- panion’sZAMSmass(M ),α ,M ,α ,andβ. For 2,zams ov BH wind each sequence, we find whether there exists a point in time that the calculated properties simultaneously satisfy all ob- Fsuigccuersesf3u.lsTehqeuepnacreasm.eter space ofM2,zams, αov, and MBH covered byall servationalconstraints: the BH companion’smass, luminos- ity, temperature, and radius, L , f , and not overfilling the bol L RochelobeoftheBHcompanion. SimilartotheRochelobe sincetheBHformation(t )by constraint,wealsoconsideranuncertaintyof±2.5R⊙ inthe sys calculatedstellarradiiwhenweapplytheobservationalcon- t = t - t , (11) sys 2 BH straintoftheBHcompanion’sradius.Ifsuchaperiodoftime exists,weclassifythatevolutionarysequenceas"successful". where tBH is the approximate lifetime of the BH progenitor. ThebehaviorofsomerelevantparametersisillustratedinFig- WefollowBelczynskietal.(2010)tocalculateMBH andtBH ure2 for two selected successful sequences that are chosen fordifferentprogenitorsusingthestellarevolutioncodeSSE mainly to provide a clear and instructive picture. The dis- (Hurleyetal.2000),andadoptingthemasslossprescriptions playedsequencesthereforedonotrepresentourbestpossible whichwereclassifiedas"Vinketal. Winds". Thecalculated matchesto theobservedpropertiesof CygnusX-1. Figure3 tBHarefitasafunctionofMBH, showstheparameterspaceofM ,α ,andM covered byallsuccessfulsequences. For2,zαamwisnd aonvdβ, theBsHuccessful tBH = MMB⊙H +3.341, sequencescoveredtheentireallowedparameterspace,which 106yrs 2 are1.5≤αwind≤2.0and0.6≤β≤1.6. 19.26- 4.902 MMB⊙H +0.3841 MMB⊙H The current age of the BH companion could be derived (cid:16) (cid:17) (cid:16) (cid:17) (12) from the time interval at which all observationalconstraints for MBH ≥9.5 M⊙. Figure4 shows the variationsof t2 and are satisfied. Assuming that the BH progenitorand its com- t againstM . We find that t is between 4.8 and 7.6 BH 2,zams sys panionformedatthe same time, we couldcomputethetime Myr. 6 T.-W.Wongetal. Figure4. Thevariations oft2 (circles) against M2,zams. Thegrayshaded Figure5. Upperpanels: Thegreydots illustrate thepossible locations of regionindicatestherangeoftBHforthecorrespondingsuccessfulsequences, CygnusX-1atthebirthtimeoftheBH,obtainedfrom3,000integrationsof which is calculated byEquation (12). The difference between t2 and tBH itstrajectorybackwardsintime.Theinitialconditionsoftheintegrationsare givestsys. generatedrandomlyusingthemethodologydescribedinSection5.Theplus signs indicate the current location ofCygnus X-1, derived from the mean distanceof1.86kpc. ThecrossesrepresentthecurrentlocationofCygOB3 5. KINEMATICHISTORYINTHEGALAXY center,withanadopteddistanceof2kpc. Lowerpanel: Thedistributionof Here, we assume that CygnusX-1 formed in the Galactic post-SNpeculiarvelocitiesVpec,postSNagainstthetimeexpiredsincetheBH formation. disk.TheconsiderationofCygOB3beingtheparentassocia- tionofCygnusX-1isdiscussedinSection9.2.Giventheob- timeofBHformation,obtainedfromintegrating3,000trajec- servedpositionandmeasuredpropermotionofCygnusX-1, toriesbackwardsintime.Asthereisnotrajectorycrossingthe wederivethepost-SNpeculiarvelocityofthebinary’scenter- Galacticplaneandtheendpointsofalltrajectoriesfallwithin of-massbytracingitsorbitintheGalaxybacktothetimeof 110pcfromtheGalacticplane,weconsidereachendpointas BHformation. Wedescribethemotionofthebinarywithre- apossiblebirthsiteoftheBH.Thepost-SNpeculiarvelocity specttoaright-handCartesianreferenceframe,whoseorigin Vpec,postSN of the binary is obtained by subtracting the local coincides with the Galactic center. The Z axis points to the Galactic rotationalvelocityfromthe center-of-massvelocity northernGalactic pole, while the X axis points in the direc- ofthebinaryatthebirthsites. WefindVpec,postSNrangesfrom tionfromtheprojectedpositionoftheSunontotheGalactic 22to32kms- 1 andistimeindependent. Thedistributionof planetotheGalacticcenter. Inthisreferenceframe,theSun V againstthetimeexpiredsincetheformationofthe pec,postSN islocatedat(X⊙,Y⊙,Z⊙)=(- 8.5,0,0.03)kpc(Joshi2007; BHaredisplayedinFigure5. Ghezetal.2008;Gillessenetal.2009;Reidetal.2009),and has a peculiar motion (U ,V ,W ) = (11.1, 12.24, 7.25) 6. ORBITALDYNAMICSATCORECOLLAPSE ⊙ ⊙ ⊙ kms- 1(Schönrichetal. 2010). CygnusX-1 is currently lo- For each of the successfulsequence, we performa Monte cated at a distance of 1.86+0.12 kpc from the Sun, with a Carlosimulationwhichconsistsoftwentymillionpre-SNbi- - 0.11 Galactic longitude l = 71.3◦, and a Galactic latitude b = naries. ThepropertiesoftheBHprogenitor’scompanionare 3.1◦ (Lestradeetal. 1999; Reidetal. 2011). This means takenfromthestellarmodelofthatsequence,atthetimewhen CygnusX-1iscurrently∼130kpcabovetheGalacticplane. theageofthestarisequaltot .Duringasupernova(SN)ex- BH To model the Galaxy, we adopt the Galactic potential of plosion,themasslossfromthesystemandpossiblythekick Carlberg&Innanen(1987)withupdatedmodelparametersof imparted to the BH change the binary’s orbital parameters. Kuijken&Gilmore(1989). Theequationsgoverningthesys- Thepre-andpost-SNcomponentmasses,orbitalsemi-major tem’smotionin the Galaxyareintegratedbackwardin time, axis, and orbital eccentricity are related by the conservation up to the time correspondingto the currentsystem’s age t lawsoftheorbitalenergyandangularmomentum.Inthefol- sys given by the successful sequences. We follow the method- lowings,we addthe subscripts"preSN"and"postSN" tothe ology of Gualandrisetal. (2005) to initialize the parameters notationsoftheorbitalelementstodistinguishbetweentheir fortheintegration,whichaccountsfortheuncertaintiesinthe valuesjustpriorandrightaftertheSNexplosionthatformed estimated distance and measured velocity components. We theBH. generatethe initialsystem’s positionby the Galactic coordi- We start with seven free parameters: the BH immediate nates (l,b) and a random distance drawing from a Gaussian (He-rich)progenitormass (M ), pre-SN orbitalsemi-major He distribution.Wegenerateinitialsystem’svelocitybydrawing axis(A )andeccentricity(e ),themeananomaly(m), preSN preSN randomly the proper motions (µ ,µ ) and heliocentric the magnitude (V ) and direction (θ, φ) of the kick veloc- R.A. decl. k radialvelocity(V )fromGaussiandistributions. Thecurrent ity impartedto the BH. θ is the polar angle of the kick with 0 system’sageisuniformlydistributedbetween4.8and7.6Myr respect to the relative orbital velocity of the BH progenitor (seeFigure4). justpriortotheSNexplosion,andφisthecorrespondingaz- Figure5showsthepossiblepositionsofCygnusX-1atthe imuthalangle(seeFigure1inKalogera2000,foragraphical UnderstandingCompactObjectformation.III. 7 representation).Thefirstfiveparametersaredrawnfromuni- BHimmediateprogenitorcanbeapproximatedbyEquations formdistributions,whilethelasttwoaredrawnfromisotropic (3) in Fryer&Kalogera (1997), since we assume that it is distributions. Itisobviousthattheprogenitormustofcourse a Helium star. Second, the pre-SN spin of the BH imme- bemoremassivethantheBH, butthereisnoabsoluteupper diate progenitor and its companion need to be less than the limit for the progenitormass. We adopt MHe ≤20 M⊙, and breakupangularvelocityΩc≈(GM/R3)1/2.Asthecalculated provideadiscussiononthisupperlimitinSection9.1. stellar radiusR2 associateswith an uncertainty∆R=2.5R⊙ The relations between pre- and post-SN parameters have (Valsecchietal.2010), beenderivedbyHills(1983): Vk2 + VH2e,preSN + 2VkVHe,preSNcosθ Ω = GM2 1+3∆R (20) = G(M +M ) 2- 1 , (13) c s R32 (cid:18) 2 R2 (cid:19) BH 2 r A (cid:18) postSN(cid:19) G(M +M )A (1- e2 ) fortheBHcompanion. BH 2 postSN postSN =r2 V2sin2θcos2φ+ sinψ(V +V cosθ) k He,preSN k 7. ORBITALEVOLUTIONAFTERTHESNEXPLOSION (cid:16)- V cosψsinθsin(cid:2)φ 2 , (14) k The orbital evolution of the simulated binaries, which are Here, r is the orbital separation bet(cid:3)we(cid:17)en the BH progenitor generatedfromtheMonteCarlosimulationsdescribedinSec- tion6,iscalculateduptothecurrentepoch. Aftertheforma- anditscompanionatthetimeofSNexplosion, tionoftheBH,theorbitalparametersofthebinaryaresubject r = A (1- e cosE ), (15) to secular changesdueto the tidal torqueexertedbythe BH preSN preSN preSN onits companion,and dueto the loss oforbitalangularmo- whereE istheeccentricanomaly,andisrelatedtomas mentum via gravitational radiation and stellar wind. Since m = E - esinE. (16) thetidalinteractionsdependonboththeorbitalandrotational propertiesoftheMScompanion,thestar’srotationalangular VHe,preSNistherelativepre-SNorbitalvelocityoftheBHpro- velocity(Ω)rightafterSNexplosionthatformedtheBHen- genitor, terstheproblemasanadditionalunknownquantity. Herewe assumetherotationalangularvelocityoftheBHcompanionis V = G(M +M ) 2- 1 1/2. (17) unaffectedbythe SNexplosion,andispseudo-synchronized He,preSN He 2 r A tothepre-SNorbitalfrequency.Thesystemofequationsgov- (cid:20) (cid:16) preSN(cid:17)(cid:21) erning the tidal evolution of the orbital semi-major axis A, TheangleψisthepolarangleofthepositionvectoroftheBH eccentricitye,andtheBHcompanion’srotationalangularve- withrespecttoitspre-SNorbitalvelocityinthecompanion’s locityΩhasbeenderivedbyHut(1981): frame.Itisrelatedtothepre-SNparametersas r2VH2e,preSNsin2ψ = G(MHe+M2)ApreSN(1- e2preSN). (18) dA = - 6k2MBHMBH+M2 R2 8 Sincethecorecollapseisinstantaneous,rremainsunchanged. (cid:18)dt (cid:19)tides T M2 M2 (cid:18) A (cid:19) Thisgivesaconstraint × A f e2 - 1- e2 3/2f e2 Ω , r = A (1- e cosE ) (1- e2)15/2 1 2 n preSN preSN preSN (cid:20) (cid:21) = A (1- e cosE ), (19) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (21) postSN postSN postSN whichneedstobesatisfiedwith|cosEpostSN|61. de = - 27k2MBHMBH+M2 R2 8 The mass loss from the system and a natal kick imparted dt T M M A (cid:18) (cid:19)tides 2 2 (cid:18) (cid:19) atottthheeBbiHnacrayn’sincdeuncteeraopfomsta-SssN. pItescumliaagrnvietulodceitiys(dVepteecr,mpositnSeNd) × e f e2 - 11 1- e2 3/2 f e2 Ω , (1- e2)13/2 3 18 4 n byfollowingEquations(28)–(32)in PaperI, and isrequired (cid:20) (cid:21) tofallwithintherangederivedinSection5,whichis22- 32 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) ((cid:1)22) km/s. dΩ k M 2M R2 R 6 In addition, there are two more restrictions on the proper- =3 2 BH 2 2 2 dt T M I A tiesofpre-andpost-SNbinarycomponents.First,werequire (cid:18) (cid:19)tides (cid:18) 2 (cid:19) 2 (cid:18) (cid:19) thatbothcomponentshavetofitwithintheirpre-andpost-SN n Ω Roche lobe at periapsis. We impose this condition to avoid ×(1- e2)6 f2 e2 - 1- e2 3/2f5 e2 n . complicationsarisingfrommasstransferinducedchangesin (cid:20) (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (23) thestellarstructureoftheMScompanion,thatlaterbecomes theBH companionofthe XRB. To calculatethe Rochelobe radius of each component in eccentric pre- and post-SN or- Here, k2 and I2 are the apsidal-motionconstantand moment bits, we adopt the fitting formulaeof Sepinskyetal. (2007). of inertiaof the MScompanion,respectively. T is a charac- When calculating the pre-SN Roche lobe radii, we assume teristicstimescalefortheorbitalevolutionduetotides,andn thatthe pre-SNorbitis pseudo-synchronized. Again, dueto =2π/Porbisthemeanorbitalangularvelocity.Thecoefficient the differencein calculatedstellar radiiamongstellar evolu- functions f e2 fori=i,2,...,5aregiveninEquations(11) i tion codes, we consider an uncertainty of ±2.5 R⊙ on the inHut(1981).AstheBHcompanioninCygnusX-1isamas- companion radius (Valsecchietal. 2010). The radius of the siveMSstar(cid:0)wi(cid:1)tharadiativeenvelope,thefactork /T canbe 2 8 T.-W.Wongetal. approximatedas k R R 5/2 2 =1.9782×104 2 ⊙ T R A (cid:18) (cid:19)rad (cid:18) ⊙(cid:19)(cid:18) (cid:19) M 1/2 M +M 5/6 × 2 BH 2 E yr- 1. (24) 2 M M (cid:18) ⊙(cid:19) (cid:18) 2 (cid:19) TheconstantE comesfromafittothetablesinClaret(2004), 2 t/t logE =- ms - 5.51039, (25) 2 2.20489- 1.89579(t/t ) ms for 15.85 ≤M2,zams ≤25.12 M⊙. Here, tms is the main se- quencelifetime. We define the end of the main sequence as thehydrogenabundanceatthecorebeinglessthan0.01. To follow the secular changes of the orbital parameters associated with emissions of gravitational waves, we adopt Equations (35) and (36) in Junker&Schäfer (1992), which arederivedupto3.5post-Newtonianorder. The rates of change in A and e due to wind mass loss andwindaccretionontotheBHaredeterminedbyfollowing Figure6. Theorbital evolution ofaselected winning binary. Right after Equations(15)and(16)in(Hurleyetal.2002), theformationoftheBH(t=3.8Myr),thisbinaryconsistsofa14.8M⊙BH anda21.7M⊙mainsequencestar.Thetoppanelsshowthetimeevolutionof dA M˙ 2- e2 1+e2 M˙ orbitalperiodandeccentricity.Thebottompanelsshowtherateofchangesof = - A 2 + + acc thesemi-majoraxisAandeccentricityeduetotidaleffects(solidline),wind (cid:18)dt (cid:19)wind (cid:20)MBH+M2 (cid:18)MBH MBH+M2(cid:19)1- e2(cid:21) masslossandwindaccretion ontotheBH(dashedline), andgravitational (26) radiation(dottedline). de = - eM˙ 1 + 1 . (27) Theelementspresentedintheprevioussessionscannowbe dt acc M +M 2M (cid:18) (cid:19)wind (cid:18) BH 2 BH(cid:19) combinedto establish a completepicture of the evolutionof Cygnus X-1 and the dynamics involved in the core collapse The mass loss via stellar wind also induces a loss in the event that formed the BH. After finding the successful evo- spinangularmomentumoftheBH companion. Hurleyetal. lutionarysequencesthatsatisfyalltheobservedpropertiesof (2000) showed that if all the mass is lost uniformly from a the BH companion and the bolometric X-ray luminosity as thinshellatthesurfaceoftheMSstar, discussed in Section4, we trace the motionof the system in J˙ = d (I Ω) = 2M˙ R2Ω, (28) theGalaxybackintimetotheformationoftheBH.Weadopt 2,spin dt 2 3 2 2 themethodologyofGualandrisetal.(2005)toaccountforthe uncertainties in the measured distance and velocity compo- where J2,spin is the spin angular momentum of the BH com- nentsofCygnusX-1. ThetimeofBH formationisdifferent panion. foreachsuccessfulsequence. ItisestimatedbytheBHmass For each of simulated binaries, we follow the secular of the sequence, which connects to an approximate lifetime changes of its orbital properties due to all the mechanisms ofthecorrespondingBHprogenitor. Thisproceduregivesus mentioned in this section. The properties of binary com- a constraint on the system’s peculiar velocity right after the ponents are adopted from the corresponding successful se- BHformation. WethenperformMonteCarlosimulationson quence. Unlike finding Vpec,postSN in Section5, the orbital the orbitaldynamicsat core collapse for each successfulse- evolutionof the binarygoes forwardin time, fromtBH tot2. quence. Therearesevenfreeparameters: theBHimmediate Withinthisperiodoftime, theBH companionhastoalways progenitormass, the pre-SN orbital semi-majoraxis and ec- fitwithinitsRochelobeatperiapsis. Inotherwords,itscal- centricity, the mean anomaly, the magnitude of kick veloc- culated radius is constrained to be less than the Roche lobe ity imparted to the BH, and the two angles specifying the radius at periapsis given by Sepinskyetal. (2007). Again, direction of the kick velocity. The Monte Carlo simulations we allow an uncertainty of ±2.5 R⊙, due to the differ- produceapopulationofsimulatedbinaries,whichsatisfythe encein calculatedstellar radiiamongstellar evolutioncodes post-SNsystem’speculiarvelocityconstraintderivedalready. (Valsecchietal. 2010). Furthermore, the rotational angular Last,weevolvetheorbitsofthesesimulatedbinariesforward velocity of the BH companion has to be smaller than the intimetothecurrentepoch. Iftheorbitalperiodandeccen- breakupangularvelocityΩc. Iftheorbitalperiodandeccen- tricityofthesimulatedbinaryatcurrentepochmatchthemea- tricityofthesimulatedbinaryatt2matchthemeasuredvalues suredvaluesofCygnusX-1,weclassifythatsimulatedbinary ofCygnusX-1,weclassifythatbinaryasa"winningbinary". asa"winningbinary". Theresultspresentedinwhatfollows Figure6 illustrates the time evolution of orbital parameters are derived from the winning binaries of all successful se- foroneselectedwinningbinary,andshowsthatthechangein quences. thesemi-majoraxisismainlydeterminedbythestellarwind In Figure7, we present the probability distribution func- massloss,whilethechangeintheeccentricityisoverwhelm- tions(PDFs)oftheBHimmediate(He-rich)progenitormass inglydominatedbythetidaleffects. (M ) andnatal kickmagnitude(V ). We find M to be in He k He a range of 15.0- 20.0 M⊙, and Vk to be ≤77 kms- 1, both 8. PROGENITORCONSTRAINTS at95%confidence. Figure8illustratesthe2DjointV –M k He UnderstandingCompactObjectformation.III. 9 Figure7. TheprobabilitydistributionfunctionsoftheBHimmediate(He- Figure9. The2DjointApreSN–epreSNconfidencelevels:68.3%(red),95.4% rich)progenitormass(MHe)andnatalkickmagnitude(Vk)impartedtothe (yellow),and99.7%(blue). BH. bornwithanextremespin,wefirstestimatehowmuchmass theBHcouldhaveaccretedfromitscompanion’sstellarwind since thetime of BH formation. The winningbinariesof all successfulsequencesshow that at maximumthe BH hasac- creted∼2×10- 3M⊙.SinceitisimpossibletospintheBHup toa∗>0.95byaccretingthatnegligibleamountofmass,the BHneedstohaveanextremespinatbirth.Thishighspinhas implications about BH formation and the role of rotation in corecollapse. Axelssonetal. (2011) also concludedthatthe observedspinconnectstoprocessesinvolvedincorecollapse, andisnotlikelytooriginatefromthesynchronousrotationof theBHprogenitor. Besides the constraints on the BH formation, our results alsoshedlightontheevolutionarypictureofCygnusX-1.We findthatrightaftertheformationoftheBH,theBHcompan- ionhasa massof 19.8- 22.6M⊙, in anorbitwith periodof 4.7- 5.2days.Sincethen,theorbitalseparationofCygnusX- 1hasbeenincreasingwith time, asthe rate ofchangein the semi-majoraxisisdominatedbytheinfluenceofstellarwind masslossfromthesystem. Ontheotherhand,theorbitalec- centricityhasdecreasedslightlysincetheBHformation.This isbecausethetidesexertedonthecompanionbythe BH, as the dominant mechanism of circularizing the orbit, are not Figure8. The2DjointVk–MHeconfidencelevels:68.3%(red),95.4%(yel- strongenoughtodecreasetheorbitaleccentricitysignificantly low),and99.7%(blue). withinthetimeperiodofseveralmillionyearssincethetime confidencelevels, which shows that if M is less than ∼17 of BH formation. We find that e ranges from 0.015 to He postSN M ,theBHmighthavereceivedanon-zeronatalkickatthe 0.022. However, this does not suggest that e has to be ⊙ preSN corecollapse event. For smallM , a minimumV of ∼55 small. An eccentric pre-SN orbital could become fairly cir- He k kms- 1isnecessaryforexplainingthecurrentobservedprop- cular if there is a natal kick imparted to the BH at the right ertiesofCygnusX-1.Furthermore,boththeM PDFandthe direction. As illustrated in Figure9, there are winningbina- He 2D joint Vk–MHe confidence levels show that the maximum rieswithepreSN beingashighas∼0.53. M isconstrainedbyouradoptedupperlimitof20M . We He ⊙ imposethislimitbasedonthephysicsinvolvedintheevolu- 9. SUMMARY&DISCUSSION tionofmassivestars. Adiscussiononthislimitcanbefound In this paperwe constrainedthe progenitorpropertiesand in Section9.1. Given our understanding of mass loss from the formation of the BH in the persistent XRB CygnusX- Heliumstars, itseemsthattheBH haspotentiallyreceiveda 1. Our analysis accounts for the orbital evolution and mo- small natal kick velocity of ≤77 km s- 1 (95% confidence) tionthroughthe Galactic potentialrightafterthe BH forma- duringthecorecollapseevent. tion,andthebinaryorbitaldynamicsatthetimeofcorecol- Based on the dynamical model of Oroszetal. (2011), lapse. WefindthatthemassoftheBHimmediateprogenitor Gouetal.(2011)foundthattheBHinCygnusX-1hasaspin falls within a range of 15.0- 20.0 M⊙ at 95% confidence. parametera∗>0.95at3σ.TodeterminewhethertheBHwas Wenotethatthemaximumprogenitormassisconstrainedby 10 T.-W.Wongetal. our adopted upper limit, which is discussed in Section9.1. The BH has potentially received a small natal kick velocity of ≤77 km s- 1 at 95% confidence. In fact if the progenitor mass is less than ∼17 M⊙, a non zero natal kick velocity is necessary to explain the currently observed properties of CygnusX-1. Since the BH has only accreted mass from its companion’sstellar wind, the total amountof mass accreted sincetheBHformationislessthan∼2×10- 3M⊙. Thisin- dicatesthattheobservationallyinferredBHspinofa∗>0.95 (Gouetal.2011)cannotbeexplainedbymassaccretionand hastobenatal.ThishighspinhasimplicationsaboutBHfor- mationandtheroleofrotationincorecollapse.Rightafterthe BH formation, the BH companionhas a mass of 19.8- 22.6 M⊙,inanorbitwithperiodof4.7- 5.2daysandeccentricity of 0.015- 0.022. Although the post-SN orbital eccentricity is small, the pre-SN orbitcan potentiallybe fairly eccentric. ThisispossibleiftheBHreceivesanatalkickvelocityatthe rightmagnitudeanddirection. The formation of the BH in CygnusX-1 has been previously studied by Nelemansetal. (1999) and Mirabel&Rodrigues (2003). Both studies assumed symmetric mass loss during the core collapse event, and Figure10. Thesameplotof2DjointVk–MHeconfidencelevelsasFigure8, considered only the binary orbital dynamics at the time of calculatedwithVpec,postSN≤10kms- 1insteadoftheoriginalrangederived Section5. core collapse. Comparing with these two earlier studies, entassociationofCygnusX-1.ThisinfersthatV due we consider the possible asymmetries developed during the pec,postSN to the core collapse eventhas to be small. If we changethe core collapse eventand the evolutionof the binarysince the constraintonV to≤10kms- 1,wefindM tobein BstuHdifeosrmdaotinoont. cItonissiidmerpothrteanmt tuoltintuodteethoafttthheesoebtswerovaetaiorlniearl a range of 13.9p-ec1,p6os.t9SNM⊙ and Vk to be ≤24 kmH/se, both at 95%confidence. Besidesthechangein95%limits,non-zero constraints taken into account here and hence the suggested BH natal kicks are not needed for progenitors of M ≤17 progenitors are not complete solutions for the evolutionary He M inordertoexplaintheobservedpropertiesofCygnusX- historyofCygnusX-1. ⊙ Finally,wediscusssomeoftheassumptionsintroducedin 1,butbecomenecessaryforMHe>17.5M⊙ (seeFigure10). Also, we note that a relatively small change on the range of ouranalysisinthefollowingsub-sections. V affectsthederivedconstraintonV qualitatively. pec,postSN k 9.1. MaximumBHProgenitorMass 9.3. Super-SynchronizedOrbit Unlike the case of GRO J1655-40 studied in Paper I, the After considering several previous measurements of analysis of orbital dynamics during the core collapse event the BH companion’s surface rotation speed (V sini), doesnot givean upperlimit on M . Instead, we have con- rot He Caballero-Nievesetal. (2009) adopted V sini=95±6 km servativelyadoptedanupperlimitofMHe≤20M⊙,basedon s- 1. Oroszetal. (2011) found that the ratroiot of the BH com- physicsinvolvedin the evolution of massive stars. As men- panion’sspinningfrequencytotheorbitalfrequency(fΩ)was tioned in Section 6.1 of Paper II, by evolving a ZAMS star 1.400±0.084,whichwasderivedbasedontheirresultsofthe of ∼100 M⊙ at solar metallicity, the maximum Helium star inclination angle i=27◦.06±0◦.76 and the companion ra- mass one can achieve is ∼15 M⊙ when including moderate diusR =16.5±0.84. ThisindicatesthattheBHcompanion stellarrotation,and∼17.5M⊙ whenassumingnostellarro- is supe2r-synchronized. We note that with the analysis pre- tation. Whenadoptingtheupperlimitof17.5M ,thelower ⊙ sentedhere,wefindnoneofourwinningbinarieshavesuper- limitof M decreasesslightly to 14.6M and the rangeof He ⊙ synchronizedBHcompanionsatthecurrentepoch. Theyare V becomes14- 81kms- 1,bothwith95%confidence. This k allsub-synchronizedwith fΩ reaching∼0.87atmaximum. rangeofV stillsuggeststhattheBHinCygnusX-1received k Inan effortto examinehowourstandardassumptionscan alowkickduringthecorecollapseevent. bemodifiedandinvestigatewhethersuper-synchronismisat all allowed by the models as indicated by the observations, 9.2. AssociationwithCygOB3 wemaketwo modificationstoouranalysis. We firstremove The center of Cyg OB3 locates at l = 72.8◦ and b = theassumptionthatthepre-SNorbitispseudo-synchronized, 2.0◦, and at a distance of 1.4- 2.7 kpc away from the andrandomlydistributethepre-SNspinoftheBHcompanion Sun(Masseyetal.1995;Dambisetal. 2001;Mel’Niketal. betweenzeroanditsbreakupangularfrequencyΩ . Next,we c 2001; Mel’Nik&Dambis 2009). When comparing that to reduce the secular changes of the orbital parameters due to the location of CygnusX-1 (Table1), it is clear that not the influence of tides by multiplying the right hand side of only their Galactic coordinates are close to each other, but Equation(21)–(23)byaconstant f . tide also their distance estimations overlapwith each other. Fur- As shown in Figure11, by allowing the pre-SN spin of thermore,the measurementsof propermotionandradialve- companion to be greater than pseudo-synchronization and locity show that Cygnus X-1 is moving as the members of keepingthetidalstrengthunchanged(i.e. f =1.0),themax- tide Cyg OB3 (Dambisetal. 2001; Mirabel&Rodrigues 2003; imum fΩofthewinningbinariesincreasesto∼1.2.Although Mel’Nik&Dambis 2009). Based on these observations, it is getting close, this value is still below the observation- Mirabel&Rodrigues(2003) arguethat Cyg OB3 is the par- allyinferredone. Togetherwithaweakenedtidalstrengthof