Astronomy&Astrophysicsmanuscriptno.AA2061 February2,2008 (DOI:willbeinsertedbyhandlater) Understanding B-type supergiants in the low metallicity environment of the SMC II. C.Trundle1,2 &D.J.Lennon1 1 TheIsaacNewtonGroupofTelescopes,ApartadodeCorreos321,E-38700,SantaCruzdeLaPalma,CanaryIslands,Spain 5 2 TheDepartmentofPureandAppliedPhysics,TheQueen’sUniversityofBelfast,BelfastBT71NN,NorthernIreland 0 0 2 Abstract.Despitearesurgence of effort over thelastdecade intheareaof massivestarsthereisstillambiguityover their n evolutionary path,contamination of theirsurfaceabundances and thebehaviour oftheirstellarwinds. Here10SMCB-type a supergiantsareanalysedapplyingaunifiedmodelatmospherecodeFASTWINDtointermediateresolutionspectrafromtheESO J MultiModeInstrument(EMMI)ontheNTTtelescope.Combinedwiththe8targetsanalysedinpaper1(Trundleetal.2004), 2 thiswork provides observational results on theproperties of the winds and chemical compositions of B-type supergiants in 1 theSMC.Thispaperemphasizesandsubstantiatestheimplicationsforstellarevolutionfrompaper1;thatcurrenttheoretical modelsneedtoproducelargerdegreesofsurfacenitrogenenhancementsatlowerrotationalvelocities.Inadditionasignificant 1 discrepancy between theoretical and observed mass-loss rates is discussed which will have important implications for the v rotational velocities obtained from stellar evolution calculations. Furthermore, an initial calibration of the wind-momentum 8 luminosityrelationshipforB-typesupergiantsinalowmetallicityenvironment(Z=0.004)ispresented. 2 2 1 0 Keywords.stars:atmospheres–stars:early-type–stars:su- Kudritzki, Lennon& Puls (1995).This work showed that the 5 pergiants–stars:mass-loss–stars:abundances–stars:evolu- wind-momentum of a star, a product of its mass-loss, termi- 0 tion nalvelocityandradius,isdirectlyrelatedtoitsluminosityand / h can therefore provide an estimate of the stellar distance. The p intrinsicallyhighluminosityofearly-typesupergiantscoupled - 1. Introduction o withtheirrelativelynormalspectralbehaviourmakesthemthe r Theevolutionofagalaxyisstronglyinfluencedbytheinputof best candidates for using this Wind-momentum Luminosity t s energy,momentumandprocessedmaterialfrommassivestars Relationship (WLR). Recentworkhas shownthe dependence a oftheWLRonspectraltypeforGalacticOBA-typestars(Puls : intotheinterstellarmedium(ISM).Aspossibleprogenitorsof v et al. 1996; Kudritzki et al. 1999; Repolust, Puls & Herrero TypeIIsupernovaeandgammaraybursts,thenucleosynthesis Xi processesandevolutionofmassivestarsareimportanttopicsin 2004; Markova et al. 2004). Some studies have also endeav- oured to understand the behaviour of the WLR in the lower r currentastrophysicalresearch.Inspiteofitsimportance,there a metallicityenvironmentsoftheMagellanicClouds(Pulsetal. is still a large degree of ambiguity concerning the evolution- 1996; Kudritzki & Puls 2000; Crowther et al. 2002; Trundle ary path of these objects beyond the main-sequence and the etal.2004;Evansetal.2004a).Mostofthesestudiesfocused influenceofrotationandmass-lossonthecompositionoftheir on relativelysmall samplesof O-type stars with some indica- stellar photospheres. Hence quantitative observationalstudies tion of the WLR having different behaviour at lower metal- concerning the chemical compositions and winds of massive licity. Recent work by Trundle et al. (2004; hereafter paper stars are vital tests on both the theory of galactic and stellar 1) investigated a sample of B-type supergiants in the SMC. evolution. These early-type stars are also important contribu- Althoughthesampleonlyincluded8targets,itprovidedobser- tors to the spectra of star-forming galaxies and intermediate vationalevidencetotestlinedrivenwindtheoryinthisspectral age (20-50 Myr) stellar populations (de Mello et al. 2000). region and at a low metallicity. Indeed this work highlighted Furthermoreinordertomodeltheintegratedlightofstarburst asignificantdiscrepancybetweentheobservedmass-lossrates regions and constrain the composition of high redshift galax- and the theoretical predictions by Vink et al. (2001) at SMC ies,accurateatmosphericandwindparametersofOBstarsare metallicities. required(Leithereretal.1999;Pettinietal.2000). In the mid 1990’s an intriguing implication arose from Inadditiontowindanalyses,Paper1investigatedthechem- the theory of radiatively driven winds and was introduced by ical compositionof the SMC sample. This providedquantita- Sendoffprintrequeststo:[email protected]. tive CNO abundancesof B-type supergiants;a key test of the RecentlymovedtoInstitutodeAstrofis´icadeCanarias,C/V´iaLa´ctea, mixing and mass-loss processes incorporatedin stellar evolu- E-38200LaLagunaTenerife,Spain. tion modelsfor early-typestars. The results from Paper 1 are 2 C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII Table1. Observationaldetails.IdentificationnumbersarefromAzzopardi&Vigneau(1982;AV#)andSanduleak(1968;Sk#). Spectral types adopted from Lennon (1997), except for AV78 which has been reclassified in this work from the blue spectra. AbsoluteMagnitudes(Mv)arecalculatedusingVand(B-V)magnitudesfromGarmany,Conti&Massey(1987;1)andMassey (2002;2) and (B-V) values from Fitzpatrick & Garmany (1990). The adopted distance modulus is 18.9 (Harries, Hilditch, & 0 Howarth 2003). The average S/N ratios for the blue and red arms are presented. The vsini values representthe width of the spectralfeaturesandaresimplyupperlimitsontheprojectedrotationalvelocities(seePaper1). STAR Alias Spectral V B-V Mv S/N vlsr vsini Type B R (kms−1) (kms−1) AV420 Sk131 B0.5Ia 13.092 -0.17 -5.90 84 49 188±12 80 AV242 Sk85 B1Ia 12.111 -0.13 -6.91 125 47 188±25 90 AV264 Sk94 B1Ia 12.361 -0.15 -6.60 102 74 142±14 85 AV78 Sk40 B1Ia+ 11.051 -0.03 -8.25 161 80 176±12 85 AV96 Sk46 B1.5Ia 12.592 -0.10 -6.50 146 69 161±10 90 AV373 Sk119 B2Ia 12.171 -0.09 -6.92 80 105 191±26 80 AV10 Sk7 B2.5Ia 12.582 -0.02 -6.69 80 110 225±21 85 AV56 Sk31 B2.5Ia 11.151 -0.00 -8.18 120 100 209±11 80 AV443 Sk137 B2.5Ia 10.971 -0.06 -8.18 165 160 191±22 73 AV151 Sk57 B2.5Ia 12.262 -0.02 -7.01 122 80 187±15 62 consistent with the significant enhancements and dispersions per pixelin the blue and red arms, respectively(see Table 1). of nitrogen abundances, previously observed in B-type stars Further details of the observations and data reduction proce- (Gies&Lambert1992;Lennonetal.1991,1996,1997,2003; durescanbefoundinLennon(1997). Fitzpatrick & Bohannan 1993; McErlean, Lennon, & Dufton TheoriginaldataselectedbyLennon(1997)areasubsetof 1999;Duftonetal. 2000).Theexistenceofa stellar windcan B0 - B9 starsfromthe sampleofGarmanyetal.(1987),who reducetheangularmomentumofastar,whichinturncausesa carriedoutaspectralclassificationofSMCOB-typestars.For decreaseintherotationalvelocity.Thislinkbetweenthemass- thepurposeofthispapertenstarsfromthisdatasethavebeen lossof a star and its rotationalvelocityaffectsthe stellar life- selected spanningthe spectralrangeB0 - B2.5. An additional timesandphotosphericcompositionpredictedbystellarevolu- constraint was that each object have medium to strong stellar tioncodes.Thusmass-lossrates,rotationalvelocitiesandabun- winds,whichwasapparentfromtheprofileoftheHα line.In dancesareimportantobservationalconstraintsforsuchcodes. Table1thetargetsarelistedwiththespectraltypesassignedby The recent inclusion of rotationally induced mixing in stellar Lennon(1997)fromapplyinghisrevisedclassificationsforB- evolution codes such as those by Maeder & Meynet (2001), typesupergiantsintheSMC. AV78hasbeenreclassifiedhere wereshowninpaper1toreproducethelargedispersionofni- asaB1Ia+ starduetothepresenceofaweakSiIV lineinits trogen abundances observed in B-type supergiants, implying spectrumat4116A˚.ThisstarwaspreviouslyclassedasaB1.5 thatrotationmayplayasignificantroleintheevolutionofmas- Ia+ starbyLennon(1997). sivestars. Theestimatedprojectedrotationalvelocities(vsini)were The dataset of Lennon (1997) offers the opportunity of determinedusing the techniquesdescribed in paper 1 and are analysing an additional ten B-type supergiants which supple- presented in Table 1. It is important to note that the vsini mentstheresultsfrompaper1andwillprovideaclearerinsight values only represent the width of the spectral features and intothebehaviouroftheseluminousobjects.Theobjectiveof are simply upper limits for the projected rotational velocities this work is to provideobservationalconstraintson the mass- (i.e. no attempt has been made to deconvolve the contribu- lossratesofB-typesupergiantsandtocalibratetheWLRatthe tion of stellar rotation and macroturbulent motions from the metallicityoftheSMC. line broadening).Equivalent widths were measured by fitting a Gaussian profile using a non-linear least squares technique in DIPSO (Howarth et al. 2003);a spectrum analysis package 2. ObservationalData fromSTARLINK.Table1alsoliststheabsolutemagnitudescal- The SMC optical dataset consideredfor this work is a subset culated using V and (B-V) magnitudes from Garmany, Conti ofthatpresentedbyLennon(1997),inastudytodelineatethe &Massey(1987)andMassey(2002)and(B-V)0 valuesfrom spectral classifications of B-type supergiants in low metallic- Fitzpatrick&Garmany(1990).Theadopteddistancemodulus ityenvironments.Themediumresolutionspectra(R∼20000) oftheSMC,appliedtodeterminetheabsolutemagnitude(Mv), were obtained remotely on the NTT telescope with the ESO is18.9(Harries,Hilditch,&Howarth2003). Multi Mode Instrument (EMMI). Three spectral regions were Radialvelocitiesofthetargetstarsarecorrectedtothelocal observed covering the wavelengths 3925-4375 A˚, 6190-6830 standardofrest,givingarangeinvelocitiesof142-225kms−1 A˚ and 4300-4750A˚. Signal-to-noise(S/N) ratiosgreater than (notesimilarrangeobservedforSMCstarsinPaper1).Froma 70 were obtained along with dispersions of 0.45 and 0.32 A˚ H I 21cmemissionsurveybyMcGee&Newton(1981),four C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII 3 gas complexeswere identified in the SMC at heliocentric ve- of ξ and thereforea value of 10 kms−1 was adoptedin the O locitiesof114,134,167&192kms−1.InadditionWeltyetal. analysisforthisstar. (1997) found SMC multiple absorption components of inter- Threetargets,AV242,AV264&AV78,wereincludedinthe stellargaswithvelocitiesbetween85≤and210kms−1.This UV analysisofEvansetal. (2004- hereafterEVANS04)(de- impliesthattheradialvelocitiesofourtargetstarsareconsis- scribed in Paper 1), using archive IUE/HIRES data for AV78 tentwiththoseoffieldstarsintheSMC. and HST/GHRS spectra for the former two stars. These ob- jects, therefore have predetermined terminal velocities mea- sured with the SEI (Sobolev Exact Integration) method from 3. Stellar parameters the UV resonance lines. The remaining seven stars have no The model atmospheres and procedures used in this analysis availableUVdatafromwhichterminalvelocitiescanbemea- areidenticaltothosedescribedinPaper1andwillonlybriefly suredandhenceestimatesweremadeusingthealternativepro- be repeated here. The ‘unified model atmosphere’ code ap- cedure described in Paper 1 & EVANS04. This involves cal- plied is called FASTWIND, a line-blanketed, spherically sym- culatingtheescapevelocityandapplyingtheratiosofv∞/vesc metric,non-LTEcode(Santolaya-Rey,Puls,&Herrero(1997); determinedbyKudritzki& Puls(2000)(viz.forT ≥ 21kK eff Herrero, Puls, & Najarro 2002; Repolust, Puls, & Herrero thisratioisequalto2.65andforT <21kKitis1.4). eff 2004). The temperature structure in FASTWIND was not cal- Hα profilesprovideameanstodeterminethepropertiesof culatedexplicitly,butparameterisedbyapplyingthenon-LTE thestellarwind;withaknowledgeoftheterminalvelocity,the Hopf function described by Santolaya-Rey, Puls, & Herrero mass-loss rate (M˙) and beta parameter (β) can be determined (1997; see equations 4.1 - 4.3) to TLUSTY models calculated simultaneously from the profile shape. M˙ controlsthe overall at Queen’s University Belfast (Ryans, R.S.I.; private commu- windemissionintheprofile,whilstβ causesavariationinthe nication). strengthandFWHMoftheemissionpeak.Assuchitisdifficult The stellar parameterswere calculatedusing preciselythe toconstrainthebetaparameterinstarswithweakwinds,where samemethodsasdescribedinPaper1.Inshort,theparameter windemissionmayonlycause asmallamountof fillingin of spacein whicheachstarresideswasestimatedusinga coarse theabsorptioncore(viz.AV420;seeFig1).Infactavariation gridandthiswasfollowedbyaniterativeprocesstodetermine of β from 0.8 to 2 for AV420 with subsequentchanges in M˙ each parameter accurately in a finer but smaller grid. The re- from0.49to0.14.10−6M yr−1 willreproducetheobserved ⊙ sulting photospheric and wind parameters for each target are Hα profile. In this analysis we adopt a β parameter of 1 for presentedinTable2. this weak wind star with the knowledge that this will lead to FortheB0.5-B2stars,effectivetemperaturesweredeter- uncertainmass-lossrates(seealsoAV216andAV104inPaper minedfromtheSiIII/SiIVionisationbalancewithtypicalran- 1). dom errors of 1.5 kK. In the B2 - B2.5 stars only the Si III FortheP-Cygniandemissionprofiles,βcanbedetermined lineswerepresent,asa resultprofilefitting tothese lineswas rather more accurately on the order of ± 0.5. This is consid- required to determine the temperature. For these objects, the erably higher than the error found from the UVES data and lackofaSi IV 4116A˚ lineandtheveryweakfeaturesforthe is attributed to the lower resolution and in some cases lower SiII4128,4131A˚ profilesactedasupperandlowerlimitsfor S/N of the current dataset. In addition, nebular contributions thetemperatureestimates.TheonlyexceptiontothisisAV151 in AV96& AV264preventaccurateestimatesof the emission whichexhibitedrelativelystrongSiII featuresallowingtheSi peakFWHMandaβ intherange2-3cangenerallyfitthese II/Si III ionisation balance to be determined. The uncertainty profileswithvaluesabove3havinglittleimpactontheprofile for AV151 is 1.5 kK, and is slightly larger for the other B2- shape.SinceM˙ andβ arederivedsimultaneouslyfromthefit- B2.5 stars (2.0 kK). This uncertainty in effective temperature tingofHα theerrorinthemass-lossrateisdominatedbythis alsoaffectsthedeterminationofthelogarithmicsurfacegrav- uncertaintyinβ.ThedifferenceinM˙ derivedwithaβof2and ity,typicallyanerrorof0.5kKrepresentsasystematicerrorof of3is∼25%.InthecaseofAV264avalueof3wasdeemed 0.05dexinlogg.Inadditiontothisthereisarandomerrorof more appropriate from a fit to the redward wing of the emis- ±0.05fortheB2-B2.5starsandupto0.1dexfortheB0-B1.5 sionprofileandtheheightoftheemissionpeak.β parameters stars(SeeTable2). forAV373& AV151areas uncertainas thatforAV96dueto Microturbulent velocities, ξ , adopted for the analysis the failuresin thecodeto producecompleteemissionprofiles Si were derived from the Si III triplet at 4560 A˚. The microtur- atlowtemperatures(seebelow)andwhichcontributetotheer- bulencewasalso derivedfromtheO II multiplets,inthestars rorinthemass-lossratederived.Uncertaintiesinthemass-loss withspectraltypeearlierthanB2.Asdiscussedinpaper1these rates therefore range from 15% to 25% and are presented in valuestendtobe∼10kms−1 higherthanestimatedfromthe Table2. silicon lines. In the case of the stars cooler than B2, no O II The final model fits to the observed Hα profiles are pre- lines are present in the spectra as a result of the low temper- sentedinFigs.1.Threeoftheobjects,AV78,AV443&AV56 aturesand hence low ionisation of this species. For AV56the display strong broadening in their profile wings (similar to spread in equivalent widths amongst the Si III multiplet was AV362&AV22inpaper1).Thesewings,whichareformedin only∼ 50mA˚ andthiswasnotsufficientto providean accu- the upperlayersofthe photosphere,areconsiderablyaffected ratemicroturbulentvelocity(typicallythisspreadis>100mA˚ byincoherentelectronscattering.Theintroductionofelectron intherestofthesample).InadditionAV56istoocoolforitto scattering into the formal solution of the FASTWIND models haveawelldevelopedOIIspectrum,preventinganestimation providesanexcellentprofilefittoAV78(B1Ia+;seeFig.1). 4 C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII Fig.1. HαprofilesforthetenSMCB-typesupergiants.Thesolid-dashedlines(---)arethebestfitsfromtheFASTWINDmodels and the parameters are given in Table 2. In the case of AV78, AV56 & AV443, models with the best fit parameters but with incoherentelectronscatteringincludedintheformalsolutionarealsoshown(dottedline;···). Table 2. DerivedatmosphericandwindparametersforSMC B-typesupergiants.Themicroturbulencefromboththe Si III & O II linesare presented,howeverthesilicon mircoturbulencewasadoptedinthe analysis. A microturbulenceof 10kms−1 wasadoptedforAV56dueto lack ofa directmethodof measurement.Escape velocitiesare calculatedusingtheprocedureoutlinedinpaper1&EVANS04.Terminalvelocities,(v ),forAV242,AV264&AV78arederivedfromtheSEImethod(1).Fortherestof ∞ thesample,v∞iscalculatedbyadoptinga vve∞sc ratioof2.65forstarswithTeff ≥21.0kKand1.40forTeff <21.0kK(2).TheerrorsquotedarediscussedinSection3. Star Teff logg R⋆ Mspec Mevol log(LL⋆) ξSi ξO M˙ v∞ vesc β log(DMOM) ⊙ (kK) (cgs) (R⊙) (M⊙) (M⊙) (kms−1) (10−6M⊙yr−1) (kms−1) (kms−1) (cgs) AV420 27.0±1.5 3.05±0.15 21.7 19 26 5.35 13 25 0.34±0.15 1310±2602 4932 1.0 28.11±0.40 AV242 25.0±1.5 2.85±0.15 36.6 35 39.5 5.67 13 20 0.84±0.13 950±1001 3591 2.0 28.48±0.15 AV264 22.5±1.5 2.55±0.15 34.8 16 29 5.44 13 19 0.29±0.06 600±1001 3131 2.5 27.81±0.20 AV78 21.5±1.5 2.40±0.15 79.0 57 53 5.92 12 20 2.29±0.34 450± 501 4231 3.0 28.76±0.15 AV96 22.0±1.5 2.55±0.15 34.0 15 27 5.39 11 21 0.24±0.06 850±1702 3202 3.0 27.87±0.25 AV373 19.0±2.0 2.30±0.20 46.8 16 28 5.42 11 22 0.16±0.04 390± 802 2822 3.0 27.42±0.25 C AV10 17.0±2.0 2.20±0.20 46.7 13 22 5.21 14 0.15±0.03 380± 752 2732 3.0 27.39±0.20 .T r AV56 16.5±2.0 2.05±0.20 96.1 38 50 5.88 10 0.51±0.08 420± 852 3022 2.0 28.12±0.15 un AV443 16.5±2.0 1.95±0.20 96.5 30 42 5.79 11 0.45±0.09 340± 702 2462 2.0 27.97±0.20 dle AV151 16.0±1.5 2.10±0.15 57.1 15 24 5.28 15 0.16±0.04 370± 852 2632 3.0 27.45±0.25 & D .J . L e n n o n : S M C B - ty p e S u p e rg ia n ts I I 5 6 C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII Howeveritdoesn’tcompletelyaccountforthestrongwingsob- ing uncertainties in these abundances are the adopted micro- servedinthetwocoolerB2.5Iatypestars;thiswasalsothecase turbulence,ξSi,equivalentwidthsandatomicdata.Inaddition forAV362(B3Ia)&AV22(B5Ia).Alsonotethemodelsfailure the lower resolution of the EMMI data causes a slight relative toreproducetheobservedprofilesforspectraltypeslaterthan increase in the uncertainty of the equivalent width measure- B2Ia(typicallyforT below19kK).Themodelsbelowthese ments, particularly for closely spaced, weak lines which may eff temperaturesexhibitstrong absorptionfeatures not present in havebeenresolvedintheUVESdatabutareslightlyblendedin theobservedspectra.Inthesemodels,theLymancontinuumis theEMMIdata(viz.SiIV4116A˚ &HeI4121A˚). opticallythickcausingthetransitionfromthe1stto2ndenergy One difference in this work and that carried out for the levelstobeindetailedbalanceandthesecondenergylevelthen UVES data are the number of nitrogen and oxygen lines con- simulatesa groundstate. TheHα line (i.e.transitionfromthe sideredintheabundanceanalysis.ExperiencewiththeB-type 2nd to 3rd energylevel)willsubsequentlyresultin a P-Cygni supergiantspectra identified some additional, reliable lines to profile as it behaves like a quasi-resonanceline. This may, in be includedin the analysis(viz. O II 4069, 4349& 4676and part, be due to the current temperature structures used in the N II 4241A˚). In generalthe weakestlines in the UVES abun- FASTWIND models and could possibly be improved with the danceanalysiswerenotmeasurableintheEMMIdataandwere introduction of a temperature correction scheme. A new ver- omittedfromtheanalysis. sion of FASTWIND has recentlybeen released which amongst Following the procedures laid out in Paper 1, the carbon otheradvancesincorporatessucha scheme (Pulset al.2005). abundancewascorrectedforNLTEeffectsduetotheproblem- ItisbasedonanalternativemethodintroducedbyKuba´t,Puls atic line 4267 A˚. Table 3 states a mean carbon abundance of & Pauldrach (1999) to solve the radiative equilibrium equa- 6.89dex,byapplyingthe appropriatecorrectionof+0.34dex tionexplicitly.Withthistechnique,thetemperatureintheupper ameanCabundanceof7.23dexisestimatedforthissample. photosphereandwindiscalculatedbyensuringthatathermal Itisworthnoting,thatpreliminaryabundanceestimatesfor balanceofelectronsisobtained. 64SMCB-typesupergiantsweremadebyDuftonetal.(2000) OnenoticeablefactorfromTable2isthelargevaluesofthe in a studyofline strengths(thisworkused thecompleteatlas β-parameterdeterminedfortheseB-typeobjects.Thesediffer ofLennon1997).TheMgandSiresultsareincloseagreement fromthoseobservedandpredictedforO-typestarswhichhave with those foundhere, whilst the C, N andO abundances,al- much faster winds with β being close to the order of unity. though lower differ by no more than 0.21 dex (see Table 4). Indeed large β values have been observed in other optically Duftonetal.founda rangeofnitrogenabundancesfrom7.09 basedspectroscopicstudiesofB-typesupergiantsintheGalaxy to7.69dextofitthedata,whilstthemaximumvalueissmaller and SMC (Kudritzki et al. 1999; Evans et al. 2004a). On the thanthatderivedfromthemoredetailedanalysisinthiswork otherhandapplyingtheSEI-methodtoUVP-Cygnilinesofthe there is some consistency between the spread in results from SMCtargetspresentedhereandinPaper1andoftheGalactic the two analyses. This work shows that with a large sample, targetsanalysedinKudritzkietal.suggestlowervaluesofβof even basic analysis techniques can arrive at reasonable esti- 1-1.5(EVANS04andHaser1995,respectively).Inboththese matesforthechemicalcompositionsofastellarpopulation. UV analyses it was suggested that whilst small changes of β can give aesthetically more pleasing fits to the UV resonance 5. Discussion lines,theywererelativelyinsensitivetotheparameter.Infact, Haser (1995) found that the SEI method of the B-type stars Foracomparisonofourderivedabsoluteabundanceswiththe produce identical profiles for β values in the range 1-4. It is results of previous studies in the SMC, we will assume that likely that the relatively slow winds of these objects result in the H II regionabundancesofKurtetal. (1999)representthe theP-Cygnilinesundersamplingthevelocityofthewindover present day composition of the SMC. In addition we include thesmallrangeindepthforwhichtheformationoftheselines theresultsofRollestonetal.(2003;correctedfornon-LTEef- cover,incomparisontotheHα profile.Hencetheβ parameter fects as discussed in Paper 1) for the main-sequence B-star, isilldefinedbytheUVlinesintheseslowerwindobjects. AV304, whose photosphereappears to be uncontaminated by anybyproductsofnuclearprocessesinthestellarcore.Thus, it is assumed that the chemical make-upof these objects rep- 4. ChemicalComposition resent the initial baseline composition of the SMC (for more Theproceduresfortheabundanceanalysisareidenticaltothat on this topic see paper 1). The mean element abundance for discussedinPaper1,theyapplythesameatmosphericmodels thissampleispresentedinTable3,butforthepurposeoffur- andatomicdataandassuchonewouldexpecttheabundances ther discussion the results from all 17 supergiants and 1 gi- to follow the same patterns. Indeed, no surprises are hidden antwillbeconsidered.HenceTable4presentsthemeanabun- in the chemical composition of these 10 B-type supergiants. dancescalculatedbycombiningtheresultsinTable3andthose Consequently,afewinterestingpointswillbeintroducedhere presented in Table 5 of paper 1. The results from SMC A- with further discussions of the implications in the following type supergiants and other B-type stars are also included in section. Table 3 (Venn1999;Venn & Przybilla 2003;Lennon,Dufton Fromagridofequivalentwidthsgeneratedby FASTWIND & Crowley 2003, these are corrected for non-LTEeffects see models at various microturbulent velocities and abundances, Paper1). the absolute abundances of C, N, O, Mg & Si for the SMC AcloseexaminationofTable4revealsthattheα-processed starswerederivedandarepresentedinTable3.Thedominat- elements(O, Mg, & Si) are in agreementfor all objects,with C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII 7 Table3. Derivednon-LTEabsoluteabundancesforSMCB-typesupergiants.Abundancesaregivenaslog[N(X)/N(H)]+12, where X represents the element under consideration.The errors representthe standard deviation of the mean and accountfor systematicerrors.Thenumbersintheparenthesisarethenumberoflinesincludedintheanalysis.Meanelementabundancesare presentedinthefinallineofthetable. Star CII NII OII MgII SiII SiIII SiIV AV420 <7.08(1) 7.44±0.14(2) 8.06±0.27(10) 6.84±0.24(1) 6.62±0.12(3) 6.59±0.46(1) AV242 <6.88(1) 7.40±0.19(1) 8.24±0.27(8) 6.84±0.38(1) 6.87±0.10(3) 6.91±0.30(1) AV264 <6.61(1) 7.86±0.13(3) 8.01±0.25(13) 6.91±0.14(1) 6.65±0.14(3) 6.64±0.28(1) AV78 <6.90(1) 8.30±0.24(7) 7.86±0.16(12) 6.95±0.16(1) 7.22±0.11(3) 7.26±0.45(1) AV96 6.88±0.22(3) 7.67±0.23(8) 8.09±0.22(13) 6.97±0.25(1) 6.85±0.21(3) <6.79:(1) AV373 6.89±0.19(3) 7.46±0.25(2) 8.37±0.39(8) 6.94±0.30(1) <6.79(2) 6.74±0.15(3) AV10 6.59±0.14(3) 7.66±0.26(3) 8.13±0.31(3) 6.81±0.12(1) <6.76(2) 6.69±0.16(3) AV56 7.19±0.53(3) 8.27±0.32(2) 6.68±0.09(1) <6.60(2) 6.64±0.22(3) AV443 6.99±0.36(3) 7.96±0.22(2) 6.72±0.08(1) <6.55(2) 6.63±0.18(3) AV151 6.85±0.12(3) 7.55±0.19(2) 6.70±0.08(1) 6.54±0.11(2) 6.61±0.18(3) Mean 6.89±0.18 7.76±0.28 8.11±0.16 6.84±0.11 6.65±0.12 6.75±0.18 6.84±0.27 Table 4. Comparison of mean abundancesfor the complete SMC B-type supergiantsample (including results from paper 1) with previous studies of abundances in the SMC. Included are the mean abundances of A-type supergiants from Venn et al. (1999,2003;Si correctedfor non-LTEeffects.),SMC main-sequenceB-star AV304(Rolleston et al. 2003;correctedfor non- LTE effects), NGC330 cluster main-sequence B-stars (Lennon, Dufton & Crowley 2003; corrected for non-LTE effects) and SMCHIIregionsfromKurtetal.(1999).ThenumbersinitalicsrepresenttheabundancespredictedfromEWmeasurementsin SMCB-typesupergiantsbyDuftonetal.(2000;D00). Supergiants Bstars HII Thiswork D00 A-type NGC330 AV304 regions C 7.27±0.14 7.10 7.26±0.15 7.41±0.18 7.53±0.06 N 7.71±0.32 7.49 7.52±0.10 7.51±0.18 6.55±0.01 6.59±0.08 O 8.13±0.13 7.95 8.14±0.06 7.98±0.13 8.16±0.33 8.05±0.05 Mg 6.81±0.14 6.78 6.83±0.08 6.59±0.14 6.73 Si 6.75±0.18 6.78 6.92±0.15 6.58±0.32 6.74±0.03 6.70±0.20 the possible exception of the NGC330 stars. The abundances results from the present study, the plot includes the abun- oftheα-processedelementsintheNGC330starsappeartobe dancesderivedfor OBA-typestars by Venn(1999),Crowther lowerthantheotherSMCobjectsby≤0.25dex.Thiscluster etal.(2002),Lennon,Dufton,&Crowley(2003),Hillieretal. was found to be 0.5 dex metal deficient with respect to SMC (2003), Venn & Przybilla (2003)& Bouret et al. (2003). The field stars in a photometric study made by Grebel & Richtler histogram clearly illustrates that there is a large range in ni- (1992).Howeverthe resultshere concurwith the lowermetal trogen abundances observed in these stars. The majority of deficiency of this cluster observed in recent analyses by Hill the objects have enhanced abundances, which predominantly (1999)andLennon,Dufton&Crowley(2004)onKandB-type lie around∼7.50dex,closertothebaselinegalacticnitrogen stars,respectively.CNprocessedmaterialisonceagainevident abundance than that of the SMC. The stars considered have intheatmospheresoftheB-typestars,thenitrogenabundances stellar masses inthe range11to 60M , thustodecipherany ⊙ in the overallsample studiedherevariesfrom7.14dexin the correlationwith mass andsubsequentlyluminositythe results giant, AV216, to 8.30 dex in the most luminousobject in the for the 25 M (box outlinedin bold dashed line) and 40 M ⊙ ⊙ sample,AV78.Thelowestnitrogenenhancementinthesuper- (shadedbox)OBstarshavebeenoverplottedinFig2(noabun- giantsampleisafactorof7(7.40dex)abovethenitrogenabun- dancesforAstarsinthismassrangeareavailableinthelitera- danceofAV304andthenebularresults.Thisenrichmentisin ture).Whilstthereappearstobeatrendofnitrogenabundance close agreement with the results from the A-type supergiants withmass,inthathighernitrogenabundancesareproducedin andB-typemain-sequencestars(Venn1999;Venn&Przybilla themostmassivestars,itisunwisetomakesuchdefinitivecon- 2003;Lennon,Dufton,&Crowley2003). clusionsfromthepoorstatisticsavailabletousatpresent. To understand the distribution of nitrogen abundances in Recallthatthesignatureofphotosphericcontaminationby OBA-typestarsintheSMC,ahistogramwasassembledfrom CN-cycled material is an enhancementin nitrogenwith some the results in the literature (see Fig 2). In addition to the depletion of carbon and possibly oxygen.No obvioussign of 8 C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII Fig.3. HR-diagram,luminosityas a functionof temperature. The stellar evolution tracks of Maeder & Meynet (2001) are shownforanassumedinitialrotationalvelocityof0(—;solid lines)and300kms−1 (--;dashedlines)atsolarmassesof15, 20,25,40,&60M .Includedaretheresultsfromtheearlyand ⊙ midB-type supergiantsof boththe UVES (◦& openstar) and EMMI (• & ⋆) data, with errors in luminosity representing ± 15%.Inaddition,theSMCO-typesupergiantsofHillieretal. Fig.2. HistogramofresultsfromabundanceanalysesofSMC (△;2003)andCrowtheretal.(⋄;2002),SMCO-typedwarfs OBA-type stars collectedfrom the literature.The dotted lines ofBouretetal.(opensquare;2003)andAF-typesupergiants represent the baseline nitrogen abundancesin the SMC (6.55 fromVennetal.(+;1999,updatedby2003)arealsoshown. dex)andMilkyWay(7.70dex).Thetoppanelshowsthenitro- genabundanceofO-typestarsintheSMCusingtheresultsof supergiantsofCrowtheretal.(2002)andHillier etal.(2003) hasahighercarbonabundancethantherestofthesample,nor and SMC O-type dwarfs of Bouret et al. (2003). The mid- thatAV215andAV78havedepletedcarbon. dlepanelillustratesthedistributionofobservednitrogenabun- dancesfromB-starsintheSMC,theseincludetheresultsfrom 5.1. EvolutionofB-type Supergiants this work and the B-type stars of Lennon,Dufton& Crowley (2003).Thebottompanelincludesthenitrogenabundancere- Inpaper1itwasshownthatstellarevolutionmodelswhichin- sults of the A-type supergiantsin the SMC from the analysis clude the effects of rotation can reproduce,for the most part, of Venn et al. (1999) with the updated values from Venn & the observed nitrogen abundances in the SMC B-type stars. Przybilla(2003).Inthetopandmiddlepanelthedistributionof For the purpose of this discussion, the complete sample will starswithMevol ∼25M⊙ (boxoutlinedinbolddashedlines) againbecomparedtotheevolutiontracksofMaeder&Meynet and 40 M⊙ (shaded box) from the original set of targets are (2001)whichhavebeenre-calibratedtoametallicityof0.2Z⊙ alsoindicated. (see Paper 1) and assume an initial rotationalvelocity of 300 kms−1.ThepositionofthisstellarsampleontheHRdiagram isillustratedinFig3.Fromthesetracksallofthestarsseemto depletionsin oxygenhave been detected in this sample of 18 bepasttheendofthehydrogenburningmain-sequencephase, stars,consistentwiththeoreticalpredictionsthatindicatemod- withsomeoftheobjectshavingthickhydrogenburningshells. eratedepletionsinoxygen,smallerthantheerrorsinouranal- Indeed the loci of the cooler stars (B2.5 - B5) on the evolu- ysis.ItisinterestingtonotethatAV215andAV78(whichhave tionary tracks imply that they are in the core helium-burning the highest N enhancements of 26 and 56 times the baseline phase. value, respectively), have the lowest oxygen abundances, but Inthesecomparisonsonemustbecarefulastheactualstars thesevaluesarestillwithintheerroronthemean.Inaddition, mayhavearangeofinitialrotationalvelocitiesratherthanthe the mean carbon abundance of the B-type supergiant sample 300kms−1assumedin the evolutionarymodels,andtherefore and the NGC330 stars, are lower than that of AV304 and the the tracks presented in Fig 3 may be inappropriate for some, HII regions,whetherthisisasignificantdifferenceisdifficult orall,ofthestars.Includingrotationalvelocitiesintheevolu- toascertaingiventheuncertaintiesintheabsoluteabundances tionary modelshas the effectof extendingthe main-sequence ofthision.WithintheB-typesupergiantsamplethereisnoev- branchtohigherluminositiesandtolowertemperatures,which idence that AV216, (the giant and hence the least processed), willthereforeresultinlowerevolutionarymassesforastarofa C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII 9 Fig.4. Comparisonofevolutionaryandspectroscopicmasses Fig.5. Surfacenitrogenabundancesasafunctionoftempera- as a function of luminosity. Included are the results from the ture.The stellar evolutiontracksofMaeder& Meynet(2001) earlyandmidB-typesupergiantsofboththeUVES (◦&open are shown for an assumed initial rotational velocity of 300 star) and EMMI (• & ⋆) data. Additionally the results from kms−1 andvarioussolarmasses.Includedaretheresultsfrom NGC330 B-type stars from Lennon, Dufton & Crowley (∗; the early and mid B-type supergiants of both the UVES (◦ & 2003)areshown.Theerrorbarsrepresenttheerrorinthesur- open star) and EMMI (• & ⋆) data. Also displayedare the re- facegravity.Also shownis theuncertaintyin massduetothe sultsfromSMCO-typesupergiantsofHillieretal.(△;2003) adopteddistancemodulus(--;dashedlines). andCrowtheretal.(⋄;2002),SMCO-typedwarfsofBouret et al. (open square; 2003), NGC330 B-type stars of Lennon, Dufton, & Crowley (∗ ; 2003), and A-type supergiants from givenluminosity.Starswithinitialstellarmasses>15M⊙tend Vennetal.(+;1999,updatedby2003).Theerrorbarsillustrate to cross the HR-diagram from the end of the main-sequence therandomandsystematicerrorsonthenitrogenabundance. phasetowardscoolertemperatureswithrelativelyconstantlu- minosities, on the way to becoming red supergiants (RSG). Maeder& Meynet(2001)showeda comparisonof evolution- ary tracks adopting initial rotational velocities of 0, 200, 300 some,ifnotall,oftheoverestimationinMevol.Anotherpossi- and 400 kms−1, which implies only a small difference in lu- ble explanationis that the lower luminosity stars may be in a minosity (∆log(L⊙/L⋆) < 0.1) as the star movesacross the post-RSG blue-loopphase and thatthe lifetime for this phase HR-diagramforaninitialstellarmassofM⋆=20M⊙(seeFig. isgreaterthanthepre-RSGstage. 8inMaeder&Meynet2001).Itisthereforereasonabletoes- Toappreciatethesuccessofthenewevolutionarymodels, timate evolutionarymasses fromthese tracks, with the caveat whichconsiderrotation,inreproducingtheobservednitrogen that the assumed initial rotational velocities and the errors in abundances in hot, luminous stars it is useful to look at the interpolating between the tracks lead to uncertainties of ∼ 5 productionofnitrogenasafunctionoftemperatureforvarious solar masses (and possibly more at the high end of the mass stellar masses (see Fig. 5). The models with stellar masses in rangeunderconsideration). therange20-60M havenitrogenenrichmentsbytheendof ⊙ The estimated evolutionary masses, M , based on the thecorehydrogenburningphaseofafactorof7to20abovethe evol 300kms−1tracksaredisplayedinTable2alongwiththespec- baselinenitrogenabundanceof6.55dex(fromAV304).Thisis troscopicmasses,M . Theseexhibitthesame behaviouras similartotheenhancementsobservedinoursample,although spec found from the analysis of the UVES data, such that Mevol > someofthemoreluminousobjectshavegreaterenhancements. M by approximately0.10 - 0.30 dex (see Fig. 4). The er- Indeed, adopting a stellar mass for each object from the HR- spec rors in the adopted distance and gravity account for much of diagraminFig3andfollowingtheappropriateevolutiontrack thediscrepancy,leavingonlya differenceof0.10dex(or∼8 inFig.5,itwouldappearthatmanyoftheobjectshavegreater M ). It is difficultto accountfor the remainingdisagreement enhancementsthanpredicted.Howevergiventheerrorsinthe ⊙ unlessitisanoverestimationofM duetoerrorsininterpo- abundancedeterminationsthismaynotbesignificant.Thetwo evol lation. However, the largest discrepancies are observedin the B2 Ia stars (AV373 & AV18) are interesting objects as they less luminous,and henceless massive stars. Inthese stars the haveverysimilaratmosphericandwindparameters,inaddition tracksaremorewidelyspacedandthereforemoreaccuratees- theirnitrogenabundancesarethesame,withintheerrors.This timatesofM wouldbeexpected.Byincludingsomedegree is also the case for the two B0.5 Ia stars, AV420and AV104. evol ofconvectiveovershootingthetrackforagivenmasswouldbe IndeedthepositionofthesefourstarsontheHR-diagramfall extendedtohigherluminositiesandcouldaccountforatleast close to the theoreticalpredictionsfora 25M star and have ⊙ 10 C.Trundle&D.J.Lennon:SMCB-typeSupergiantsII abundancesinagreementwiththemodelsfora25M starwith ⊙ initialrotationalvelocitiesof300kms−1. Fromlinedrivenwindtheory,itispredictedthatthestellar winds are stronger in stars of higher metallicity (i.e. that the mass-loss rates are higher). This comes directly from the de- pendenceofthephotonmomentumtransfertothewindonthe number of optically thick lines and that at lower metallicities thelinestrengthsdecrease.Ifthisisthecase,thelossofangular momentumbytheendofthemain-sequenceismuchgreaterin galacticobjectsthaninlowermetallicitystars(viz.SMC).This reductioninangularmomentumatforexample,solarmetallic- ity,leadstoamorerapiddecreaseinstellarrotationalvelocity. Therefore, the models by Maeder & Meynet (2001) for stars withZ=0.004(SMCmetallicity)havehigherrotationalveloc- ities after core hydrogenburning than similar stars with solar metallicity. Since these stars have higher rotational velocities theconvectivezonesarelargerandtheatmosphericdistortions moresevere,thisresultsin greaterenhancementsin thenitro- gencontentofthephotosphere. Fig.6. WLR as derived from SMC B-type supergiants. The Do we observe this variation in rotational velocities from plotshowstheearly(circles)andmid(stars)B-typestarsfrom evolvedstarsinthetwodifferentenvironments?Unfortunately theSMCsample(UVES:opensymbols;EMMI:filledsymbols). thisquestionisdifficulttoanswerbasedonspectraalone.We Included are the linear regression fits to the observationalre- doseegreaternitrogenenrichmentsintheSMCstars,yetitis sultsofthe early(all)andmid (only<B3) B-typestars (—-; not possible to ascribe this to rotational velocities at present. solid lines). Thedashedlines (- - -) arethe wind-momentum- vsini values have been measured for OBA-type stars in the luminosityrelationship,fromgalacticB-typesupergiantswith- galaxyandSMCbuttheestimatesforbothregionsaresimilar outline-blanketing(Kudritzkietal.1999).Theerrorbarsrep- (intherange40-150kms−1). Howeverasnotedpreviouslyin resenttheuncertaintyinderivingthewindmomentum. Sect.2,thesemeasurementsarenottrulyrepresentativeofthe projectedrotationalvelocitybutaredominatedbymacroturbu- stars, it is more appropriate to make the early/mid B distinc- lence.Also note thatthese are theprojectedrotationalveloci- tionbasedonstellartemperaturesratherthanspectraltype.The ties and some information on the inclination of the rotational hottest B1.5 star in this sample (Sk191)has an effective tem- axis is requiredto enable the true velocity to be disentangled peratureof22.5kK.InPaper1itwasshownthatthisobjecthas fromvsinimeasurements. awindwhichbehavessimilartothecoolerstars,thereforethis has been adopted as the cut off temperature for early B-type 5.2. Mass-loss: ObservationsandPredictions. starsinthefollowingdiscussion.ThisimpliesthatAV264and AV78 may exhibit signs of having lower wind momenta than In this section the results of the entire sample of B-type su- thehotterB1stars,butsimilartothatofthemidB-typestars. pergiants will be discussed in an attempt to glean more in- Adirectcomparisonofthewindmomentaforthesestarswith formation on the behaviour of their stellar winds as a func- thoseofthehotterB1-typeobjectsisnotappropriateduetothe tionofluminosity,spectraltypeandmetallicity.Fromasimilar luminositydependenceofthestellarwind. analysisof B-type stars in the Galaxy,Kudritzkiet al. (1999) No clear distinction between the wind-momenta of the found a clear distinction between the wind momenta in early SMC sample and the WLR of their galactic counterparts is andmidB-typestars.Thisbehaviouralsodifferedfromthatof evident. This consistency still holds if one regards the wind- theO-typestarsfromPulsetal.(1996).Thischangeinwind- momenta of the individual Galactic and SMC B-type super- momentawithspectraltypeisdependentonthefluxweighted- giants at a certain luminosity, although a larger scatter is ob- distributionofthespectrallines,theionisationofthelinescon- servedintheSMCmidB-typestars.Itseemsappropriatetoat- tributing to the line force and the relative number of strong temptanestimationoftheWLRfromtheseSMCtargetssince toweak linesdrivingthe wind.Thechangein wind-momenta theyare the firsthomogeneousresultsfromB-typesstarsin a observedin B-typestarsbyKudritzkietal. occurredbetween low metallicity environment. We adopt the same form of the twoobjectswithspectraltypesB1andB1.5atTeff=23.5and WLRasdefinedbyKudritzkietal.(1999) 22.5 kK (note these temperatures were determined from un- blanketed models). This is approximately the point in which logDmom =logDo+xlog(L⋆/L⊙) (1) the so-called ’bistability jump’, a change in the properties of thewind,ispredictedtotakeplace(Lamers,Snow&Lindholm wheretheinverseoftheslope,1/x=α′.α′describesthedepth 1995). dependenceoftheradiativelineforceandcanbeexpressedas DuetotherangeintemperaturesobservedfortheB1stars a function of the force multiplier parameters of the radiative inthissampleandthefactthatitoverlapswiththatoftheB1.5 lineforce(i.eα′ =α−δ).D isaproductofthemass-loss mom