ebook img

Understand Mathematics, Understand Computing: Discrete Mathematics That All Computing Students Should Know PDF

560 Pages·2020·7.525 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understand Mathematics, Understand Computing: Discrete Mathematics That All Computing Students Should Know

Arnold L. Rosenberg Denis Trystram Understand Mathematics, Understand Computing Discrete Mathematics That All Computing Students Should Know Understand Mathematics, Understand Computing Arnold L. Rosenberg • Denis Trystram Understand Mathematics, Understand Computing Discrete Mathematics That All Computing Students Should Know Arnold L. Rosenberg Denis Trystram College of Information Grenoble INP and Computer Science Université Grenoble Alpes University of Massachusetts Saint Martin d’Hères, France Amherst, MA, USA ISBN 978-3-030-58375-0 ISBN 978-3-030-58376-7 (eBook) https://doi.org/10.1007/978-3-030-58376-7 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Addition RogerTrystram,1973 v Tomybelovedwife,Susan,andmychildren PaulandRachelfordecadesofpatience duringmyextendedepisodesof“cerebral absence.” ToProfessorOscarZariski,whochangedmy lifebyintroducingmeto“real”mathematics. WithlovetomywifeCe´cileandmychildren AliceandNoe´ whohelpmetostayconnected tothe“real”world. Toallpaststudentswhoinspiredthisbook. Toallfuturestudentswhowillreadthisbook. Contents MANIFESTO......................................................xix PREFACE......................................................... xxi 1 Introduction................................................... 1 1.1 WhyIsThisBookNeeded? .................................. 1 1.2 WhyIsThisBookNeeded? .................................. 2 1.3 TheStructureofThisBook .................................. 4 1.3.1 OurMainIntellectualTargets .......................... 4 1.3.2 AllocatingOurTargetstoChapters ..................... 6 1.3.2.1 Chapter2:“Doing”Mathematics ............... 6 1.3.2.2 Chapter3:SetsandTheirAlgebras ............. 6 1.3.2.3 Chapters4, 8, 10:NumbersandNumerals ...... 7 1.3.2.4 Chapters5and6:ArithmeticandSummation..... 8 1.3.2.5 Chapter7:TheVertigoofInfinity .............. 10 1.3.2.6 Chapter9:Recurrences ....................... 11 1.3.2.7 Chapter11:TheArtofCounting:Combinatorics, withApplicationstoProbabilityandStatistics .... 13 1.3.2.8 Chapters12and13:GraphsandRelatedTopics... 15 1.4 UsingtheTextinCourses.................................... 16 1.4.1 Resources .......................................... 16 1.4.1.1 References.................................. 16 1.4.1.2 Culturalasides .............................. 18 1.4.1.3 Exercises ................................... 19 1.4.1.4 Appendices ................................. 20 1.4.2 PathsThroughtheTextforSelectedCourses ............. 20 2 “Doing”Mathematics:AToolkitforMathematicalReasoning....... 23 2.1 RigorousProofs:Theoryvs.Practice .......................... 24 2.1.1 FormalisticProofsandModernProofs .................. 26 2.1.1.1 Formalisticproofs,withanillustration .......... 26 ix x Contents 2.1.1.2 Modernproofs,withanillustration ............. 30 2.1.1.3 Someelementsofrigorousreasoning ........... 34 A.Distinguishingnamefromobject ............ 34 B.Quantitativereasoning ..................... 34 C.Theelementsofempiricalreasoning ......... 35 2.2 OverviewofSomeMajorProofTechniques..................... 37 2.2.1 Proofby(Finite)Induction ............................ 37 2.2.1.1 Twomoresampleproofsbyinduction........... 37 2.2.1.2 Afalse“proof”byinduction:Thecriticalbase case ....................................... 39 2.2.1.3 TheMethodofUndeterminedCoefficients ....... 40 2.2.2 ProofbyContradiction................................ 42 2.2.2.1 Theprooftechnique.......................... 42 2.2.2.2 Anothersampleproof:Thereareinfinitelymany primenumbers .............................. 43 2.2.3 ProofsviathePigeonholePrinciple ..................... 44 2.2.3.1 Theprooftechnique.......................... 45 2.2.3.2 Sampleapplications/proofs.................... 45 2.3 NontraditionalProofStrategies ............................... 45 2.3.1 PictorialReasoning .................................. 45 2.3.1.1 Thevirtuoussideofthemethod ................ 45 2.3.1.2 Handlepictorialargumentswithcare............ 49 2.3.2 CombinatorialIntuitionandArgumentation .............. 51 2.3.2.1 Summationasaselectionproblem.............. 51 2.3.2.2 Summationasarearrangementproblem ......... 52 2.3.3 TheComputerasMathematician’sAssistant.............. 53 2.4 Exercises:Chapter2 ........................................ 54 3 SetsandTheirAlgebras:TheStemCellsofMathematics ........... 59 3.1 Introduction ............................................... 59 3.2 Sets ...................................................... 62 3.2.1 FundamentalSet-RelatedConcepts ..................... 62 3.2.2 OperationsonSets ................................... 64 3.3 StructuredSets............................................. 67 3.3.1 BinaryRelations:SetsofOrderedPairs.................. 68 3.3.2 OrderRelations...................................... 70 3.3.3 EquivalenceRelations ................................ 70 3.3.4 Functions........................................... 72 3.3.4.1 Thebasics:definitionsandgenericproperties..... 72 3.3.4.2 ⊕TheSchro¨der-BernsteinTheorem ............ 76 3.3.5 Sets,Strings,Functions:ImportantConnections .......... 78 3.4 BooleanAlgebras .......................................... 80 3.4.1 TheAlgebraofPropositionalLogic..................... 81 3.4.1.1 Logicasanalgebra .......................... 81 A.Propositions:theobjectsofthealgebra ....... 81 Contents xi B.Logicalconnectives:thealgebra’soperations .. 82 C.Thegoalofthegame:Theorems ............. 84 3.4.1.2 Semanticcompleteness:LogicviaTruthTables... 84 A.Truth,theoremhood,andcompleteness ....... 84 B.ThecompletenessofPropositionalLogic...... 85 C.ThelawsofPropositionalLogicastheorems... 87 3.4.2 ⊕⊕APurelyAlgebraicSettingforCompleteness......... 89 3.4.3 SatisfiabilityProblemsandNP-Completeness ............ 90 3.5 Exercises:Chapter3 ........................................ 94 4 NumbersI:TheBasicsofOurNumberSystem .................... 99 4.1 IntroducingtheThreeChaptersonNumbers .................... 99 4.2 ABriefBiographyofOurNumberSystem .....................100 4.3 Integers:The“Whole”Numbers ..............................105 4.3.1 TheBasicsoftheIntegers:TheNumberLine.............106 4.3.1.1 Naturalorderingsoftheintegers................106 4.3.1.2 Theorder-relatedlawsoftheintegers ...........107 4.3.2 Divisibility:Quotients,Remainders,Divisors.............108 4.3.2.1 Euclideandivision ...........................110 4.3.2.2 Divisibility,divisors,GCDs ....................111 4.4 TheRationalNumbers ......................................113 4.4.1 TheRationals:SpecialOrderedPairsofIntegers ..........115 4.4.2 ComparingtheRationalandIntegerNumberLines........115 4.4.2.1 ComparingZandQviatheirnumber-linelaws ...116 4.4.2.2 ComparingZandQviatheircardinalities .......117 4.5 TheRealNumbers..........................................118 4.5.1 InventingtheRealNumbers ...........................118 4.5.2 DefiningtheRealNumbersviaTheirRepresentations......119 4.5.3 NotAllRealNumbersAreRational.....................120 √ 4.5.3.1 Anumber-basedproofthat 2isnotrational: √ 26∈Q ....................................121 √ √ 4.5.3.2 Ageometricproofthat 2isnotrational: 26∈Q 122 4.6 TheBasicsoftheComplexNumbers ..........................124 4.7 Exercises:Chapter4 ........................................125 5 Arithmetic:PuttingNumberstoWork............................127 5.1 TheBasicArithmeticOperations .............................127 5.1.1 Unary(Single-Argument)Operations ...................128 5.1.1.1 Negatingandreciprocatingnumbers ............128 5.1.1.2 Floors,ceilings,magnitudes ...................128 5.1.1.3 Factorials(ofanonnegativeinteger) ............129 5.1.2 Binary(Two-Argument)Operations.....................130 5.1.2.1 Additionandsubtraction ......................130 5.1.2.2 Multiplicationanddivision ....................131 5.1.2.3 Exponentiationandtakinglogarithms ...........133 xii Contents 5.1.2.4 BinomialcoefficientsandPascal’striangle .......135 5.1.3 RationalArithmetic:AComputationalExercise...........138 5.2 TheLawsofArithmetic,withApplications .....................139 5.2.1 TheCommutative,Associative,andDistributiveLaws .....139 5.3 PolynomialsandTheirRoots.................................140 5.3.1 UnivariatePolynomialsandTheirRoots .................142 5.3.1.1 Thed rootsofadegree-d polynomial ...........143 5.3.1.2 Solvingpolynomialsbyradicals................145 A.Solvingquadraticpolynomialsbyradicals.....146 B.Solvingcubicpolynomialsbyradicals ........148 5.3.2 BivariatePolynomials:TheBinomialTheorem ...........151 5.3.3 ⊕IntegerRootsofPolynomials:Hilbert’sTenthProblem ..153 5.4 ExponentialandLogarithmicFunctions........................155 5.4.1 BasicDefinitions ....................................155 5.4.2 LearningfromLogarithms(andExponentials)............156 5.5 ⊕PointerstoSpecializedTopics..............................159 5.5.1 NormsandMetricsforTuple-Spaces....................159 5.5.2 Edit-Distance:MeasuringClosenessinStringSpaces ......161 5.6 Exercises:Chapter5 ........................................163 6 Summation:AComplexWholefromSimpleParts .................167 6.1 TheManyFacetsofSummation ..............................167 6.2 SummingStructuredSeries ..................................171 6.2.1 ArithmeticSummationsandSeries .....................171 6.2.1.1 Generaldevelopment .........................171 6.2.1.2 Example#1:Summingthefirstnintegers........171 6.2.1.3 Example#2:Squaresassumsofoddintegers.....175 6.2.2 GeometricSumsandSeries............................179 6.2.2.1 Overviewandmainresults ....................179 6.2.2.2 Techniquesforsumminggeometricseries........180 6.2.2.3 Extendedgeometricseriesandtheirsums........185 A.ThesummationS(1)(n)=(cid:229)n ibi............186 b i=1 B.ThesummationsS(c)(n)=(cid:229)n icbi ..........188 b i=1 6.3 OnSumming“Smooth”Series ...............................190 6.3.1 ApproximateSumsviaIntegration......................190 6.3.2 SumsofFixedPowersofConsecutiveIntegers:(cid:229)ic .......193 6.3.2.1 S (n)forgeneralnonnegativerealcthpowers ....193 c 6.3.2.2 Nonnegativeintegercthpowers ................195 A.AbetterboundviatheBinomialTheorem.....195 B.Usingundeterminedcoefficientstorefinesums.197 C.Apictorialsolutionforc=2 ................199 D.⊕Semi-pictorialsolutionsforc=3..........201 6.3.2.3 S (n)forgeneralnegativecthpowers ...........207 c A.Negativepowers−1<c<0................207 B.Negativepowersc<−1....................208

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.