RESEARCHARTICLE Underexpression of Specific Interferon Genes Is Associated with Poor Prognosis of Melanoma AamirZainulabadeen1,2☯,PhilipYao1,3☯,HabilZare1* 1DepartmentofComputerScience,TexasStateUniversity,SanMarcos,Texas,UnitedStatesofAmerica, 2DepartmentofComputerScience,PrincetonUniversity,Princeton,NewJersey,UnitedStatesofAmerica, 3ElectricalEngineeringandComputerScience,UniversityofMichigan,AnnArbor,Michigan,UnitedStatesof America a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 *[email protected] a1111111111 a1111111111 Abstract Becausetheprognosisofmelanomaischallengingandinaccuratewhenusingcurrentclini- calapproaches,cliniciansareseekingmoreaccuratemolecularmarkerstoimproverisk OPENACCESS models.Accordingly,weperformedasurvivalanalysison404samplesfromTheCancer Citation:ZainulabadeenA,YaoP,ZareH(2017) GenomeAtlas(TCGA)cohortofskincutaneousmelanoma.Usingourrecentlydeveloped UnderexpressionofSpecificInterferonGenesIs AssociatedwithPoorPrognosisofMelanoma. genenetworkmodel,weidentifiedbiologicalsignaturesthatconfidentlypredicttheprogno- PLoSONE12(1):e0170025.doi:10.1371/journal. sisofmelanoma(p-value<10−5).Ourmodelpredicted38casesaslow–riskand54cases pone.0170025 ashigh–risk.Theprobabilityofsurvivingatleast5yearswas64%forlow–riskand14%for Editor:RogerChammas,UniversidadedeSao high–riskcases.Inparticular,wefoundthattheoverexpressionofspecificgenesinthe Paulo,BRAZIL mitoticcellcyclepathwayandtheunderexpressionofspecificgenesintheinterferonpath- Received:September26,2016 wayarebothassociatedwithpoorprognosis.Weshowthatourpredictivemodelassesses Accepted:December26,2016 theriskmoreaccuratelythanthetraditionalClarkstagingmethod.Therefore,ourmodelcan helpcliniciansdesigntreatmentstrategiesmoreeffectively.Furthermore,ourfindingsshed Published:January23,2017 lightonthebiologyofmelanomaanditsprognosis.Thisisthefirstinvivostudythatdemon- Copyright:©2017Zainulabadeenetal.Thisisan stratestheassociationbetweentheinterferonpathwayandtheprognosisofmelanoma. openaccessarticledistributedunderthetermsof theCreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare Introduction withinthepaperanditsSupportingInformation files.Alternatively,datacanalsobeaccessedatthe Cutaneousmelanomaisamalignancyofmelanocytes.Itisthemostcommontypeofskincan- followinglink:https://tcga-data.nci.nih.gov/docs/ cer.TheAmericanCancerSocietyestimatesthatover73,000newcaseswerediagnosedin publications/skcm_2015/Alternatively,datacanbe 2015intheUnitedStatesandabout10,000deathsarecausedbymelanomaeachyear[1].The accessfromTCGADataPortalorfromthe prognosisofmelanomaishighlyvariable[2].Forinstance,the5–yearoverallsurvivalratecan followingpage(doi:10.1016/j.cell.2015.05.044): beashighas97%forstageIandaslowas3%forstageIV[3,4].Almostallcommontreatment https://tcga-data.nci.nih.gov/docs/publications/ skcm_2015/. optionsformelanoma,includingsurgery,chemotherapy,andradiationtherapy,haveharmful andseveresideeffects.Therefore,itiscriticaltoidentifypatientswhoarenotatasignificant Funding:ThisstudywassupportedbytheNational riskofmetastasisanddeathduetothedisease.Thepredictivepowerofclinicalfactorsislim- ScienceFoundation(NSF)throughtheResearch ExperiencesforUndergraduates(REU)program ited[3,5,6](e.g.,stagingbasedonthetumorsizeandthenumberofmetastaticsentinel PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 1/15 IFNPathwayandMelanomaPrognosis (CNS1358939),andalsothroughtheinfrastructure lymphnodes[7]),thereforecliniciansareseekingmoreaccuratemolecularmarkersto grant(CRI1305302). improveriskmodelsandtoavoidunnecessarytreatmentoflow-riskpatients[8–10]. CompetingInterests:Theauthorshavedeclared Geneexpressionprofilesignatureshaveusefulinformationonthemolecularstatusofcells thatnocompetinginterestsexist. andtheycanpredicttheprognosisofmanycancers[11–14],includingmelanoma[10,15–18]. Forexample,Onkenetal.discoveredageneexpressionprognosticsignaturethatsignificantly improvedtheclassificationofuvealmelanomacomparedtotraditionalstaging[15].Thatis, theyshowedthatthederegulationoftheLEDA,FZD6,andENPP2genespredictsmetastatic death(p-value<10−4).Inthefollow–upstudies,theyextendedtheirtesttoinclude15genes [19]andtheirextendedtestcorrectlyclassified446(97%)ofthe459studiedcasesintolow– risk(i.e.,atleast95%chanceof5–yearmetastasis–freesurvival)andhigh–risk(i.e.,notmore than20%chanceof5–yearmetastasis–freesurvival)groups[20]. Recently,Geramietal.performedameta-analysisonseveralpublishedgenomicanalysesof cutaneousmelanomatumors[15,21–27].Basedonthegeneontology[28]ofthefrequently reportedgenes,theyidentified28discriminantgenesincludingBAP1,MGP, SPP1,CXCL14, CLCA2,S100A8,BTG1,SAP130,ARG1,KRT6B,GJA1,ID2,EIF1B,S100A9,CRABP2,KRT14, ROBO1,RBM23,TACSTD2,DSC1,SPRR1B,TRIM29,AQP3,TYRP1,PPL,LTA4H, andCST6 [4].Theyusedtheexpressionofthesegenestotrainageneralizedlinearmixedmodelwitha radialbasisfunctionkernel.Theresultingsignatureclassified268primarycutaneousmela- nomatumorsintolow-riskandhigh-riskgroups,with5–yeardisease–freesurvivalratesof 97%and31%,respectively[4].Thistestiscommerciallyavailableasadiagnostictoolcalled DecisionDx-Melanoma[29,30],butitisnotyetrecommendedbytheNationalComprehen- siveCancerNetwork[10].Itsbenefitstothepatientsmustbeconfirmedusingprospective clinicaltrialsthatincludesignificantlylargercohortswithmorerepresentativemetastaticchar- acteristics[18,31]. Wehypothesizedthatthereisroomforsignificantimprovementinthemelanomaprognos- ticteststhroughrigid,unbiased,andcomprehensiveanalysisofgeneexpressionprofiles[10, 32].Accordingly,weappliedarobustlarge-scalenetworkanalysistothegeneexpressiondata of404samplesfromTheCancerGenomeAtlas(TCGA)cohortofskincutaneousmelanoma [33].Theaimofourstudywastoidentifythemolecularsignaturesthatpredicttheprognosis ofmelanomaandtosegregatepatientsintolow–,medium–,andhigh–riskgroups.Our approachisbasedonco-expressionnetworkanalysis,andweuseeigengenesasinformative prognosticssignatures[34]. MaterialsandMethods TheTCGADataset SeveralmRNAexpressionprofilingdatasetshavebeenproducedtostudymelanomaprognosis [10,23,27,33,35–40].WeusedtheTCGA2STATpackagetodownloadgeneexpressiondata fromTheCancerGenomeAtlas(TCGA)repository[41].Specifically,wedownloadedRNA- Seqdatafromtheskincutaneousmelanomacohortof473patients[33]andusedRPKMval- ues(i.e.,readsperkilobaseoftranscriptpermillionmappedreads)[42]asameasureofgene expression.Wemanuallydownloadedthecorrespondingclinicaldata,including:a)informa- tionregardingthelaststatusofeachcase(i.e.whethertheeventofdiseaserecurrenceorpro- gressionoccurred),b)thelengthofthedisease–freetimeperiod(i.e.,thetimefromtheinitial melanomadiagnosisuntilthiseventoruntilthelastfollow–updateiftheeventdidnotoccur), andc)theClarkscalestageofthemelanoma,whichwasdeterminedusingclinicopathological featuressuchasthesize,number,andlocationofmetastases[43]. WecomputedtheSpearman’srankcorrelationbetweenthedisease–freetimeandgene expression[44].Spearman’srankcorrelationismorerobustthanPearsoncorrelationanditis PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 2/15 IFNPathwayandMelanomaPrognosis therecommendedapproachforskeweddistributions[45].Forinstance,Mukakashowedthat afterremovaloftheoutliers,thechangeintheSpearman’scorrelationcanbenegligibleunlike thePearsoncorrelation[46].Consistentwiththeapproachtakenbyotherscholars[47],we usedonlythetopthirdofgenes(6,834)thatweremostcorrelatedwiththedisease–freetimein ournetworkanalysis.Weconsideredanyprogressedorrecurredtumorashighrisk(n=263). Intherestofthetumors,whichwerenotreportedtorecurduringthefollow–upperiod,any casethathadatleastfiveyearsoffollow–updatawasconsideredlow-risk(n=33)[48–51].All resultspresentedherecanbeconvenientlyreproducedusingoursupplementarycode(S4 File). Validationdatasets ToconfirmthefindingsthatweobtainedusingtheTCGAdataset,wevalidatedthemusing twoindependentdatasets.Specifically,weusedtheLeedsmelanomageneexpressionset1 [39],whichispubliclyavailablethroughEuropeanMolecularBiologyLaboratory–European BioinformaticsInstitute(EMBL–EBI,accessionnumber:E-MTAB-4725).Forbrevity,werefer tothisdatasetasLEEDinthispaper.Thiscohortcompriseswhole–genomemRNAexpression of204primarymelanomatumors,whicharemeasuredusingIlluminaDASLHT12.4.Kolesni- kovetal.normalizedthegeneexpressionvalueswithquantilemethodafterbackgroundcor- rection.WemanuallydownloadedthegeneexpressionandclinicaldatafromtheEMBI–EBI ArrayExpressdatabase(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4725/)[52]. Weusedthe“lastfollowup”(time)and“viability”(deathevent)columnsfromtheclinical data. WealsousedasimilarcohortthatwasproducedattheLundUniversityin2015[40].This datasetispubliclyavailablethroughEMBL–EBI(accessionnumber:E-GEOD-65904)andalso throughGeneExpressionOmnibus(GEO)(accessionnumber:GSE65904)[53].Forbrevity, werefertothisdatasetasLUNDinthispaper.Cirenajwisetal.extractedtotalRNAfrom214 fresh–frozenmelanomatumorsandperformedgenome-wideexpressionprofilingusingIllu- minaHumanHT-12V4.0BeadChiparrays.Wedownloadedthegeneexpressiondatausing GEOquerypackage(Version2.40.0)[54].Wedownloadedthecorrespondingclinicaldata fromtheEMBI–EBIdatabase(http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD- 65904/)andusedthe“diseasespecificsurvival”(time)and“diseasespecificdeath”(event) columns. Genenetworkanalysis Weappliedtheweightedgeneco-expressionnetworkanalysis(WGCNA)(Version1.51)toall 473availablesamplestobuildagenenetworkandtoclusterthegenesintogenemodules(clus- ters)[55].Specifically,weusedthecalculate.betafunctionwiththedefaultparameters toinferthatthesoft-thresholdingpowerfornetworkconstructionwas7.Weidentified13 genemodulesusingthewgcna.one.stepfunctionfromthePigengenepackage[34], whichisawrapperfortheblockwiseModulesfunction,withpower=7andleftthe remainingargumentsasdefaults.WGCNAcouldnotconfidentlyassign1,404genestoanyof themodules,becausethesegeneshadlittlecorrelationwiththeothergenes.Wecallthesetof theseoutliergenesModule0. Computingeigengenes Aneigengeneofamoduleisaweightedaverageoftheexpressionofallthegenesinthatmod- ule.Theseweightsareadjustedsothatthelossofbiologicalinformationisminimized[56,57]. Weusedprincipalcomponentanalysis(PCA)tocomputeeigengenes.First,webalancedthe PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 3/15 IFNPathwayandMelanomaPrognosis numberofhigh–riskandlow–riskcasesusingoversamplingsothatbothgroupshadcompara- blerepresentativesintheanalysis.Specifically,werepeatedthedataofeachhigh–riskand low–riskcase6timesand45times,respectively.Thisapproachprovideduswith1,485and 1,578samplesfromeachgroup,respectively.Oversamplingwasnecessaryforcomputing theeigengeneofamodule.Becauseaneigengeneisthefirstprincipalcomponentofthe module,itwouldbebiasedtowardsthehigh–riskgroup,whichhasaroundeighttimesmore samplesthanthelow–riskgroup.Oversamplingresolvesthisissue.Then,weappliedthe moduleEigengenes()functionfromtheWGCNApackagetotheoversampleddata.This functioncomputedthefirstprincipalcomponentofeachmodule,whichmaximizedthe explainedvariance,thusensuringaminimumlossofbiologicalinformation.Weusedthe project.eigenfunctionfromthePigengenepackage(Version0.99.23)toinferthevalues ofeigengenesforallofthe473samplesintheTCGA,the204samplesintheLEEDS,andthe 214samplesintheLUNDSdatasets(S1File)[34]. Survivalanalysis Weusedthe14inferredeigengenesascovariates(prognosticfeatures),andweincludedonly the404samplesforwhichthefinalstatusandthesurvivaltimewereavailable.Weusedthe glmnet()functionfromtheglmnetpackage(Version2.0-5)[58]toperformapenalized Coxregressionanalysis[59,60].Wesetα=1tousetheleastabsoluteshrinkageandselection operator(Lasso)[61].TheLasso,alsoknownasL regularization,enforcesmostofthecoeffi- 1 cientsofthecovariates(eigengenes)intheCoxproportionalhazardsmodeltobezero. Thereby,itidentifiesthemodulesthatarethemostassociatedwithsurvival. Toevaluatethesignificanceoftheselectedmodulesinpredictingthesurvivaltime,we fittedanacceleratedfailuretime(AFT)modeltotheselectedeigengenes[62].Weusedthe survregfunctionfromthesurvivalpackage(Version2.39-4)[63],settheWeibulldistribu- tionwithscale=1asthebaselinehazardfunction,andusedthedefaultvaluesfortherestof theparameters.Weusedthefittedacceleratedfailuretimemodeltopredictthesurvivaltime ofeachsample.Wechosetwothresholdsforthepredictedvaluesthatmaximizedtheprecision oflow–andhigh–riskpredictions.Thesamplesthathadapredictedsurvivaltimebetweenthe twothresholdswereconsideredmedium–risk.Weusedthesurvfitfunctiontoobtaina Kaplan-Meiersurvivalcurveforeachoftheriskgroups[64].Weusedthesurvdifffunction totestwhetherthesurvivalcurvesthatcorrespondtohigh–riskandlow–riskgroupsdiffersig- nificantly.Thisfunctioncomputedthelog-rankp-valueofthecorrespondingMantel-Haens- zeltest[65]. Cross–validation Weperformed5–foldcross–validationtoconfirmthattheselectionofthemodulesbythe penalizedCoxregressionisrobustwithrespecttochoosingthesamples.Weusedallofthe14 eigengenescorrespondingtothemodulesthatwereidentifiedbyourgenenetworkanalysis. Wedidnotrecomputethemodulesoreigengenes,instead,werepeatedthepenalizedCox regressionmodelasfollows.Therewere404samplesforwhichthefinalstatusandthesurvival timewereavailable.Werandomlydividedthese404samplesintofivedivisions.Thesedivi- sionshadanalmostequalsizeandequalnumberofhigh–risksamples.Wesetasideonedivi- sionandperformedapenalizedCoxregressionanalysisontherestofthesamplesusingall14 eigengenes.Werecordedtheselectedmodulesandrepeatedthisprocedurefivetimes.Weran thisexperiment10timeswithdifferentseedsandcountedthefrequencyoftheselectedmod- ulesineachrun(S2File).Onaverage,thethreemostfrequentmoduleswereselected4.9,4.8, PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 4/15 IFNPathwayandMelanomaPrognosis and4.2times,respectively.Incontrast,allothermoduleswereselected0.6timesorless,on average. Results Usingcoexpressionnetworkanalysis,weidentified13modulesofhighlycoexpressedgenes. Thesizeoftheesmodulesrangesfrom48to2,247geneswithameanof418,amedianof88, andastandarddeviationof629(S1Fig).Wecomputedaneigengeneforeachmodule,which summarizesthebiologicalinformationofthemoduleintoonevaluepersample.Weused theseeigengenesasbiologicalsignatures(features)toperformasurvivalanalysis. ThepenalizedCoxregressionconsistentlyselectedthreemodulesasthemostassociated moduleswithdisease–freesurvival(Methods).Thesethreegenemodulesincludetheoutlier module(with1,404genes,ME0),theninthlargestmodule(with58genes,ME9),andthe twelfthlargestmodule(with52genes,ME12)(S3File).Theoutliermoduleconsistsofgenes thathavetoosmallacorrelationwithothergenestobeincludedinanyofthemodules.Hyper- geometrictestsrevealedthattheothertwoselectedmodulesareassociatedwiththemitoticcell cycleandtheinterferon(IFN)pathway,respectively[66](S2Fig).Thatis,15(29%)ofthe58 genesinthelargermodulearemembersoftheReactomemitoticcellcyclepathway,whichhas 454genes(adjustedp-value<10−9)[67].ThesegenesincludeAURKB,CCNE1,CDCA8, CDK4,CENPO,GINS2,H2AFZ,LIG1,PKMYT1,PLK1,PTTG1,SKA1,TUBA1B,TUBA1C, andTYMS.AccordingtotheCoxmodel,overexpressionofthesegenesisassociatedwithpoor prognosis,whichisexpected[68,69]. Thesmallermodule(ME12)has52genes.Interestingly,16(31%)ofthesegenesaremem- bersoftheReactomeinterferonsignalingpathway,whichhas158genes(adjustedp- value<10−21).ThegenesintheoverlapincludeDDX58,EIF2AK2,GBP3,HERC5,IFIT1, IFIT2,IFIT3,OAS1,OAS2,OAS3,PSMB8,SP100,STAT1, UBE2L6,USP18,andXAF1.Our modelindicatesthattherelativelyhigherexpressionofthesegenesisassociatedwithagood prognosisinmelanoma.OurinsilicooverrepresentationanalysisshowedthattypeIinterferon signalingpathway(GeneOntologyaccessionnumber:60337[28]),whichincludes63genes,is thebiologicalprocessesthathasasignificantoverlapwiththisgeneset.Specifically,theoverlap consistsof12genes,whichis75timesmorethanexpected(p-value=10−15)[70].Thismodule isverystablewithrespecttoselectionofsamples.Toconfirmthis,wereconstructedthecoex- pressionnetwork10timesusingonly426(90%)randomlyselectedsamples.Alloftheresult- ingnetworkshadasimilarmodule,i.e.,meanandmedianoftheJaccard[71](Tanimoto[72]) similaritywere0.92and0.93,respectively. Tofurthervalidatetheassociationofthesethreeselectedmoduleswithmelanomaprogno- sis,wefittedanacceleratedfailuretime(AFT)modeltothecorrespondingeigengenes,and classifiedthepatientsintolow–,medium–,andhigh–riskgroups(Methods)[62].Wecom- paredtheKaplan-Meier(KM)curvesofthesegroups[64](Fig1).OurAFTmodelpredicted that38caseswerelow–risk.Thesecaseshadasignificantlyhighersurvivalratethanthe54 casesthatwerepredictedtobehigh–risk(log-rankp-value<8×10−6[73]).Forinstance,the probabilityofsurvivingforatleastfiveyearswas0.64forlow–riskand0.14forhigh–riskcases. Excludingtheinterferonmodulehasanegativeimpactonthestatisticalpowerandthep-value (Fig1).Specifically,whilethenumberofcasesinthepredictedlow–riskgroupdoesnot increasedramatically(i.e.,twocases,only5%improvement),thenumberofpredictedhigh– riskcasesdecreasesconsiderablyto35(i.e.,35%decline).Thatis,usingtheinterferonpathway module,themodelcanidentifymorehigh–riskcaseswithoutsacrificingtheaccuracy. Asexpected,thecasesthatwerepredictedtobehigh–riskhadgenerallymoreadvanceddis- easeaccordingtothetraditionalClarkscalestageofmelanoma(Table1).Inparticular,the PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 5/15 IFNPathwayandMelanomaPrognosis Fig1.Kaplan–Meiersurvivalcurves.Thep-valuesindicatethatthedifferencebetweenthelow–riskgroup(green)andthehigh–riskgroup(red)is statisticallysignificant.Usingallthethreemodules,whichareassociatedwiththeinterferonpathway,mitoticcellcycle,andoutliers;resultsinabetterp- value(a)comparedtoamodelwithouttheinterferonpathway(b).Theorangehorizontallinesindicatethatbothmodelshavesimilaraccuracies.However, includingtheinterferonpathwayimprovesthep-value,becausemoresamplesareclassifiedintotal(i.e.,38low–riskplus54high–riskcasesin(a), comparedto40low–riskplus35high–riskcasesin(b)). doi:10.1371/journal.pone.0170025.g001 majorityofthehigh–riskcaseswereinstageIVorV(36cases,66%).Incontrast,only13 (35%)ofthelow–riskcaseswereinstageIVorV.Interestingly,6(46%)ofthese13caseswere disease–freeformorethaneightyears,whichindicatesthat,forthesecases,theClarkscale stagingislessaccuratethanourpredictions.Also,7caseshadstageI,II,orIIImelanoma,but theywereclassifiedashigh–riskbyourmodel.Only2(29%)ofthesecasessurvivedmorethan 2years. Tofurthervalidatetheassociationbetweentheinterferonmoduleandmelanomaprogno- sis,weusedtheLEEDSandLUNDgeneexpressiondatasets,whichinclude204and214 melanomasamples,respectively.WeinferredtheeigengenesandfittedanAFTmodeltothe eigengenestoclassifythesamplesintolow–,medium–,andhigh–riskgroupsineachdataset Table1.ThedistributionofmelanomaClarkstagesineachriskgroup.Also,thepercentageofeachstageclassineachriskgroupisshown.Thelow– riskgroupisenrichedinpatientsatstagesIIIandIV.Thehigh–riskgroupisenrichedinpatientsatstagesIVandV. Stage I II III IV V Unknown Total (%) (%) (%) (%) (%) (%) Low–risk 0 1 11 12 1 13 38 (0) (3) (29) (32) (3) (34) Medium–risk 4 16 54 105 37 96 312 (1) (5) (17) (34) (12) (31) High–risk 1 0 6 24 12 11 54 (2) (0) (11) (44) (22) (20) Total 5 17 71 141 50 120 404 doi:10.1371/journal.pone.0170025.t001 PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 6/15 IFNPathwayandMelanomaPrognosis (Methods).SimilartotheanalysisonTCGAdataset,weusedthethreeeigengenescorrespond- ingtotheoutlier,mitoticcellcycleandinterferonpathwaymodules. OurAFTmodelpredicted96casesintheLUNDdatasettobelow–riskand45casestobe high–risk.Thepredictedlow–riskgrouphadasignificantlyhighersurvivalratethanthehigh– riskgroup(log-rankp-value2×10−3,S3aFig).Excludingtheinterferonpathwaymodulefrom theAFTmodelresultedinreducingthenumberofpredictedlow–riskto49casesandpre- dictedhigh–riskto25cases,andalso,alesssignificantp-value(3×10−2).Thatis,withoutthe interferonpathway,thenumberofpredictedlow–andhigh–risksampleswouldbereducedby almosthalfleaving67(33%)moresamplesinthemedium–riskgroup.Thisshowstheneces- sityoftheinterferonpathwaymoduleinpredictingtheprognosis.TheresultsintheLEEDS datasetfollowedasimilarpattern.Specifically,excludingtheinterferonpathwaymodulefrom theAFTmodelresultedinreducingthenumberofpredictedlow–risksamplesfrom34cases to31caseswhileslightlydecreasingthenumberofpredictedhigh–risksamplesfrom29to28. Nevertheless,thelog-rankp-valueincreasedbyalmosttwoordersofmagnitude,from9×10−6 to7×10−4,indicatingthatthepredictionofsurvivalislessaccuratewithouttheinterferon pathwaymodule(S3candS3dFig). Discussion Predictingtheprognosisofmelanomaisclinicallyusefulandimportant[10].Todate,mostof thestudiesthataimatpredictingmelanomasurvivalbasedongeneexpressionhavebeenlim- itedintheirnumberofgenes,numberofsamples,ortheirfollow–uptime[4,15–27,30,74]. Weperformedgenenetworkanalysison470melanomacasestoextendthepreviousstudies andtoidentifynovelprognosticsignatures. Thisisthefirststudytoshowthattheunderexpressionofspecificgenesfromtheinterferon pathwayinmelanomatissuesisasignofpoorprognosis.Theroleoftheinterferonpathwayin othercancerswerestudiedbyothers[75–80].Ingeneral,defectsininterferonsignalingresults indysfunctionoftheimmunesystem[81].However,itsassociationwithmelanomawasprevi- ouslyshownonlyinvitro[81–84]. Interestingly,ourinterferonmodulehas17genesincommonwiththe274genesthatHoek etal.reportedtobedownregulatedinmelanomacelllines[82].Thisisasignificantoverlap(p- valueofthehypergeometrictest<10−19).Similarly,thelistofthetop25genesthatCritchley etal.reportedtobedifferentiallyexpressedinperipheralbloodmononuclearcell(PBMC) samplesofmelanomapatientshasasignificantoverlapwithourinterferonmodule(13genes, p-value<10−27).Comparedtoinvitroexperiments,ouranalysisprovidesmuchstrongerevi- dencefortheroleoftheinterferonpathwayinmelanoma,becauseourstudyisbasedonthe survivalanalysisofarelativelylargecohortofpatientswithanextendedfollow–uptime.The totalnumberofpatientsclassifiedaslow–riskorhigh–riskincreasesfrom75to92(a23% improvement)whenweincludetheinterferonmoduleinourpredictivemodel.Thisimprove- ment,aswellasthedecreaseinp-value,indicatethattheinformationintheinterferonpath- wayisessentialforpredictingtheprognosis. However,functionalstudieswillbeneededtodeterminethemechanismandimpactofthe interferonpathwayonmelanomaprognosis.Onechallengeindesigningsuchastudyispossi- blytherelativelylownumberofsamplesthatcouldbeassociatedwiththegenesintheinter- feronmodule.Forexample,inourstudyonthe404TCGAcases,includingthesegenesinthe predictivemodelledtoclassificationofonly17(4%)morecases.Therefore,afollow-upfunc- tionalstudymostlikelyneedstoinvestigateatleasthundredsofsamplesinordertoincludea fewsamplesthatareassociatedwiththeinterferonpathway. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 7/15 IFNPathwayandMelanomaPrognosis Theprobabilityofsurvivingforatleastfiveyearsis0.64and0.14forourpredictedlow–risk andhigh–riskgroups,respectively.Theaccuracyofourpredictivemodeliscomparablewith previousstudiesonskincutaneousmelanomathatwerebasedongeneexpression[10].For instance,Sivendranetal.developedalog-rankMantel–Coxtestbasedona21-geneexpression signatureandulceration[74].Theirtestislessspecificthanoursinpredictinglong-term poorprognosis.Thatis,theytested48patientsandreportedthattheprobabilityofsurviving foratleastfiveyearswas60%and35%fortheirpredictedlow–riskandhigh–riskgroups, respectively. Geramietal.reportedthattheDecisionDx-Melanomatest[29,30]classified268primary cutaneousmelanomatumorsintolow-riskandhigh-riskgroupswithatleast5–yeardisease– freesurvivalratesof97%and31%,respectively[4].Theirlow–riskspecificityismorethan ours,andtheirhigh–riskspecificityislessthanours.However,thereportedassessmentofthe sensitivityandspecificityofthistestiscontroversial,becausetheircohortwasnotrepresenta- tiveofthegeneralprimarymelanomapatientpopulation[10,18].Ourresultsarenotcompa- rablewiththeresultsreportedbyOnkenetal.[20],becausetheystudieduvealmelanoma, whichisdifferentfromskincutaneousmelanoma[85]. Onereasonunderlyingthedifficultyinassessingthesurvivalrateofmelanomaistherela- tivelyhighheterogeneityofgeneticmutations,whichresultsinsubpopulations(clones)that areresistanttotherapy[86–88].Recently,Tiroshetal.usedsingle-cellsequencingtoshowthat distinctcloneswithinatumorcanhavedifferentgeneexpressionprofiles,andtherefore,can interactwiththeirmicroenvironmentdifferently[89].Investigationofthegenesinourinter- feronmoduleandthecorrespondingsignalingproteinsmayrevealhowtheinteractions betweenmalignantcellsandtheirmicroenvironmentsismodulated.Forinstance,therela- tivelyhighexpressionoftypeIinterferonsignalingpathwaygenesinlow–riskmelanomacases canbeassociatedwithantitumorresponseoftheimmunesystem[90].Futureworkinthis directioncanleverageavailabletechniquesfor1)clonaldecompositionbasedongeneticmuta- tions[91–97],and2)deconvolutionofgeneexpressionprofilesintosignaturesthatarespecific toacell-typeortumorclone[98–101]. Onelimitationofourpredictivemodelforclinicaluseistherelativelyhighnumberofcases thatwereclassifiedasmedium–risk(312,77%).Thiscanbeaddressedbyimprovingthepre- dictivemodelinafollow–upstudyor,alternatively,byusinganotherprognostictestforthe medium–riskcases.Comparedtoothertests,ourpredictivemodelisbasedonarelatively largenumberofgenes.Thisisadouble-edgedsword.Theinclusionofalargenumberofgenes makesourmodelrobustwithrespecttorandomchangesintheexpressionofoneorseveral genes,whicharecommonduetotechnicalorbiologicalnoise.Ontheotherhand,thelarge numberofgenesmakesourtestdifficulttoapplyinclinicalsettings.Thiscanbeaddressedby excludingthegenesthathavearelativelysmallercontributiontotheeigengenes.Specifically,a greedyalgorithmcanbeusedtoexcludethegenesthathaveasmallerabsoluteweight(load- ing)[102].Furtherfollow–upexperimentsondifferentdatasetswillbeneededtoshowthat suchamodificationdoesnotaffecttheaccuracyofthemodelandtoensurethattoomany geneswillnotbeexcluded.Nevertheless,follow-upstudiescanexaminethetherapeuticvalue ofthegenesidentifiedinourstudythathavearelativelyhighcontributiontothemodel,as wellastheirupstreamgenes(S3File). Conclusion Weidentifiedaspecificsetofgenesintheinterferonpathwaythatareunderexpressedinhigh– riskmelanoma.Thisbiologicalsignature,togetherwiththeoverexpressionofothergenesinthe mitoticcellcyclepathway,predictstheprognosisofmelanomawithrelativelyhighaccuracy. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 8/15 IFNPathwayandMelanomaPrognosis SupportingInformation S1File.TheeigengenevaluesintheTCGAdatasetusefulforreproducingtheresults. (XLS) S2File.Thefrequencyofselectedmodulesby5–foldcross-validationofthepenalizedCox model. (XLS) S3File.Thegenelistscorrespondingtothethreeselectedmodules.Thegenesymbol,Entrez ID,andtheweightofeachgeneinthecorrespondingselectedmoduleisreported. (XLS) S4File.Supplementarycode.OurresultscanbeconvenientlyreproducedusingtheseR scripts.Uncompressthetarballfile,installthepackagesmentionedinthesettings.R script,andthensourcetherunall.Rscript.ThiscodeworksonUnix(LinuxorMacOSX). DatawillbedownloadedfromTCGAandtheresultswillbesavedinthecurrentdirectory.A desktopcomputerwitha2.8GHzCPUand8GBofmemorywillreproduceallresultsinless thananhour. (ZIP) S1Fig.Thedistributionofthesizeofmodules. (PNG) S2Fig.Theoverrepresentationanalysisontheselectedmodules. (PNG) S3Fig.TheKaplan–Meiersurvivalcurvesforthevalidationdatasets.Colorsaresimilarto (Fig1).IntheLUNDdataset,includingtheinterferonpathwaymoduleresultsinbetterpredic- tionsofthesurvivaltime(a)withamoresignificantp-valueof2×10−3comparedtoanAFT modelthatusesonlytwomodules(b).Similarly,intheLEEDSdataset,themodelpredictsthe survivalratebetterwhentheinterferonpathwaymoduleisincluded(c)comparedtoamodel thatusesonlytwomodules(d). (PNG) Acknowledgments ThisstudywassupportedbytheNationalScienceFoundation(NSF)throughtheResearch ExperiencesforUndergraduates(REU)program(CNS1358939),andalsothroughtheinfra- structuregrant(CRI1305302).WeusedgeneexpressiondatageneratedbytheTCGA ResearchNetwork:http://cancergenome.nih.gov/. AuthorContributions Conceptualization:HZ. Datacuration:HZ. Formalanalysis:AZPY. Fundingacquisition:HZ. Investigation:AZPY. Methodology:HZ. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 9/15 IFNPathwayandMelanomaPrognosis Projectadministration:HZ. Resources:HZ. Software:AZPY. Supervision:HZ. Validation:HZAZPY. Visualization:AZPY. Writing–originaldraft:HZAZPY. Writing–review&editing:HZAZPY. References 1. SiegelRL,MillerKD,JemalA.Cancerstatistics,2015.CA:acancerjournalforclinicians.2015;65 (1):5–29. 2. BalchCM,GershenwaldJE,SoongSj,ThompsonJF,DingS,ByrdDR,etal.Multivariateanalysisof prognosticfactorsamong2,313patientswithstageIIImelanoma:comparisonofnodalmicrometas- tasesversusmacrometastases.JournalofClinicalOncology.2010;28(14):2452–2459.doi:10.1200/ JCO.2009.27.1627PMID:20368546 3. BalchCM,GershenwaldJE,SoongSj,ThompsonJF,AtkinsMB,ByrdDR,etal.Finalversionof2009 AJCCmelanomastagingandclassification.Journalofclinicaloncology.2009;27(36):6199–6206. doi:10.1200/JCO.2009.23.4799PMID:19917835 4. GeramiP,CookRW,WilkinsonJ,RussellMC,DhillonN,AmariaRN,etal.Developmentofaprognos- ticgeneticsignaturetopredictthemetastaticriskassociatedwithcutaneousmelanoma.ClinicalCan- cerResearch.2015;21(1):175–183.doi:10.1158/1078-0432.CCR-13-3316PMID:25564571 5. SondakVK,MessinaJL.PredictionisDifficult,EspeciallyAbouttheFuture:ClinicalPrognosticTools inMelanoma.Annalsofsurgicaloncology.2016;p.1–3. 6. GimottyPA,ElderDE,FrakerDL,BotbylJ,SellersK,ElenitsasR,etal.Identificationofhigh-risk patientsamongthosediagnosedwiththincutaneousmelanomas.JournalofClinicalOncology.2007; 25(9):1129–1134.doi:10.1200/JCO.2006.08.1463PMID:17369575 7. MortonDL,ThompsonJF,CochranAJ,MozzilloN,ElashoffR,EssnerR,etal.Sentinel-nodebiopsy ornodalobservationinmelanoma.NewEnglandJournalofMedicine.2006;355(13):1307–1317.doi: 10.1056/NEJMoa060992PMID:17005948 8. EkmekciogluS,DaviesMA,TaneseK,RoszikJ,Shin-SimM,BassettRL,etal.InflammatoryMarker TestingIdentifiesCD74ExpressioninMelanomaTumorCells,anditsExpressionAssociateswith FavorableSurvivalforStageIIIMelanoma.ClinicalCancerResearch.2016;p.clincanres–2226.doi: 10.1158/1078-0432.CCR-15-2226PMID:26783288 9. KimbroughCW,EggerME,McMastersKM,StrombergAJ,MartinRC,PhilipsP,etal.MolecularStag- ingofSentinelLymphNodesIdentifiesMelanomaPatientsatIncreasedRiskofNodalRecurrence. JournaloftheAmericanCollegeofSurgeons.2016;222(4):357–363.doi:10.1016/j.jamcollsurg.2015. 12.042PMID:26875070 10. WeissSA,HannifordD,HernandoE,OsmanI.Revisitingdeterminantsofprognosisincutaneousmel- anoma.Cancer.2015;121(23):4108–4123.doi:10.1002/cncr.29634PMID:26308244 11. FrancisP,NamløsHM,Mu¨llerC,Ede´nP,FernebroJ,BernerJM,etal.Diagnosticandprognostic geneexpressionsignaturesin177softtissuesarcomas:hypoxia-inducedtranscriptionprofilesignifies metastaticpotential.BMCgenomics.2007;8(1):1.doi:10.1186/1471-2164-8-73 12. PaikS,ShakS,TangG,KimC,BakerJ,CroninM,etal.Amultigeneassaytopredictrecurrenceof tamoxifen-treated,node-negativebreastcancer.NewEnglandJournalofMedicine.2004;351 (27):2817–2826.doi:10.1056/NEJMoa041588PMID:15591335 13. ColmanH,ZhangL,SulmanEP,McDonaldJM,ShooshtariNL,RiveraA,etal.Amultigenepredictor ofoutcomeinglioblastoma.Neuro-oncology.2009;p.nop007. 14. GordonGJ,JensenRV,HsiaoLL,GullansSR,BlumenstockJE,RichardsWG,etal.Usinggene expressionratiostopredictoutcomeamongpatientswithmesothelioma.JournaloftheNationalCan- cerInstitute.2003;95(8):598–605.doi:10.1093/jnci/95.8.598PMID:12697852 PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 10/15
Description: