ebook img

Underexpression of Specific Interferon Genes Is Associated with Poor Prognosis of Melanoma PDF

15 Pages·2017·1.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Underexpression of Specific Interferon Genes Is Associated with Poor Prognosis of Melanoma

RESEARCHARTICLE Underexpression of Specific Interferon Genes Is Associated with Poor Prognosis of Melanoma AamirZainulabadeen1,2☯,PhilipYao1,3☯,HabilZare1* 1DepartmentofComputerScience,TexasStateUniversity,SanMarcos,Texas,UnitedStatesofAmerica, 2DepartmentofComputerScience,PrincetonUniversity,Princeton,NewJersey,UnitedStatesofAmerica, 3ElectricalEngineeringandComputerScience,UniversityofMichigan,AnnArbor,Michigan,UnitedStatesof America a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 *[email protected] a1111111111 a1111111111 Abstract Becausetheprognosisofmelanomaischallengingandinaccuratewhenusingcurrentclini- calapproaches,cliniciansareseekingmoreaccuratemolecularmarkerstoimproverisk OPENACCESS models.Accordingly,weperformedasurvivalanalysison404samplesfromTheCancer Citation:ZainulabadeenA,YaoP,ZareH(2017) GenomeAtlas(TCGA)cohortofskincutaneousmelanoma.Usingourrecentlydeveloped UnderexpressionofSpecificInterferonGenesIs AssociatedwithPoorPrognosisofMelanoma. genenetworkmodel,weidentifiedbiologicalsignaturesthatconfidentlypredicttheprogno- PLoSONE12(1):e0170025.doi:10.1371/journal. sisofmelanoma(p-value<10−5).Ourmodelpredicted38casesaslow–riskand54cases pone.0170025 ashigh–risk.Theprobabilityofsurvivingatleast5yearswas64%forlow–riskand14%for Editor:RogerChammas,UniversidadedeSao high–riskcases.Inparticular,wefoundthattheoverexpressionofspecificgenesinthe Paulo,BRAZIL mitoticcellcyclepathwayandtheunderexpressionofspecificgenesintheinterferonpath- Received:September26,2016 wayarebothassociatedwithpoorprognosis.Weshowthatourpredictivemodelassesses Accepted:December26,2016 theriskmoreaccuratelythanthetraditionalClarkstagingmethod.Therefore,ourmodelcan helpcliniciansdesigntreatmentstrategiesmoreeffectively.Furthermore,ourfindingsshed Published:January23,2017 lightonthebiologyofmelanomaanditsprognosis.Thisisthefirstinvivostudythatdemon- Copyright:©2017Zainulabadeenetal.Thisisan stratestheassociationbetweentheinterferonpathwayandtheprognosisofmelanoma. openaccessarticledistributedunderthetermsof theCreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare Introduction withinthepaperanditsSupportingInformation files.Alternatively,datacanalsobeaccessedatthe Cutaneousmelanomaisamalignancyofmelanocytes.Itisthemostcommontypeofskincan- followinglink:https://tcga-data.nci.nih.gov/docs/ cer.TheAmericanCancerSocietyestimatesthatover73,000newcaseswerediagnosedin publications/skcm_2015/Alternatively,datacanbe 2015intheUnitedStatesandabout10,000deathsarecausedbymelanomaeachyear[1].The accessfromTCGADataPortalorfromthe prognosisofmelanomaishighlyvariable[2].Forinstance,the5–yearoverallsurvivalratecan followingpage(doi:10.1016/j.cell.2015.05.044): beashighas97%forstageIandaslowas3%forstageIV[3,4].Almostallcommontreatment https://tcga-data.nci.nih.gov/docs/publications/ skcm_2015/. optionsformelanoma,includingsurgery,chemotherapy,andradiationtherapy,haveharmful andseveresideeffects.Therefore,itiscriticaltoidentifypatientswhoarenotatasignificant Funding:ThisstudywassupportedbytheNational riskofmetastasisanddeathduetothedisease.Thepredictivepowerofclinicalfactorsislim- ScienceFoundation(NSF)throughtheResearch ExperiencesforUndergraduates(REU)program ited[3,5,6](e.g.,stagingbasedonthetumorsizeandthenumberofmetastaticsentinel PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 1/15 IFNPathwayandMelanomaPrognosis (CNS1358939),andalsothroughtheinfrastructure lymphnodes[7]),thereforecliniciansareseekingmoreaccuratemolecularmarkersto grant(CRI1305302). improveriskmodelsandtoavoidunnecessarytreatmentoflow-riskpatients[8–10]. CompetingInterests:Theauthorshavedeclared Geneexpressionprofilesignatureshaveusefulinformationonthemolecularstatusofcells thatnocompetinginterestsexist. andtheycanpredicttheprognosisofmanycancers[11–14],includingmelanoma[10,15–18]. Forexample,Onkenetal.discoveredageneexpressionprognosticsignaturethatsignificantly improvedtheclassificationofuvealmelanomacomparedtotraditionalstaging[15].Thatis, theyshowedthatthederegulationoftheLEDA,FZD6,andENPP2genespredictsmetastatic death(p-value<10−4).Inthefollow–upstudies,theyextendedtheirtesttoinclude15genes [19]andtheirextendedtestcorrectlyclassified446(97%)ofthe459studiedcasesintolow– risk(i.e.,atleast95%chanceof5–yearmetastasis–freesurvival)andhigh–risk(i.e.,notmore than20%chanceof5–yearmetastasis–freesurvival)groups[20]. Recently,Geramietal.performedameta-analysisonseveralpublishedgenomicanalysesof cutaneousmelanomatumors[15,21–27].Basedonthegeneontology[28]ofthefrequently reportedgenes,theyidentified28discriminantgenesincludingBAP1,MGP, SPP1,CXCL14, CLCA2,S100A8,BTG1,SAP130,ARG1,KRT6B,GJA1,ID2,EIF1B,S100A9,CRABP2,KRT14, ROBO1,RBM23,TACSTD2,DSC1,SPRR1B,TRIM29,AQP3,TYRP1,PPL,LTA4H, andCST6 [4].Theyusedtheexpressionofthesegenestotrainageneralizedlinearmixedmodelwitha radialbasisfunctionkernel.Theresultingsignatureclassified268primarycutaneousmela- nomatumorsintolow-riskandhigh-riskgroups,with5–yeardisease–freesurvivalratesof 97%and31%,respectively[4].Thistestiscommerciallyavailableasadiagnostictoolcalled DecisionDx-Melanoma[29,30],butitisnotyetrecommendedbytheNationalComprehen- siveCancerNetwork[10].Itsbenefitstothepatientsmustbeconfirmedusingprospective clinicaltrialsthatincludesignificantlylargercohortswithmorerepresentativemetastaticchar- acteristics[18,31]. Wehypothesizedthatthereisroomforsignificantimprovementinthemelanomaprognos- ticteststhroughrigid,unbiased,andcomprehensiveanalysisofgeneexpressionprofiles[10, 32].Accordingly,weappliedarobustlarge-scalenetworkanalysistothegeneexpressiondata of404samplesfromTheCancerGenomeAtlas(TCGA)cohortofskincutaneousmelanoma [33].Theaimofourstudywastoidentifythemolecularsignaturesthatpredicttheprognosis ofmelanomaandtosegregatepatientsintolow–,medium–,andhigh–riskgroups.Our approachisbasedonco-expressionnetworkanalysis,andweuseeigengenesasinformative prognosticssignatures[34]. MaterialsandMethods TheTCGADataset SeveralmRNAexpressionprofilingdatasetshavebeenproducedtostudymelanomaprognosis [10,23,27,33,35–40].WeusedtheTCGA2STATpackagetodownloadgeneexpressiondata fromTheCancerGenomeAtlas(TCGA)repository[41].Specifically,wedownloadedRNA- Seqdatafromtheskincutaneousmelanomacohortof473patients[33]andusedRPKMval- ues(i.e.,readsperkilobaseoftranscriptpermillionmappedreads)[42]asameasureofgene expression.Wemanuallydownloadedthecorrespondingclinicaldata,including:a)informa- tionregardingthelaststatusofeachcase(i.e.whethertheeventofdiseaserecurrenceorpro- gressionoccurred),b)thelengthofthedisease–freetimeperiod(i.e.,thetimefromtheinitial melanomadiagnosisuntilthiseventoruntilthelastfollow–updateiftheeventdidnotoccur), andc)theClarkscalestageofthemelanoma,whichwasdeterminedusingclinicopathological featuressuchasthesize,number,andlocationofmetastases[43]. WecomputedtheSpearman’srankcorrelationbetweenthedisease–freetimeandgene expression[44].Spearman’srankcorrelationismorerobustthanPearsoncorrelationanditis PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 2/15 IFNPathwayandMelanomaPrognosis therecommendedapproachforskeweddistributions[45].Forinstance,Mukakashowedthat afterremovaloftheoutliers,thechangeintheSpearman’scorrelationcanbenegligibleunlike thePearsoncorrelation[46].Consistentwiththeapproachtakenbyotherscholars[47],we usedonlythetopthirdofgenes(6,834)thatweremostcorrelatedwiththedisease–freetimein ournetworkanalysis.Weconsideredanyprogressedorrecurredtumorashighrisk(n=263). Intherestofthetumors,whichwerenotreportedtorecurduringthefollow–upperiod,any casethathadatleastfiveyearsoffollow–updatawasconsideredlow-risk(n=33)[48–51].All resultspresentedherecanbeconvenientlyreproducedusingoursupplementarycode(S4 File). Validationdatasets ToconfirmthefindingsthatweobtainedusingtheTCGAdataset,wevalidatedthemusing twoindependentdatasets.Specifically,weusedtheLeedsmelanomageneexpressionset1 [39],whichispubliclyavailablethroughEuropeanMolecularBiologyLaboratory–European BioinformaticsInstitute(EMBL–EBI,accessionnumber:E-MTAB-4725).Forbrevity,werefer tothisdatasetasLEEDinthispaper.Thiscohortcompriseswhole–genomemRNAexpression of204primarymelanomatumors,whicharemeasuredusingIlluminaDASLHT12.4.Kolesni- kovetal.normalizedthegeneexpressionvalueswithquantilemethodafterbackgroundcor- rection.WemanuallydownloadedthegeneexpressionandclinicaldatafromtheEMBI–EBI ArrayExpressdatabase(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4725/)[52]. Weusedthe“lastfollowup”(time)and“viability”(deathevent)columnsfromtheclinical data. WealsousedasimilarcohortthatwasproducedattheLundUniversityin2015[40].This datasetispubliclyavailablethroughEMBL–EBI(accessionnumber:E-GEOD-65904)andalso throughGeneExpressionOmnibus(GEO)(accessionnumber:GSE65904)[53].Forbrevity, werefertothisdatasetasLUNDinthispaper.Cirenajwisetal.extractedtotalRNAfrom214 fresh–frozenmelanomatumorsandperformedgenome-wideexpressionprofilingusingIllu- minaHumanHT-12V4.0BeadChiparrays.Wedownloadedthegeneexpressiondatausing GEOquerypackage(Version2.40.0)[54].Wedownloadedthecorrespondingclinicaldata fromtheEMBI–EBIdatabase(http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD- 65904/)andusedthe“diseasespecificsurvival”(time)and“diseasespecificdeath”(event) columns. Genenetworkanalysis Weappliedtheweightedgeneco-expressionnetworkanalysis(WGCNA)(Version1.51)toall 473availablesamplestobuildagenenetworkandtoclusterthegenesintogenemodules(clus- ters)[55].Specifically,weusedthecalculate.betafunctionwiththedefaultparameters toinferthatthesoft-thresholdingpowerfornetworkconstructionwas7.Weidentified13 genemodulesusingthewgcna.one.stepfunctionfromthePigengenepackage[34], whichisawrapperfortheblockwiseModulesfunction,withpower=7andleftthe remainingargumentsasdefaults.WGCNAcouldnotconfidentlyassign1,404genestoanyof themodules,becausethesegeneshadlittlecorrelationwiththeothergenes.Wecallthesetof theseoutliergenesModule0. Computingeigengenes Aneigengeneofamoduleisaweightedaverageoftheexpressionofallthegenesinthatmod- ule.Theseweightsareadjustedsothatthelossofbiologicalinformationisminimized[56,57]. Weusedprincipalcomponentanalysis(PCA)tocomputeeigengenes.First,webalancedthe PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 3/15 IFNPathwayandMelanomaPrognosis numberofhigh–riskandlow–riskcasesusingoversamplingsothatbothgroupshadcompara- blerepresentativesintheanalysis.Specifically,werepeatedthedataofeachhigh–riskand low–riskcase6timesand45times,respectively.Thisapproachprovideduswith1,485and 1,578samplesfromeachgroup,respectively.Oversamplingwasnecessaryforcomputing theeigengeneofamodule.Becauseaneigengeneisthefirstprincipalcomponentofthe module,itwouldbebiasedtowardsthehigh–riskgroup,whichhasaroundeighttimesmore samplesthanthelow–riskgroup.Oversamplingresolvesthisissue.Then,weappliedthe moduleEigengenes()functionfromtheWGCNApackagetotheoversampleddata.This functioncomputedthefirstprincipalcomponentofeachmodule,whichmaximizedthe explainedvariance,thusensuringaminimumlossofbiologicalinformation.Weusedthe project.eigenfunctionfromthePigengenepackage(Version0.99.23)toinferthevalues ofeigengenesforallofthe473samplesintheTCGA,the204samplesintheLEEDS,andthe 214samplesintheLUNDSdatasets(S1File)[34]. Survivalanalysis Weusedthe14inferredeigengenesascovariates(prognosticfeatures),andweincludedonly the404samplesforwhichthefinalstatusandthesurvivaltimewereavailable.Weusedthe glmnet()functionfromtheglmnetpackage(Version2.0-5)[58]toperformapenalized Coxregressionanalysis[59,60].Wesetα=1tousetheleastabsoluteshrinkageandselection operator(Lasso)[61].TheLasso,alsoknownasL regularization,enforcesmostofthecoeffi- 1 cientsofthecovariates(eigengenes)intheCoxproportionalhazardsmodeltobezero. Thereby,itidentifiesthemodulesthatarethemostassociatedwithsurvival. Toevaluatethesignificanceoftheselectedmodulesinpredictingthesurvivaltime,we fittedanacceleratedfailuretime(AFT)modeltotheselectedeigengenes[62].Weusedthe survregfunctionfromthesurvivalpackage(Version2.39-4)[63],settheWeibulldistribu- tionwithscale=1asthebaselinehazardfunction,andusedthedefaultvaluesfortherestof theparameters.Weusedthefittedacceleratedfailuretimemodeltopredictthesurvivaltime ofeachsample.Wechosetwothresholdsforthepredictedvaluesthatmaximizedtheprecision oflow–andhigh–riskpredictions.Thesamplesthathadapredictedsurvivaltimebetweenthe twothresholdswereconsideredmedium–risk.Weusedthesurvfitfunctiontoobtaina Kaplan-Meiersurvivalcurveforeachoftheriskgroups[64].Weusedthesurvdifffunction totestwhetherthesurvivalcurvesthatcorrespondtohigh–riskandlow–riskgroupsdiffersig- nificantly.Thisfunctioncomputedthelog-rankp-valueofthecorrespondingMantel-Haens- zeltest[65]. Cross–validation Weperformed5–foldcross–validationtoconfirmthattheselectionofthemodulesbythe penalizedCoxregressionisrobustwithrespecttochoosingthesamples.Weusedallofthe14 eigengenescorrespondingtothemodulesthatwereidentifiedbyourgenenetworkanalysis. Wedidnotrecomputethemodulesoreigengenes,instead,werepeatedthepenalizedCox regressionmodelasfollows.Therewere404samplesforwhichthefinalstatusandthesurvival timewereavailable.Werandomlydividedthese404samplesintofivedivisions.Thesedivi- sionshadanalmostequalsizeandequalnumberofhigh–risksamples.Wesetasideonedivi- sionandperformedapenalizedCoxregressionanalysisontherestofthesamplesusingall14 eigengenes.Werecordedtheselectedmodulesandrepeatedthisprocedurefivetimes.Weran thisexperiment10timeswithdifferentseedsandcountedthefrequencyoftheselectedmod- ulesineachrun(S2File).Onaverage,thethreemostfrequentmoduleswereselected4.9,4.8, PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 4/15 IFNPathwayandMelanomaPrognosis and4.2times,respectively.Incontrast,allothermoduleswereselected0.6timesorless,on average. Results Usingcoexpressionnetworkanalysis,weidentified13modulesofhighlycoexpressedgenes. Thesizeoftheesmodulesrangesfrom48to2,247geneswithameanof418,amedianof88, andastandarddeviationof629(S1Fig).Wecomputedaneigengeneforeachmodule,which summarizesthebiologicalinformationofthemoduleintoonevaluepersample.Weused theseeigengenesasbiologicalsignatures(features)toperformasurvivalanalysis. ThepenalizedCoxregressionconsistentlyselectedthreemodulesasthemostassociated moduleswithdisease–freesurvival(Methods).Thesethreegenemodulesincludetheoutlier module(with1,404genes,ME0),theninthlargestmodule(with58genes,ME9),andthe twelfthlargestmodule(with52genes,ME12)(S3File).Theoutliermoduleconsistsofgenes thathavetoosmallacorrelationwithothergenestobeincludedinanyofthemodules.Hyper- geometrictestsrevealedthattheothertwoselectedmodulesareassociatedwiththemitoticcell cycleandtheinterferon(IFN)pathway,respectively[66](S2Fig).Thatis,15(29%)ofthe58 genesinthelargermodulearemembersoftheReactomemitoticcellcyclepathway,whichhas 454genes(adjustedp-value<10−9)[67].ThesegenesincludeAURKB,CCNE1,CDCA8, CDK4,CENPO,GINS2,H2AFZ,LIG1,PKMYT1,PLK1,PTTG1,SKA1,TUBA1B,TUBA1C, andTYMS.AccordingtotheCoxmodel,overexpressionofthesegenesisassociatedwithpoor prognosis,whichisexpected[68,69]. Thesmallermodule(ME12)has52genes.Interestingly,16(31%)ofthesegenesaremem- bersoftheReactomeinterferonsignalingpathway,whichhas158genes(adjustedp- value<10−21).ThegenesintheoverlapincludeDDX58,EIF2AK2,GBP3,HERC5,IFIT1, IFIT2,IFIT3,OAS1,OAS2,OAS3,PSMB8,SP100,STAT1, UBE2L6,USP18,andXAF1.Our modelindicatesthattherelativelyhigherexpressionofthesegenesisassociatedwithagood prognosisinmelanoma.OurinsilicooverrepresentationanalysisshowedthattypeIinterferon signalingpathway(GeneOntologyaccessionnumber:60337[28]),whichincludes63genes,is thebiologicalprocessesthathasasignificantoverlapwiththisgeneset.Specifically,theoverlap consistsof12genes,whichis75timesmorethanexpected(p-value=10−15)[70].Thismodule isverystablewithrespecttoselectionofsamples.Toconfirmthis,wereconstructedthecoex- pressionnetwork10timesusingonly426(90%)randomlyselectedsamples.Alloftheresult- ingnetworkshadasimilarmodule,i.e.,meanandmedianoftheJaccard[71](Tanimoto[72]) similaritywere0.92and0.93,respectively. Tofurthervalidatetheassociationofthesethreeselectedmoduleswithmelanomaprogno- sis,wefittedanacceleratedfailuretime(AFT)modeltothecorrespondingeigengenes,and classifiedthepatientsintolow–,medium–,andhigh–riskgroups(Methods)[62].Wecom- paredtheKaplan-Meier(KM)curvesofthesegroups[64](Fig1).OurAFTmodelpredicted that38caseswerelow–risk.Thesecaseshadasignificantlyhighersurvivalratethanthe54 casesthatwerepredictedtobehigh–risk(log-rankp-value<8×10−6[73]).Forinstance,the probabilityofsurvivingforatleastfiveyearswas0.64forlow–riskand0.14forhigh–riskcases. Excludingtheinterferonmodulehasanegativeimpactonthestatisticalpowerandthep-value (Fig1).Specifically,whilethenumberofcasesinthepredictedlow–riskgroupdoesnot increasedramatically(i.e.,twocases,only5%improvement),thenumberofpredictedhigh– riskcasesdecreasesconsiderablyto35(i.e.,35%decline).Thatis,usingtheinterferonpathway module,themodelcanidentifymorehigh–riskcaseswithoutsacrificingtheaccuracy. Asexpected,thecasesthatwerepredictedtobehigh–riskhadgenerallymoreadvanceddis- easeaccordingtothetraditionalClarkscalestageofmelanoma(Table1).Inparticular,the PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 5/15 IFNPathwayandMelanomaPrognosis Fig1.Kaplan–Meiersurvivalcurves.Thep-valuesindicatethatthedifferencebetweenthelow–riskgroup(green)andthehigh–riskgroup(red)is statisticallysignificant.Usingallthethreemodules,whichareassociatedwiththeinterferonpathway,mitoticcellcycle,andoutliers;resultsinabetterp- value(a)comparedtoamodelwithouttheinterferonpathway(b).Theorangehorizontallinesindicatethatbothmodelshavesimilaraccuracies.However, includingtheinterferonpathwayimprovesthep-value,becausemoresamplesareclassifiedintotal(i.e.,38low–riskplus54high–riskcasesin(a), comparedto40low–riskplus35high–riskcasesin(b)). doi:10.1371/journal.pone.0170025.g001 majorityofthehigh–riskcaseswereinstageIVorV(36cases,66%).Incontrast,only13 (35%)ofthelow–riskcaseswereinstageIVorV.Interestingly,6(46%)ofthese13caseswere disease–freeformorethaneightyears,whichindicatesthat,forthesecases,theClarkscale stagingislessaccuratethanourpredictions.Also,7caseshadstageI,II,orIIImelanoma,but theywereclassifiedashigh–riskbyourmodel.Only2(29%)ofthesecasessurvivedmorethan 2years. Tofurthervalidatetheassociationbetweentheinterferonmoduleandmelanomaprogno- sis,weusedtheLEEDSandLUNDgeneexpressiondatasets,whichinclude204and214 melanomasamples,respectively.WeinferredtheeigengenesandfittedanAFTmodeltothe eigengenestoclassifythesamplesintolow–,medium–,andhigh–riskgroupsineachdataset Table1.ThedistributionofmelanomaClarkstagesineachriskgroup.Also,thepercentageofeachstageclassineachriskgroupisshown.Thelow– riskgroupisenrichedinpatientsatstagesIIIandIV.Thehigh–riskgroupisenrichedinpatientsatstagesIVandV. Stage I II III IV V Unknown Total (%) (%) (%) (%) (%) (%) Low–risk 0 1 11 12 1 13 38 (0) (3) (29) (32) (3) (34) Medium–risk 4 16 54 105 37 96 312 (1) (5) (17) (34) (12) (31) High–risk 1 0 6 24 12 11 54 (2) (0) (11) (44) (22) (20) Total 5 17 71 141 50 120 404 doi:10.1371/journal.pone.0170025.t001 PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 6/15 IFNPathwayandMelanomaPrognosis (Methods).SimilartotheanalysisonTCGAdataset,weusedthethreeeigengenescorrespond- ingtotheoutlier,mitoticcellcycleandinterferonpathwaymodules. OurAFTmodelpredicted96casesintheLUNDdatasettobelow–riskand45casestobe high–risk.Thepredictedlow–riskgrouphadasignificantlyhighersurvivalratethanthehigh– riskgroup(log-rankp-value2×10−3,S3aFig).Excludingtheinterferonpathwaymodulefrom theAFTmodelresultedinreducingthenumberofpredictedlow–riskto49casesandpre- dictedhigh–riskto25cases,andalso,alesssignificantp-value(3×10−2).Thatis,withoutthe interferonpathway,thenumberofpredictedlow–andhigh–risksampleswouldbereducedby almosthalfleaving67(33%)moresamplesinthemedium–riskgroup.Thisshowstheneces- sityoftheinterferonpathwaymoduleinpredictingtheprognosis.TheresultsintheLEEDS datasetfollowedasimilarpattern.Specifically,excludingtheinterferonpathwaymodulefrom theAFTmodelresultedinreducingthenumberofpredictedlow–risksamplesfrom34cases to31caseswhileslightlydecreasingthenumberofpredictedhigh–risksamplesfrom29to28. Nevertheless,thelog-rankp-valueincreasedbyalmosttwoordersofmagnitude,from9×10−6 to7×10−4,indicatingthatthepredictionofsurvivalislessaccuratewithouttheinterferon pathwaymodule(S3candS3dFig). Discussion Predictingtheprognosisofmelanomaisclinicallyusefulandimportant[10].Todate,mostof thestudiesthataimatpredictingmelanomasurvivalbasedongeneexpressionhavebeenlim- itedintheirnumberofgenes,numberofsamples,ortheirfollow–uptime[4,15–27,30,74]. Weperformedgenenetworkanalysison470melanomacasestoextendthepreviousstudies andtoidentifynovelprognosticsignatures. Thisisthefirststudytoshowthattheunderexpressionofspecificgenesfromtheinterferon pathwayinmelanomatissuesisasignofpoorprognosis.Theroleoftheinterferonpathwayin othercancerswerestudiedbyothers[75–80].Ingeneral,defectsininterferonsignalingresults indysfunctionoftheimmunesystem[81].However,itsassociationwithmelanomawasprevi- ouslyshownonlyinvitro[81–84]. Interestingly,ourinterferonmodulehas17genesincommonwiththe274genesthatHoek etal.reportedtobedownregulatedinmelanomacelllines[82].Thisisasignificantoverlap(p- valueofthehypergeometrictest<10−19).Similarly,thelistofthetop25genesthatCritchley etal.reportedtobedifferentiallyexpressedinperipheralbloodmononuclearcell(PBMC) samplesofmelanomapatientshasasignificantoverlapwithourinterferonmodule(13genes, p-value<10−27).Comparedtoinvitroexperiments,ouranalysisprovidesmuchstrongerevi- dencefortheroleoftheinterferonpathwayinmelanoma,becauseourstudyisbasedonthe survivalanalysisofarelativelylargecohortofpatientswithanextendedfollow–uptime.The totalnumberofpatientsclassifiedaslow–riskorhigh–riskincreasesfrom75to92(a23% improvement)whenweincludetheinterferonmoduleinourpredictivemodel.Thisimprove- ment,aswellasthedecreaseinp-value,indicatethattheinformationintheinterferonpath- wayisessentialforpredictingtheprognosis. However,functionalstudieswillbeneededtodeterminethemechanismandimpactofthe interferonpathwayonmelanomaprognosis.Onechallengeindesigningsuchastudyispossi- blytherelativelylownumberofsamplesthatcouldbeassociatedwiththegenesintheinter- feronmodule.Forexample,inourstudyonthe404TCGAcases,includingthesegenesinthe predictivemodelledtoclassificationofonly17(4%)morecases.Therefore,afollow-upfunc- tionalstudymostlikelyneedstoinvestigateatleasthundredsofsamplesinordertoincludea fewsamplesthatareassociatedwiththeinterferonpathway. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 7/15 IFNPathwayandMelanomaPrognosis Theprobabilityofsurvivingforatleastfiveyearsis0.64and0.14forourpredictedlow–risk andhigh–riskgroups,respectively.Theaccuracyofourpredictivemodeliscomparablewith previousstudiesonskincutaneousmelanomathatwerebasedongeneexpression[10].For instance,Sivendranetal.developedalog-rankMantel–Coxtestbasedona21-geneexpression signatureandulceration[74].Theirtestislessspecificthanoursinpredictinglong-term poorprognosis.Thatis,theytested48patientsandreportedthattheprobabilityofsurviving foratleastfiveyearswas60%and35%fortheirpredictedlow–riskandhigh–riskgroups, respectively. Geramietal.reportedthattheDecisionDx-Melanomatest[29,30]classified268primary cutaneousmelanomatumorsintolow-riskandhigh-riskgroupswithatleast5–yeardisease– freesurvivalratesof97%and31%,respectively[4].Theirlow–riskspecificityismorethan ours,andtheirhigh–riskspecificityislessthanours.However,thereportedassessmentofthe sensitivityandspecificityofthistestiscontroversial,becausetheircohortwasnotrepresenta- tiveofthegeneralprimarymelanomapatientpopulation[10,18].Ourresultsarenotcompa- rablewiththeresultsreportedbyOnkenetal.[20],becausetheystudieduvealmelanoma, whichisdifferentfromskincutaneousmelanoma[85]. Onereasonunderlyingthedifficultyinassessingthesurvivalrateofmelanomaistherela- tivelyhighheterogeneityofgeneticmutations,whichresultsinsubpopulations(clones)that areresistanttotherapy[86–88].Recently,Tiroshetal.usedsingle-cellsequencingtoshowthat distinctcloneswithinatumorcanhavedifferentgeneexpressionprofiles,andtherefore,can interactwiththeirmicroenvironmentdifferently[89].Investigationofthegenesinourinter- feronmoduleandthecorrespondingsignalingproteinsmayrevealhowtheinteractions betweenmalignantcellsandtheirmicroenvironmentsismodulated.Forinstance,therela- tivelyhighexpressionoftypeIinterferonsignalingpathwaygenesinlow–riskmelanomacases canbeassociatedwithantitumorresponseoftheimmunesystem[90].Futureworkinthis directioncanleverageavailabletechniquesfor1)clonaldecompositionbasedongeneticmuta- tions[91–97],and2)deconvolutionofgeneexpressionprofilesintosignaturesthatarespecific toacell-typeortumorclone[98–101]. Onelimitationofourpredictivemodelforclinicaluseistherelativelyhighnumberofcases thatwereclassifiedasmedium–risk(312,77%).Thiscanbeaddressedbyimprovingthepre- dictivemodelinafollow–upstudyor,alternatively,byusinganotherprognostictestforthe medium–riskcases.Comparedtoothertests,ourpredictivemodelisbasedonarelatively largenumberofgenes.Thisisadouble-edgedsword.Theinclusionofalargenumberofgenes makesourmodelrobustwithrespecttorandomchangesintheexpressionofoneorseveral genes,whicharecommonduetotechnicalorbiologicalnoise.Ontheotherhand,thelarge numberofgenesmakesourtestdifficulttoapplyinclinicalsettings.Thiscanbeaddressedby excludingthegenesthathavearelativelysmallercontributiontotheeigengenes.Specifically,a greedyalgorithmcanbeusedtoexcludethegenesthathaveasmallerabsoluteweight(load- ing)[102].Furtherfollow–upexperimentsondifferentdatasetswillbeneededtoshowthat suchamodificationdoesnotaffecttheaccuracyofthemodelandtoensurethattoomany geneswillnotbeexcluded.Nevertheless,follow-upstudiescanexaminethetherapeuticvalue ofthegenesidentifiedinourstudythathavearelativelyhighcontributiontothemodel,as wellastheirupstreamgenes(S3File). Conclusion Weidentifiedaspecificsetofgenesintheinterferonpathwaythatareunderexpressedinhigh– riskmelanoma.Thisbiologicalsignature,togetherwiththeoverexpressionofothergenesinthe mitoticcellcyclepathway,predictstheprognosisofmelanomawithrelativelyhighaccuracy. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 8/15 IFNPathwayandMelanomaPrognosis SupportingInformation S1File.TheeigengenevaluesintheTCGAdatasetusefulforreproducingtheresults. (XLS) S2File.Thefrequencyofselectedmodulesby5–foldcross-validationofthepenalizedCox model. (XLS) S3File.Thegenelistscorrespondingtothethreeselectedmodules.Thegenesymbol,Entrez ID,andtheweightofeachgeneinthecorrespondingselectedmoduleisreported. (XLS) S4File.Supplementarycode.OurresultscanbeconvenientlyreproducedusingtheseR scripts.Uncompressthetarballfile,installthepackagesmentionedinthesettings.R script,andthensourcetherunall.Rscript.ThiscodeworksonUnix(LinuxorMacOSX). DatawillbedownloadedfromTCGAandtheresultswillbesavedinthecurrentdirectory.A desktopcomputerwitha2.8GHzCPUand8GBofmemorywillreproduceallresultsinless thananhour. (ZIP) S1Fig.Thedistributionofthesizeofmodules. (PNG) S2Fig.Theoverrepresentationanalysisontheselectedmodules. (PNG) S3Fig.TheKaplan–Meiersurvivalcurvesforthevalidationdatasets.Colorsaresimilarto (Fig1).IntheLUNDdataset,includingtheinterferonpathwaymoduleresultsinbetterpredic- tionsofthesurvivaltime(a)withamoresignificantp-valueof2×10−3comparedtoanAFT modelthatusesonlytwomodules(b).Similarly,intheLEEDSdataset,themodelpredictsthe survivalratebetterwhentheinterferonpathwaymoduleisincluded(c)comparedtoamodel thatusesonlytwomodules(d). (PNG) Acknowledgments ThisstudywassupportedbytheNationalScienceFoundation(NSF)throughtheResearch ExperiencesforUndergraduates(REU)program(CNS1358939),andalsothroughtheinfra- structuregrant(CRI1305302).WeusedgeneexpressiondatageneratedbytheTCGA ResearchNetwork:http://cancergenome.nih.gov/. AuthorContributions Conceptualization:HZ. Datacuration:HZ. Formalanalysis:AZPY. Fundingacquisition:HZ. Investigation:AZPY. Methodology:HZ. PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 9/15 IFNPathwayandMelanomaPrognosis Projectadministration:HZ. Resources:HZ. Software:AZPY. Supervision:HZ. Validation:HZAZPY. Visualization:AZPY. Writing–originaldraft:HZAZPY. Writing–review&editing:HZAZPY. References 1. SiegelRL,MillerKD,JemalA.Cancerstatistics,2015.CA:acancerjournalforclinicians.2015;65 (1):5–29. 2. BalchCM,GershenwaldJE,SoongSj,ThompsonJF,DingS,ByrdDR,etal.Multivariateanalysisof prognosticfactorsamong2,313patientswithstageIIImelanoma:comparisonofnodalmicrometas- tasesversusmacrometastases.JournalofClinicalOncology.2010;28(14):2452–2459.doi:10.1200/ JCO.2009.27.1627PMID:20368546 3. BalchCM,GershenwaldJE,SoongSj,ThompsonJF,AtkinsMB,ByrdDR,etal.Finalversionof2009 AJCCmelanomastagingandclassification.Journalofclinicaloncology.2009;27(36):6199–6206. doi:10.1200/JCO.2009.23.4799PMID:19917835 4. GeramiP,CookRW,WilkinsonJ,RussellMC,DhillonN,AmariaRN,etal.Developmentofaprognos- ticgeneticsignaturetopredictthemetastaticriskassociatedwithcutaneousmelanoma.ClinicalCan- cerResearch.2015;21(1):175–183.doi:10.1158/1078-0432.CCR-13-3316PMID:25564571 5. SondakVK,MessinaJL.PredictionisDifficult,EspeciallyAbouttheFuture:ClinicalPrognosticTools inMelanoma.Annalsofsurgicaloncology.2016;p.1–3. 6. GimottyPA,ElderDE,FrakerDL,BotbylJ,SellersK,ElenitsasR,etal.Identificationofhigh-risk patientsamongthosediagnosedwiththincutaneousmelanomas.JournalofClinicalOncology.2007; 25(9):1129–1134.doi:10.1200/JCO.2006.08.1463PMID:17369575 7. MortonDL,ThompsonJF,CochranAJ,MozzilloN,ElashoffR,EssnerR,etal.Sentinel-nodebiopsy ornodalobservationinmelanoma.NewEnglandJournalofMedicine.2006;355(13):1307–1317.doi: 10.1056/NEJMoa060992PMID:17005948 8. EkmekciogluS,DaviesMA,TaneseK,RoszikJ,Shin-SimM,BassettRL,etal.InflammatoryMarker TestingIdentifiesCD74ExpressioninMelanomaTumorCells,anditsExpressionAssociateswith FavorableSurvivalforStageIIIMelanoma.ClinicalCancerResearch.2016;p.clincanres–2226.doi: 10.1158/1078-0432.CCR-15-2226PMID:26783288 9. KimbroughCW,EggerME,McMastersKM,StrombergAJ,MartinRC,PhilipsP,etal.MolecularStag- ingofSentinelLymphNodesIdentifiesMelanomaPatientsatIncreasedRiskofNodalRecurrence. JournaloftheAmericanCollegeofSurgeons.2016;222(4):357–363.doi:10.1016/j.jamcollsurg.2015. 12.042PMID:26875070 10. WeissSA,HannifordD,HernandoE,OsmanI.Revisitingdeterminantsofprognosisincutaneousmel- anoma.Cancer.2015;121(23):4108–4123.doi:10.1002/cncr.29634PMID:26308244 11. FrancisP,NamløsHM,Mu¨llerC,Ede´nP,FernebroJ,BernerJM,etal.Diagnosticandprognostic geneexpressionsignaturesin177softtissuesarcomas:hypoxia-inducedtranscriptionprofilesignifies metastaticpotential.BMCgenomics.2007;8(1):1.doi:10.1186/1471-2164-8-73 12. PaikS,ShakS,TangG,KimC,BakerJ,CroninM,etal.Amultigeneassaytopredictrecurrenceof tamoxifen-treated,node-negativebreastcancer.NewEnglandJournalofMedicine.2004;351 (27):2817–2826.doi:10.1056/NEJMoa041588PMID:15591335 13. ColmanH,ZhangL,SulmanEP,McDonaldJM,ShooshtariNL,RiveraA,etal.Amultigenepredictor ofoutcomeinglioblastoma.Neuro-oncology.2009;p.nop007. 14. GordonGJ,JensenRV,HsiaoLL,GullansSR,BlumenstockJE,RichardsWG,etal.Usinggene expressionratiostopredictoutcomeamongpatientswithmesothelioma.JournaloftheNationalCan- cerInstitute.2003;95(8):598–605.doi:10.1093/jnci/95.8.598PMID:12697852 PLOSONE|DOI:10.1371/journal.pone.0170025 January23,2017 10/15

Description:
Journal of the American Academy of Dermatology. 2015 .. Journal of Investigative Dermatology. 2014 Kim SH, Gunnery S, Choe JK, Mathews MB.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.