Astronomy&Astrophysicsmanuscriptno.AA_2015_27899 (cid:13)cESO2016 February4,2016 Uncovering the planets and stellar activity of CoRoT-7 using only radial velocities(cid:63) J.P.Faria1,2,R.D.Haywood3,B.J.Brewer4,P.Figueira1,M.Oshagh1,5,A.Santerne1,andN.C.Santos1,2 1 InstitutodeAstrofísicaeCiênciasdoEspaço,UniversidadedoPorto,CAUP,RuadasEstrelas,PT4150-762Porto,Portugal e-mail:[email protected] 2 DepartamentodeFísicaeAstronomia,FaculdadedeCiências,UniversidadedoPorto,RuaCampoAlegre,4169-007Porto,Portugal 3 Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 4 DepartmentofStatistics,TheUniversityofAuckland,PrivateBag92019,Auckland1142,NewZealand 5 InstitutfürAstrophysik,Georg-August-Universität,Friedrich-Hund-Platz1,37077Göttingen,Germany 6 ReceivedDecember7,2015;acceptedJanuary27,2016 1 0 2 ABSTRACT b Stellaractivitycaninducesignalsintheradialvelocitiesofstars,complicatingthedetectionoforbitinglow-massplanets.Wepresent e amethodtodeterminethenumberofplanetarysignalspresentinradial-velocitydatasetsofactivestars,usingonlyradial-velocity F observations.Insteadofconsideringseparatefitswithdifferentnumberofplanets,weuseabirth-deathMarkovchainMonteCarlo 3 algorithmtoinfertheposteriordistributionforthenumberofplanetsinasinglerun.Inanaturalway,themarginaldistributionsfor theorbitalparametersofallplanetsarealsoinferred.ThismethodisappliedtoHARPSdataofCoRoT-7.Weconfidentlyrecoverthe ] orbitsofbothCoRoT-7bandCoRoT-7calthoughthedatashowevidenceforthepresenceofadditionalsignals. P Keywords. methods:dataanalysis–stars:planetarysystems–stars:individual:CoRoT-7–techniques:radialvelocities E . h p 1. Introduction Simultaneous photometric and RV observations have been - o successfullyusedtoconstrainactivity-inducedRVsignals.How- Imagine we have at our disposal a set of spectroscopic obser- r ever,thisapproachrequireseitherajointmodelforphotometric tvations of an unknown star, and we can obtain precise radial- s and RV variations, which can be statistical (e.g. Rajpaul et al. avelocity (RV) measurements, using the cross-correlation func- 2015) or based on a description of the stellar features inducing [tion (CCF) technique (Baranne et al. 1996; Pepe et al. 2002). the signal (e.g. Lanza et al. 2010), or a conversion from pho- 2 Theso-calledlineprofileindicators(suchasthefullwidthathalf tometric variations to RV variations (e.g. Haywood et al. 2014, maximum of the CCF, its bisector span, and associated quanti- v hereafterH14). ties, e.g. Figueira et al. 2013) and activity indicators, like the 5 Here we present a framework that models activity-induced 9logR(cid:48)HK (Noyes et al. 1984), are also usually available but are signalsascorrelatednoiseintheRVobservationsanddoesnot 4notnecessaryforouranalysis.Andwithoutotherinstrumentsat require simultaneous photometric observations. The method is 7hand,wecannotmeasurethestar’sphotometricvariations,asis basedonthefactthat,fordataofsufficientquality,itispossible 0thecaseformosttargetsinRVsurveys. todistinguishifanoscillatingsignalhastheKeplerianshapethat 1. Armed with some statistical artillery, we aim to answer the isexpectedfromaplanet,orsomeotherapproximately-periodic 0following question: how many orbiting planets can be confi- shape as expected from stellar activity. Below we describe our 6dentlydetectedinthesedata,andwhataretheirorbitalparame- model and apply it to High Accuracy Radial Velocity Planet 1tersandminimummasses? Searcher(HARPS;Mayoretal.2003)observationsofCoRoT-7. : Besides planets, other physical processes can induce varia- v itions in the radial velocities of a star. These include stellar os- Xcillations, granulation, spots and faculae/plages, and long-term 2. ABayesianmodelforRVdata rmagneticactivitycycles(see,e.g.Saar&Donahue1997;Santos aetal.2010;Boisseetal.2011;Dumusqueetal.2011a).Someof In this section we present in detail our model for RV data and these activity-induced signals can be mitigated or averaged out describethetwotypesofsignalsweconsider:planetarysignals byadaptingtheobservationalstrategy(Dumusqueetal.2011b). andactivity-inducednoise. Butsignalscausedbythepresenceofactiveregionsonthestel- larsurfacecanshowperiodicitiesandamplitudessimilartothe 2.1. RVplanetarysignals onesinducedbyrealplanetarysignals,andmaybehardertodis- entangle.Indeed,thesesignalscanevenmimicplanetarysignals The dynamical evolution of a planetary system is governed by (e.g. Figueira et al. 2010; Santos et al. 2014; Robertson et al. thegravitationalinteractionsofitsconstituentbodies.Formost 2015). systemswithmultipleplanetsonecanassume,toagoodapprox- imation,thatthemutualplanetaryperturbationsarenegligibleon (cid:63) Alldataandsoftwarepresentedinthisarticleareavailableonline timescales that are comparable to the duration of observations. athttps://github.com/j-faria/exoBD-CoRoT7. The stellar RV perturbations that are due to a multiple-planet Articlenumber,page1of7 A&Aproofs:manuscriptno.AA_2015_27899 systemcanthenbemodelledasalinearsuperpositionofKeple- rianorbits. µP wP µK Each Keplerian can be described with five RV observables: the semi-amplitude K, the orbital period P, the eccentricity e, anorbitalphaseφ,andthelongitudeoftheline-of-sight,ω.We also consider a systemic velocity, vsys, of the centre of mass of P K e η1 η2 η3 η4 thesystem,whichcorrespondstoanRVzero-pointmeasuredby Np HARPS. φ ω 2.2. Gaussianprocessestomodelstellaractivity Npplanets Even if activity signals cannot be easily described analytically vsys Σ s (a complete description would require knowledge of the active regiondistributionandevolution,temperaturecontrastandstel- larparameters,suchasinclinationandlimbdarkening),wecan makesomeassumptionsabouttheirform.Besidesassumingthe signals will be continuous and smooth, stellar rotation induces vi a periodicity or quasi-periodicity, as active regions evolve and ti vkiep σ cycleinandoutofviewonthestellarsurface. i For the purposes of detecting planets using RV measure- ments, the signals caused by stellar activity can then be seen Ndatapoints ascorrelatedquasi-periodicnoise.Gaussianprocesses(GP)are Fig.1.Representationoftherelationsbetweenparametersandobserva- anincreasinglycommontooltodealwithcorrelatednoise(e.g. tionsinourRVmodel,asaprobabilisticgraphicalmodel.Anarrowbe- Robertsetal.2012).Intheirapplicationtoregressionproblems, tweentwonodesindicatesthedirectionofconditionaldependence.The GPscanbeseenaspriordistributionsoverfunctions,whichwill circlednodesaretheparametersofthemodel,whosejointdistribution be constrained by the data (e.g. Rasmussen & Williams 2006). issampledbytheMarkovchainMonteCarlo(MCMC)algorithm.The Forourpurposes,weusetheGPtomodelthestochasticcompo- double circled node v represents the observed RVs. The filled nodes i nentofoursignal–thatis,thestellarnoise. represent deterministic variables: if these variables have parent nodes AGPisdefinedbyitsmeanfunction,thedeterministiccom- (vkep and Σ), they are given by a deterministic function of those par- i ponentofthesignal,anditscovariancefunction,whichdefines ents;iftheydonothaveparents(t andσ),theyareassumedasbeing i i the overall behaviour of the functions under the GP distribu- givenandthusfixed.Thevariablesinsideboxesarerepeatedanumber tion.Whenthecovariancefunctionisevaluatedattheobserved oftimes,asshowninthebottomleftcornerofeachbox. times,thecovariancematrixisobtained.Fromthemanypossible choicesforacovariancefunction,thequasi-periodickernelisthe times(foreachofthe N planets).Anobserveddatasetiscom- mostwidelyusedintheexoplanetliterature(e.g.H14,Grunblatt p posed of N radial-velocity observations v, at times t and with et al. 2015; Rajpaul et al. 2015), which results in a covariance i i associated uncertainty estimates σ. The diagram in Fig. 1 is a matrixoftheform i representationofthejointprobabilitydensityfunction(PDF)for Σij =η21exp−(ti2−ηt22j)2 − 2sin2η(cid:16)24π(tηi−3tj)(cid:17)+(cid:16)σ2i +s2(cid:17)δij. (1) apll(cid:16)Θth,e{vvia},ri(cid:8)avbkielpe(cid:9)s(cid:12)(cid:12)(cid:12):{ti},{σi},I(cid:17), This represents some of our expectations for the activity- inducedRVsignals:thecorrelationsdecayonatimescaleofη where we condition on the information I1. In the remainder of 2 daysand[Note1:thesuggested’to’changesthemeaningof the paper we will include {ti} and {σi} in I, because they are the sentence.] have a periodic component with period η days. assumedtobefixed.Toeasethenotation,wealsogrouptheRV The parameter η4 controls the relative importance of th3e peri- values in a proposition D = {vi}. The (cid:8)vkiep(cid:9) are obtained from odicanddecayingcomponents.Theparameterη representsthe evaluatingthesumofKepleriansignalsattheobservedtimes. 1 amplitudeofthecorrelations.Thiscovariancematrixalsotakes ThejointPDFcanbefactoredandrearrangedtogiveBayes’s additional uncorrelated noise into account, added quadratically theorem, tothediagonal,whereσ arethereportedRVuncertaintiesand i sisafreeparameter. p(Θ|I)p(D|Θ,I) p(Θ|D,I)= , (2) p(D|I) 2.3. Thecompletemodel providinganexpressionfortheposteriordistributionforallthe Our complete model for the RV observations is shown in Fig. parameters,conditionedontheobserveddata.Theposteriordis- 1, in the form of a probabilistic graphical model. The diagram tribution contains all the information about the parameters that relatesalltheparameters(seeTable1fortheirdescription)and isavailabletous.Withthisdistributiontohand,wecanthenin- observablesinthemodel,statingtheirinter-dependencies.From ferhowmanyplanetsaresupportedbythedataandtheirorbital thisgraphicalrepresentationwecanbuildanexpressionforthe parametersandmasses. jointprobabilityoftheparametersofinterestandthedata. Let Θ be the vector of all the parameters in the model: (cid:104) (cid:105) 1 Here, I encodes the assumptions considered when setting up the Θ = N ,µ ,w ,µ ,{P,K,e,φ,ω},v ,η ,η ,η ,η ,s .Theno- p P P K sys 1 2 3 4 problem,e.g.theformoftheGPkernelorthefactthatweignoreplanet- tation means that the subset {P,K,e,φ,ω} will be repeated Np planetinteractions,etc. Articlenumber,page2of7 J.P.Fariaetal.:UncoveringtheplanetsandstellaractivityofCoRoT-7usingonlyradialvelocities 2.4. Determiningthenumberofplanets assumedauniformpriorbetween[Note2:Ibelieve’between’ isbettersuitedherethanthesuggested’of’]10and40days. Tocalculatethejointposteriordistribution,followingEq.(2),we Tosamplethejointposteriordistribution,weusedthealgo- need the three terms on the right-hand side: the prior p(Θ|I), rithmproposedbyBrewer(2014).Theparticulardifficultyhere likelihood p(D|Θ,I),andevidence p(D|I). –since N isnotknown–isthatthesamplingalgorithmneeds Forthelikelihood,thechoicethatreflectsmostgenuinelyour to jump bpetween candidate solutions with different numbers of stateofknowledgeisamultivariateGaussiandistribution2,with mean (cid:8)vkep(cid:9) and covariance matrix Σ. The complete covariance planets.Brewer(2014)proposedamethodthatusesbirth-death matrix cian be obtained, deterministically, from the values of MtheardkioffvucsihvaeinnMestoendtesaCmarplloin(gMfCraMmCew)morokv(eBsrteowienrfeertNapl.,2w0i1th1i)n. η ,η ,η ,η ,σ,and s,accordingtoEq.(1).Thelog-likelihood 1 2 3 4 i Thisway,onecanestimatethevalueoftheevidencewhileim- isthengivenby: proving the mixing in complex posteriors (affected by multi- modalityandphasetransitions).Brewer&Donovan(2015)ap- 1 1 N lnp(D|Θ,I)=− rTΣ−1r− lndetΣ− ln2π, (3) pliedthismethodtoRVdataofνOphandGliese581,although 2 2 2 theseauthorsdidnotincorporateGPsintheiranalysis. whereristhevectorgivenbyv −vkep foralldatapoints. i i The priors used for all the parameters are listed in Table 1. 3. ApplicationtoHARPSdata Most of them are the same as those used by Brewer & Dono- van(2015)andwerechosentorepresentuninformativeorvague We apply the method described in the previous section to priorknowledge.Fortheorbitalperiodsandsemi-amplitudeswe HARPS observations of CoRoT-7. The planet CoRoT-7b was assign hierarchical priors that are conditional on the hyperpa- first announced by Léger et al. (2009) and was the first super- rameters,µ ,w ,andµ ,respectively(seeTable1).Thisreflects P P K Earth with a measured radius. Its orbital period is estimated our belief that knowing the parameters of one planet provides fromthetransitsintheCoRoTlightcurveasbeing P = 0.854 a small amount of information about the parameters of another b days (Léger et al. 2009). A second non-transiting planet, with planet. P = 3.69 days, was detected in a follow-up RV campaign c (Queloz et al. 2009) and a more disputed detection of a third Table1.Meaningandpriordistributionfortheparametersinthemodel. planetarysignalwasreportedbyHatzesetal.(2010). Insomecaseswesampleonthelogarithmoftheparameter. Owingtothehighactivitylevelsofthehoststar,thissystem has since generated a wealth of discussion, resulting in differ- hyperparameters ent estimates for the masses of the planets (Lanza et al. 2010; N numberofplanets U(0,10) p Boisse et al. 2011; Ferraz-Mello et al. 2011; Pont et al. 2011; µ medianorbitalperiod log C(5.9,1) P Hatzesetal.2011).SimultaneousobservationsfromCoRoTand w diversityorbitalperiods U(0.1,3) P HARPSwereobtainedin2012tohelpsettletheseissues(Barros µ meansemi-amplitude log C(0,1) K etal.2014;H14).TheseobservationswereanalysedbyH14with planetparameters anRVmodelthatissimilartooursbutconsideringinformation P orbitalperiod log L(logµ ,w ) fromthesimultaneousphotometricobservations. P P K semi-amplitude E(µK) We emphasise that, in the following, we analyse the full e eccentricity B(1,3.1) set of RV observations. In summary, the star was observed φ orbitalphase U(0,2π) with HARPS in 2009 and 2012, with a total of 177 public RV ω longitudeofline-of-sight U(0,2π) measurements.Theaverageerrorbaronthesemeasurementsis 2 ms-1 (whichincludesphotonandinstrumentalnoise)andthe GPandnoiseparameters RVdispersionis10 ms-1,overthecomplete3-yeartimespan. η amplitudeofcovariance LU(0.1,50) 1 A common procedure in (current) RV studies is to fix the η aperiodictimescale LU(1,100) 2 numberofplanetsandsampletheposteriorfortheremainingpa- η correlationperiod U(10,40) 3 rameters(andpossiblycalculatetheevidence)inastep-by-step η periodicscale LU(0.1,10) 4 approach. If we fix N = 2, we recover the orbital parameters s extrawhitenoise log C(0,1) p ofthetwoknownplanets,CoRoT-7bandCoRoT-7c,withinthe vsys systematicvelocity U(minvi,maxvi) errorsreportedinH14andBarrosetal.(2014).Themethodwe presentinthispaperis,however,muchmoregeneralandallows Notes.Symbolmeaning:U(·,·)–Uniformpriorwithlowerandupper forthefullposteriorforN tobeobtainedfromonerun.Wenow limits;C(·,·)–Cauchypriorwithlocationandscale(thesedistributions p proceedwiththisgeneralmethod. were truncated for numerical reasons); L(·,·) – Laplace prior (some- timescalleddoubleexponential)withlocationandscale;E(·)–Expo- We ran our algorithm on the full set of RVs, using the nentialpriorwithmean;B(α,β)–Betapriorwithshapeparameters,α priors in Table 1, and obtained 16248 effective samples from andβ,anapproximationtothefrequencydistributionofeccentricities the joint posterior distribution3. The evidence for our model is proposedbyKipping(2013);LU(·,·)–Log-uniformpriorwithlower log(p(D|I)) = −530.9.Theresultingmarginalposteriordistri- andupperlimits. butionforN isshowninFig.2. p Theposteriordistributionfor N isoneofthemainoutputs p FormostoftheparametersoftheGPcovariancekernel,we ofourmethod.Buttoactuallydecideonwhatisthenumberof assigned log-uniform priors in sensible ranges. For η , the pa- 3 rameterthatcanbeinterpretedasthestellarrotationperiod,we 3 The computer used to run the simulations was equipped with an Intel(cid:13)R CoreTM i5-4460CPUrunningat3.20GHzand4GBofRAM. 2 Fig.1showsthatallweknowaboutthedistributionofthe{v}areits Therunningtimetoobtain50000samples(fromdiffusivenestedsam- i firstandsecondmoments.ThemultivariateGaussianfollowsfromthe pling’stargetmixturedistribution)wasfourdays.Sincethecomputa- principleofmaximumentropywhenthedistributionisconstrainedto tionalcostofthealgorithmisdominatedbytheinversionofthecovari- havingaspecifiedcovariancematrix(e.g.Cover&Thomas2006). ancematrix,itisexpectedtoscaleroughlywithN3. Articlenumber,page3of7 A&Aproofs:manuscriptno.AA_2015_27899 theposteriordistributionissensitivetothepriordistributions,in 3000 s particularastohowsmallwebelieveK mightbe. e mpl 2500 pp((32)) ≈4.49 Thejointposteriordistributionsfortheorbitalperiods,semi- a amplitudes,andeccentricitiesofthesignalsareshowninFig.3, s or 2000 where the samples for all Keplerians were combined. The fig- eri ure shows a 2-dimensional histogram of the posterior samples, ost 1500 wherethecolourmaprepresentsbincountsandissetinaloga- p of 1000 rithmicscale. p(2) er p(1) ≈∞ The two detected planets are seen as overdensity regions at mb 500 Pb = 0.85 days and Pc = 3.69 days. Their amplitudes and ec- Nu centricitiesarewellconstrained.Thereisaclearposteriorpeak 0 0 1 2 3 4 5 6 7 8 9 10 aroundtwodayswithamplitudeandeccentricitymostlyuncon- strained.Theposterioralsoshowsasmallerpeakat9days,the Numberofplanets periodreportedbyHatzesetal.(2010)asapossiblethirdplanet (seealsoTuomietal.2014). Fig.2.PosteriordistributionforthenumberofplanetsN .Thecounts p MarginalposteriordistributionsfortheparametersoftheGP arenumberofposteriorsamplesinmodelswithagivennumberofplan- and the extra white noise parameter s are shown in Fig. 4. The ets. The two ratios of probabilities between models with 1, 2, and 3 planetsishighlighted;notethatp(0)= p(1)=0. posterior for η3 is particularly interesting as it provides a con- straint to CoRoT-7’s rotation period, obtained exclusively from the RVs. Our inferred value for the stellar rotation period of 1] 10 2in2.a3g0r+−e16e0.m1.108endta(ysseiesToabbtalein2e)dwsoitlheleyafrrloiemrethsteimRVatetsimweh-sicehrieusseadndthies -s m CoRoTlightcurve(Légeretal.2009;Lanzaetal.2010;H14). 1 [ de Alsointerestingisthejointbehaviourofη2,η3,andη4.For u higher values of η , the periodic component of the covariance plit 0.1 function loses imp4ortance relative to the decaying component, m mi-a 0.01 ηG2PgsemtsosomthaslltehreaRndVηs3obneacotimmeesscuanlceoonfstηrain≈ed3.Idnayths.isBcuatsew,hthene 2 e S η isoforderunity(meaningtheperiodiccomponentispresent), 4 thedecayingtimescaleishigherandη isconstrainedaround22 3 0.8 days. The values of η in this situation (20-30 days) are closer 2 0.7 tothestellarrotationperiodandarealsoconsistentwiththeav- y 0.6 erage lifetime of active regions measured in the CoRoT 2012 cit 0.5 photometry (20.6 ± 2.5 days, H14). Our results therefore vali- tri 0.4 datetheapproachtakenby,e.g.H14andGrunblattetal.(2015), n ce 0.3 of modelling the activity-induced RV variations with a GP that c E 0.2 hasthecovariancepropertiesofthelightcurve. 0.1 Considering only the posterior samples with Np = 2, Table 0.0 2liststhemedianvaluesofsomeorbitalparametersforthetwo 0.1 1 10 100 1000 planets, and the maximum likelihood RV curves are shown in Period[days] Fig.5.Ourestimatesfortheorbitalparametersareinagreement, withintheuncertainties,withtheonesobtainedbyH14. Fig.3.Jointposteriordistributionforthesemi-amplitudes(toppanel) andtheeccentricities(bottompanel)togetherwiththeorbitalperiodsof 4. DiscussionandConclusions theKepleriansignals. BuildingontheworkofBrewer&Donovan(2015),wehavede- velopedasimplemethodtoestimatethenumberoforbitingplan- planets orbiting CoRoT-7, and answer our initial question, we etsaroundactivestars,usingonlyRVmeasurements.Weapplied needtoclarifywhatwemeanby“confidentlydetected”.Based thismethodtoHARPSobservationsofCoRoT-7andconfidently onascalesuggestedbyJeffreys(1998)(seealsoKass&Raftery detectCoRoT-7bandCoRoT-7c,whilefindingweakerevidence 1995), some authors (e.g. Tuomi 2011; Feroz et al. 2011) have for two additional signals. In this framework, there is no need proposedthat,toclaimadetectionofNpplanets,theprobability tousephotometricobservations,informationfromtransitdetec- of Np should be 150 times greater than the probability of Np − tions,orauxiliaryactivityindicators. 1. This criterion requires ’strong’ (Jeffreys 1998) evidence for The posterior distribution for N shows evidence for the p detecting a planet, thus considering false positives to be much presenceofextrasignals,eveniftheydonotmeetourdetection worse than false negatives. By applying this rule to our results, criteria. We note that the effects of considering a uniform prior wechooseNp =2asthenumberofplanetsconfidentlydetected forNp(thusgivingconsiderablepriorweighttolargenumbersof inourdataset. planets)andahierarchicalpriorforthesemi-amplitudes(which We emphasise that having confidently detected two planets changes how the Occam’s razor penalty is taken into account) isadifferentmatterfromknowingthatthenumberofplanetsis canbeimportantandwillbestudiedinthefuture. actually two. According to the posterior distribution, it is more Ourchoicesforthelikelihood,covariancefunction,andpri- likelythattherearefourplanets.Butourdetectioncriterionde- orsprovidethemodelwitharobustnessagainstpossibleoutliers pends on the ratio of probabilities for consecutive values of N whichissimilartomostanalysesofRVdata.Ifwehadreasonto p (seeFig.2),notontheprobabilityvaluesthemselves.Ofcourse, suspect the presence of outliers, it would be straightforward to Articlenumber,page4of7 J.P.Fariaetal.:UncoveringtheplanetsandstellaractivityofCoRoT-7usingonlyradialvelocities s = 0.88+0.42 0.54 − η = 9.31+1.53 1 1.31 − 16 1 12 η 8 η = 3.28+14.15 2 1.14 − 80 60 2 η 40 20 η = 22.21+9.79 40 3 −6.40 32 η3 24 16 η = 0.93+3.25 10 4 −0.36 8 6 4 η 4 2 0.5 1.0 1.5 2.0 8 12 16 20 40 60 80 16 24 32 40 2 4 6 8 10 s η1 η2 η3 η4 Fig.4.Marginalised1-and2-DposteriordistributionsfortheparametersoftheGPandtheextrawhitenoise.ThesamplesforallvaluesofN p werecombined.Thetitlesaboveeachcolumnshowthemedianoftheposteriorandtheuncertaintiescalculatedfromthe16%and84%quantiles. Thesolidlinesarekerneldensityestimationsofthemarginaldistributions. extendourmodel,e.g.byscalingeacherrorbarwithacommon In the analysis of H14, the authors modelled the out-of- valueorwithindividualvalueswhosecommonpriorisdefined transit photometry using a GP (as an interpolator) and applied hierarchically. the FF’ method of Aigrain et al. (2012) to obtain the RV sig- nalthatisduetoactivity.Bycomparingtheevidenceofmodels containingthisactivitysignalpluszero,one,two,orthreeplan- Steppingbacktoappreciateourresults,wefindthatthereis ets,theyassertedthatthetwo-planetmodelwasthemostproba- alotofinformationcontainedintheRVs,bothaboutplanetary ble.Tomodelallthequasi-periodicsignalsinthedata,H14in- and (arguably more importantly) activity signals, and that this cludedaGP(withthecovariancepropertiesoftheCoRoTlight information can be recovered. The GP provides a flexible and curve)aspartoftheRVmodel.Thiswasjustifiedbecause“the accommodatingmodelforactivity-inducedsignals,allowingus FF’methodislikelytoprovideanincompleterepresentationof to infer the planetary masses and orbital parameters with more activity-induced RV variations” (H14). We also note that these realisticuncertainties. Articlenumber,page5of7 A&Aproofs:manuscriptno.AA_2015_27899 a andcanberecoveredwiththeflexibilityoftheGP,ifwebetter 70 70 accountfortheuncertaintyassociatedwithit. 60 60 We should finally note two important properties of the 50 50 CoRoT-7system,whichmadeitidealforthisanalysis.First,the m/s] 40 40 amplitudesoftheplanetsignalsaremuchhigherthanthemean V[ 30 30 error bar of the HARPS observations, regardless of the stellar R activitycontamination.Second,thetimesamplingoftheobser- 20 20 vationsisalmostidealforthedetectionofshort-periodplanets, 10 10 andisverydifficulttoobtainaspartofatypicalRVsurvey.We 0 0 highlightheretheimportanceoffurthertests,usingotherwell- 4780 4830 4880 5940 5950 5960 studieddatasetsofactivehoststarsaswellassimulateddatasets, BJD-2450000[days] forassessingthelimitsofapplicabilityofourmethod. b RV-GP-planetc c RV-GP-planetb Nevertheless,theimportanceofthisworkisnotonthespe- 20 20 cific application to CoRoT-7, but instead on providing a sim- 15 15 ple and fast method to infer the number of planetary signals in 10 10 the presence of stellar activity. With small modifications, this s] 5 5 m/ methodcanbeusedtosearchforplanetsaroundstarswithdif- 0 0 [ ferentactivitylevels. V -5 -5 R -10 -10 Acknowledgements. The work presented here grew directly from a collabo- -15 -15 ration that started at the Astro Hack Week 2015. We thank Andrew Collier Cameronforinsightfuldiscussions.Weacknowledgetheexcellentopen-source -20 -20 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Python packages made available to the community (in particular DAFT and George).ThisworkwassupportedbyFundaçãoparaaCiênciaeaTecnologia orbitalphase (FCT)throughtheresearchgrantUID/FIS/04434/2013andthegrantPTDC/FIS- AST/1526/2014. JPF acknowledges support from FCT through the grant ref- Fig.5.Panela:RVmeasurementsofCoRoT-7from2009and2012and erenceSFRH/BD/93848/2013.RDHgratefullyacknowledgesagrantfromthe thetwo-planetbest-fitmodel(blackcurve).Notethedifferentscalesin JohnTempletonFoundation.Theopinionsexpressedinthispublicationarethose theabscissaeontheleftandrightpartsoftheplot.Panelsbandcshow of the authors and do not necessarily reflect the views of the John Temple- thephasedRVcurvesaftersubtractingeachplanetsignalandtheGP. ton Foundation. BJB is supported by a Fast Start grant from the Royal So- ciety of New Zealand. PF and NCS acknowledge support by FCT through Investigador FCT contracts (IF/01037/2013 and IF/00169/2012, respectively), Table2.ParameterestimatesfromourworkandfromH14.Weconsider andPOPH/FSE(EC)byFEDERfundingthroughtheprogramProgramaOp- allmodelsthathaveN = 2andshowthemarginalposteriormedians, eracional de Factores de Competitividade - COMPETE. PF further acknowl- p togetherwiththe16%and84%quantiles. edges support from FCT in the form of an exploratory project of reference IF/01037/2013CP1191/CT0001.MOacknowledgesresearchfundingfromthe DeutscheForschungsgemeinschft(DFG,GermanResearchFoundation)-OS units Thiswork H14 508/1-1. AS is supported by the European Union under a Marie Curie Intra- European Fellowship for Career Development with reference FP7-PEOPLE- P (a) days 0.85424+0.00071 0.85359165± 5×10−8 2013-IEF,number627202. b −0.00126 K ms-1 3.97+0.62 3.42±0.66 b −0.55 e 0.045+0.053 0.12±0.07 b −0.027 References m M 5.53+0.86 4.73±0.95 b ⊕ −0.78 Aigrain,S.,Pont,F.,&Zucker,S.2012,Mon.Not.R.Astron.Soc.,419,3147 P days 3.69686+0.00036 3.70±0.02 Baranne,A.,Queloz,D.,Mayor,M.,etal.1996,A&AS,119,373 c −0.00026 Barros,S.C.C.,Almenara,J.M.,Deleuil,M.,etal.2014,Astron.Astrophys., Kc ms-1 5.55+−00..3341 6.01±0.47 569,A74 e 0.026+0.033 0.12±0.06 Boisse,I.,Bouchy,F.,Hébrard,G.,etal.2011,Astron.Astrophys.,528,A4 c −0.017 Brewer,B.J.2014,arXiv:1411.3921 m M 12.62+0.77 13.56±1.08 Brewer,B.J.&Donovan,C.P.2015,Mon.Not.R.Astron.Soc.,448,3206 c ⊕ −0.72 Brewer,B.J.,Pártay,L.B.,&Csányi,G.2011,Stat.Comput.,21,649 η (b) days 22.50+10.56 23.81±0.03 Cover,T.M.&Thomas,J.A.2006,Elementsofinformationtheory,2ndedn. 3 −6.19 (Hoboken,N.J:Wiley-Interscience) Notes.ThefollowingnotesapplytotheestimatesfromH14: Dumusque,X.,Santos,N.C.,Udry,S.,Lovis,C.,&Bonfils,X.2011a,Astron. (a) AGaussianpriorwasused,centredat0.85359165daysandwitha Astrophys.,527,A82 Dumusque,X.,Udry,S.,Lovis,C.,Santos,N.C.,&Monteiro,M.J.P.F.G. standarddeviationof5.6×10−7 days.(b) Theestimatefortherotation 2011b,Astron.Astrophys.,525,A140 periodwasderivedfromtheCoRoTlightcurve. Feroz,F.,Balan,S.T.,&Hobson,M.P.2011,Mon.Not.R.Astron.Soc.,415, 3462 Ferraz-Mello,S.,TadeudosSantos,M.,Beaugé,C.,Michtchenko,T.A.,&Ro- dríguez,A.2011,Astron.Astrophys.,531,A161 authorsuseaverystrongGaussianpriorforP (andthetimeof b Figueira,P.,Marmier,M.,Bonfils,X.,etal.2010,Astron.Astrophys.,513,L8 periastron), which was nevertheless completely justified by the Figueira,P.,Santos,N.C.,Pepe,F.,Lovis,C.,&Nardetto,N.2013,Astron. transitobservations. Astrophys.,557,A93 Grunblatt,S.K.,Howard,A.W.,&Haywood,R.D.2015,Astrophys.J.,808, Ouranalysisrestsonmuchfewerassumptions–onlytheRV 127 measurementswereused,therotationperiodofthestarwasal- Hatzes,A.P.,Dvorak,R.,Wuchterl,G.,etal.2010,Astron.Astrophys.,520, lowedtovary,thepriorfortheorbitalperiodsismuchlessstrin- A93 gent–butwearestillabletorecoverthesamenumberofcon- Hatzes,A.P.,Fridlund,M.,Nachmani,G.,etal.2011,Astrophys.J.,743,75 Haywood,R.D.,CollierCameron,A.,Queloz,D.,etal.2014,Mon.Not.R. fidentlydetectedplanetsandreliableestimatesoftheorbitalpa- Astron.Soc.,443,2517 rametersandthestellarrotationperiod(seeTable2).Thisshows Jeffreys,H.1998,Theoryofprobability,3rdedn.(Oxford:OxfordUniversity that all this information is contained in the RV measurements Press) Articlenumber,page6of7 J.P.Fariaetal.:UncoveringtheplanetsandstellaractivityofCoRoT-7usingonlyradialvelocities Kass,R.E.&Raftery,A.E.1995,J.Am.Stat.Assoc.,90,773 Kipping,D.M.2013,Mon.Not.R.Astron.Soc.Lett.,434,L51 Lanza,A.F.,Bonomo,A.S.,Moutou,C.,etal.2010,Astron.Astrophys.,520, A53 Léger,A.,Rouan,D.,Schneider,J.,etal.2009,Astron.Astrophys.,506,287 Mayor,M.,Pepe,F.,Queloz,D.,etal.2003,TheMessenger,114,20 Noyes,R.W.,Hartmann,L.W.,Baliunas,S.L.,Duncan,D.K.,&Vaughan, A.H.1984,Astrophys.J.,279,763 Pepe,F.,Mayor,M.,Galland,F.,etal.2002,Astron.Astrophys.,388,632 Pont,F.,Aigrain,S.,&Zucker,S.2011,Mon.Not.R.Astron.Soc.,411,1953 Queloz,D.,Bouchy,F.,Moutou,C.,etal.2009,Astron.Astrophys.,506,303 Rajpaul,V.,Aigrain,S.,Osborne,M.A.,Reece,S.,&Roberts,S.2015,Mon. Not.R.Astron.Soc.,452,2269 Rasmussen,C.E.&Williams,C.K.I.2006,Gaussianprocessesformachine learning(Cambridge:MITPress) Roberts,S.,Osborne,M.,Ebden,M.,etal.2012,Philos.Trans.R.Soc.Lond. Math.Phys.Eng.Sci.,371 Robertson,P.,Roy,A.,&Mahadevan,S.2015,Astrophys.J.,805,L22 Saar,S.H.&Donahue,R.A.1997,Astrophys.J.,485,319 Santos,N.C.,GomesdaSilva,J.,Lovis,C.,&Melo,C.2010,Astron.Astro- phys.,511,A54 Santos,N.C.,Mortier,A.,Faria,J.P.,etal.2014,Astron.Astrophys.,566,A35 Tuomi,M.2011,Astron.Astrophys.,528,L5 Tuomi, M., Anglada-Escude, G., Jenkins, J. S., & Jones, H. R. A. 2014, arXiv:1405.2016 Articlenumber,page7of7