Uncovering neutrinos from cosmic ray factories: the Multi Point Source method YolandaSestayoa,ElisaResconib aDepartamentd’AstronomiaiMeteorologia,UniversitatdeBarcelona(IEEC-UB),Mart´ıiFranque`s1,E-08028,Barcelona,Spain bT.U.Munich,D-85748Garching,Germany Abstract Wepresentanovelmethodforthesearchofhighenergyextraterrestrialneutrinosinextendedregions.Themethodisbasedon 3 thestudyofthespatialcorrelationsbetweentheeventsrecordedbyneutrinotelescopes. Extendedregionsradiatingneutrinosmay 1 existintheGalaxyduetothehierarchicalclusteringofmassivestars,theprogenitorsofalltheGalacticacceleratorsknownsofar. 0 2Theneutrinoemissionassociatedtosuchextendedregionsmightbefaintandcomplexduetoboththeescapeofcosmicraysand theintricatedistributionofgasintheenvironmentoftheaccelerators. Wehavesimulatedextendedneutrinoemissionoveranarea n of10◦ ×10◦, wheretheintensityfluctuationsacrosstheregionare modelledasa Gaussianrandomfield witha givencorrelation a Jstructure. We tested our proposed method over realizations of this intensity field plus a uniform random field representative of 8the spatial distribution of the atmospheric neutrino background. Our results indicate that the method proposed here can detect significanteventpatternsthatwouldbemissedbystandardsearchmethods,mostlyfocusedinthedetectionofindividualhotspots. ] E Keywords: HNeutrinos,Galacticcosmicrays,Spatialcorrelations . h p -1. Introduction [19], instruments which also have provided the first evidence o of particle acceleration up to TeV energies from a number of tr Thesearchforthesourcesofcosmicraysisoneofthemost individualsources[20]. sstandingissuesinhigh-energyastrophysics.Majoradvancesin Further progress is expected in the upcoming future with a [thefieldduringthelastyearshavebeenrealizedbytheconsid- neutrino detectors such as IceCube [21]. In the energy range erablenumberofinstrumentsdedicatedtoGalacticcosmicray 300 GeV < E < 10 PeV, the IceCubeexperimentat the South 1 vstudies[1,2,3,4,5,6].Theon-goingmeasurementsofthecos- Pole uses the Earth as a filter to observe neutrinos from the 9micradiationfromtheGalaxy[7,8,9]arehelpingtoconstruct wholenorthernsky. Itslargefield ofview anddynamicrange 2a comprehensivepictureaboutthe sourcesofcosmicrays, the offer a unique opportunity to unveil the sites of both produc- 5mechanismsofpropagation,andtheinteractionofcosmicrays tion and interaction of the high energy cosmic rays from the 1withthegasandradiationfieldsoftheGalaxy[10]. Currently, Galaxy.Asinthecaseofhadronicgamma-rays,neutrinoemis- . 1gamma-rayastronomyhasa leadingrole in the explorationof sionimpliestheefficientaccelerationofcosmicraysinGalac- 0theskyattheveryhighenergies. Measurementsofthespatial tic sources, as well as their interaction with matter and radia- 3and spectral distributions of the diffuse Galactic gamma-rays tion. Surveysofatomicandmoleculargas[22,23], combined 1 :provide information about the propagation and interaction of withinfraredandopticaldata,haveprovidedlarge-scalemaps vGalactic cosmic rays [11, 12, 13], whereas localized excesses of the Milky Way’s stellar and gas distribution with unprece- i Xof gamma-rayemission with respect to models of cosmic ray dented spatial resolution [24], despite the uncertainties in the rpropagationcanbeinterpretedastheresultofcosmicrayinter- distanceestimations.Fromtheseobservationsweknowthatthe aactionsinregionsofenhancedmatterdensity(whicharebelow progenitorsofalltheGalacticacceleratorsknownsofar,mas- the spatial resolution of current cosmic ray propagationmod- sive stars, are not located at random within the Galactic disk, els), or due to the presence of Galactic accelerators injecting butrathershowingahierarchicalstructure. high energy particles which interact close to their sources of All present-daystar formationappearsto take place in gi- origin [14, 15, 16, 17]. The GeV gamma-ray diffuse emis- ant molecularclouds. Massive open star clusters do not form sionisbeingmeasuredbytheFermisatellite[7],showingthat inisolation,buttendtobeclusteredthemselvesintheso-called gamma-raysare producedthroughoutthe Galactic disk by the clusterscomplexes[25],associatedwithgiantmolecularclouds interactionsofcosmicrayswiththegasandradiationfromthe followingthespiralarmsoftheMilkyWaydisk[26,27,28].De interstellar medium, after their diffusion in the Galactic mag- laFuenteMarcos&DelaFuenteMarcos[26]foundstatistical neticfields. TheGalacticTeVdiffuseemissioniswithinreach evidenceoftheexistenceofatleastfivedynamicalfamiliesof ofgroundCherenkovtelescopeslikeH.E.S.S.[18]andMilagro youngandmassiveopenclustersinthesolarneighborhood(dis- tance<2.5kpc),whichmayextendupto10degreesinGalac- ticlongitude. Therelevantscenarioforhighenergyastronomy Emailaddress:[email protected](YolandaSestayo) PreprintsubmittedtoAstroparticlePhysics January9,2013 is one in which we can find groups of stellar open clusters in the simulations of the event pattern. In section 3 we present an evolutionary stage in which the combined winds of mas- ourproposedmethodfortheanalysisofextendedregions.Sec- sivestarsandsupernovaexplosionsdominatetheenergeticsof tion 4 shows the performance of both our correlation method theregion. ThisestablishestheexistenceofpotentialGalactic andstandardsearchmethodsfromtheresultsobtainedwiththe cosmic ray factoriesin regionsof massive star formation[29] simulatedeventpatterns.Section4hasthediscussion. whichmaywellextendseveraldegreesinthesky,possiblyaf- fectingthespatialdistributionofneutrinoeventsrecordedwith 2. Simulationsoftheeventpattern neutrinotelescopes. In this paper we focus on the potential of neutrino tele- An event pattern consists of a set of event locations r = scopes such as IceCube to detect a significant neutrino event (r,r,...,r )withinaregion(R),atwhichNeventshavebeen i j N patternassociatedwiththeseactiveregionsoftheGalaxy. This recorded. Inthesimplestcase,thedatasetcomprisesonlythe couldpointtothelocationanddistributionofGalacticcosmic event locations. However, in some cases we may have addi- ray and neutrino sources during the first years of the IceCube tional information related to the events which might have a experiment, when sensitivity mightbe still too limited for the bearing with the nature of the analysis. For instance, the ar- detectionofindividualsteadypoint-sources. rivaltimeoftheevents,foranalysisofvariablesources[36],or Apossibleneutrinoemissionintheseregionsmayshowan theenergyoftheeventsforahighersignaltonoisediscrimina- intricate,andlikelyfaint,intensitypattern,duetothecomplex tion power[37]. These cases correspondto what is knownas structure of the matterin regionsharboringmassive stars. On markedpointpattern. Althoughthisinformationcanbeincor- onehandwehavetheclusteringofpotentialaccelerators,where porated in any analysis, in this paper we have not considered highenergycosmicraysare originated,andonthe otherhand marksintheeventpattern,andwe focusedonlyonthespatial theavailabletargetforcosmicrayinteractions,consistingofthe distributionofevents. gas left from the parent molecular cloud, which has not been used for star formation nor evacuated from the region by the 2.1. Simulationsoftheastrophysicalneutrinosignal radiationandwindsfromthestarsandsupernovaexplosions. Aspatialeventpatterncanbethoughtofastherealizationof Bothobservationsandtheoryaboutthespatialstructureof aspatialprocess. Inmanyastrophysicalscenarios,suchphysi- themolecularandatomicgasinalargerangeofenvironments calprocessesdependonrandomcomponents,andtheyareusu- haveshownthatitpresentssomedegreeofspatialcorrelation, allymodelledintermsofrandomfields[39]. usually characterized in terms of the power spectra [30, 31]. We adopteda Gaussianrandomfield with a givencorrela- The causes of the observed spatial correlations are manifold, tionstructurefortheintensityfluctuationsofapossibleneutrino butlargescale turbulenceandsome localeffectslike the radi- signalinsidearegionthatismuchlargerthantheangularreso- ationpressureandwindsfromthemassivestarsandsupernova lutionoftheexperiment. explosions are the most important[32, 33, 34, 35]. These ef- If the field is Gaussian, we can determine it completely fects produce spatial fluctuations in the gas density, which in given its mean and correlation function (or power spectrum), turn, may contribute to the fluctuations of a possible neutrino whichfacilitatesthesimulations. Thestartingpointofthesim- signalinsideanareapopulatedwithcosmicraysources. ulations of Gaussian random fields is the convolution of the We offer here an alternative to the search of these poten- powerspectrumofthefieldwithawhitenoise(i.e.,correlation tial Galactic cosmic ray factories, in a situation in which lit- free)randomsignal[40]: tle knowledgeaboutthe high energyprocessestakingplace is available. We introducehere the use of analysisof the spatial I(r)= d3keik·r P(k)W(k) (1) correlationsbetweenneutrinoeventsforthediscoveryofGalac- Z p tic cosmic ray sites. We will study the advantagesand poten- which gives the intensity of the field at each point r from the tialofcorrelationanalysiswithrespecttostandardsearchesfor powerspectrumP(k),relatedtothespatialcorrelationfunction neutrinosources. Themethodpresentedhereandthestandard C(r) by the Fourier transform: P(k) = F−1C(r). W(k) is the searchmethodsaretestedonsimulatedeventpatterns,inwhich white noise, which gives the random amplitude and phase to thephysicaloriginofthepossibleneutrinosignalistranslated thefield. intostatisticalpropertiesoftheneutrinointensityfield. IftheangularextentofRislarge,asphericalharmonicde- Modelling the exact characteristics of a possible neutrino compositionofthefieldwouldbeneeded.Inthiscase,thefield intensityfieldinaparticularregionoftheGalaxyisoutofthe wouldhavethespectralrepresentation: scope of this paper, andthe examplesconsideredaim to illus- tratetheperformanceofsearchmethods.Withintheregionun- ∞ l derstudy,weassumethatthefluctuationsintheintensityofthe I(r)= al,mYl,m(r) (2) X X neutrinosignalvaryspatially accordingto a Gaussian random l=0 m=−l fieldwithagivencorrelationstructure. Thelastsourceofneu- where Y is a basis of spherical harmonics, and the coeffi- l,m trinos we consider is the isotropic foreground of atmospheric cientsa arecomplexuncorrelatedrandomvariablesthatde- l,m neutrinos, the statistics of which is consistent with a uniform pendonlyonthecovarianceorpowerspectrumofthefield P. l Poissondistribution. Inourexamples,RissmallenoughastoassumeEuclidean Thepaperisorganizedasfollows. Insection2wedescribe space.WegeneratedtheGaussianrandomfieldsthroughFourier 2 phase randomization by discretizing equation 1 with a Carte- map EMEMMRRMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxsxyy mmaapp 22 66 322322 22 0..0..337979115555242444....5325324422 sianmeshdefinedoverR.Forsimplicity,weassumedthatRis 40 80 a square region of length L = 10◦, and used a mesh of 512 × 39 60 512nodes,givinga0.02◦samplingintervalofR,muchsmaller 38 40 thantheangularresolutionofneutrinotelescopes. 37 20 ThesamplingofRisdoneinFourierspacedirectlyassum- g) 36 0 ing a power spectrum for the intensity field. The Fourier do- c (de 35 -20 mainiscommonlyusedinthesimulationsofrandomfieldsbe- de 34 -40 cause the random variables at different points are statistically -60 33 independent, whereas in the spatial domain they have long- -80 32 rangecorrelationsthataredifficulttosample. -100 31 -120 Forsimplicity,weassumedanisotropic,homogeneousran- 30 domfield;thatis,thecorrelationbetweentwopoints r and r 300 301 302 303 304 305 306 307 308 309 310 1 2 R. A. (deg) depends on the length τ = |τ| of the vector τ = r − r , but 1 2 notonits direction. We adopteda power-lawpowerspectrum Figure1:RealizationofaGaussianrandomfieldwithpowerspectrumP(|k|)= P(|k|) = (α+|k|2)−β,whichhasanassociatedcovariancefunc- (1+|k|2)−2overthe10◦×10◦regionusedinourexamples.Inthisspecificre- tion describedalso bya power-lawplusan exponentialdecay, alizationunitsarearbitrary,theintensityofthefieldisnormalizedwithrespect toareferencevalue.Inthefollowingexamplesthesignalwillbenormalizedto with α,β as the parameters that regulate the decay rate of the agivennumberofevents. longrangecorrelationswithdistance: C(τ)∝τβ−1e−ατ. Figure1showsarealizationofanisotropic,homogeneous Gaussianrandomfieldwiththepowerspectrumdescribedabove 3. Analysisofthespatialcorrelations:theMultiPointSource withα=1,β=2. Infigure1thecolorscalehasarbitraryunits, method(MPS) buttheobtainedspatialdistributionwasusedfortherepresen- Methodsto accountfor the spatial correlationsin the data tation of the astrophysicalneutrinosignal, where the intensity areextensivelyusedinastronomy[43],startingfromthework will be normalizedto a certain numberof signaleventsin the ofPeeblesandco-workerstostudythelarge-scalematterdistri- final data sample of neutrino telescopes. The test region over butionin the Universethroughthe two-pointcorrelationfunc- whichweinjectthesignalisdefinedintherangeinequatorial tionofgalaxies[44]. Inhighenergyastrophysics,thesearches coordinates30◦ <dec<40◦,300◦ <R.A.<310◦. forcorrelationsin thedatahavebeenappliedmainlyto detect Theinstrumentationintroducesanadditionalcorrelationin anisotropiesin the spatial distribution of cosmic-rays[45, 46] the intensity pattern due to the errors in the reconstruction of andneutrinos[47]. the event directions. Therefore, for the analysis of the event Themostcommonlyusedestimatorsforthetwo-pointcor- patterninsectionweconvolvedthesignalfieldoffigure1with relationfunctioninastronomyarebasedonpaircounting(see thePointSpreadFunction(PSF)typicalofneutrinotelescopes. Kerscheretal.(2000)[48]foracomparisonofdifferentestima- TheeffectofthePSFistosmearthesignaloversomearea,ac- tors). FollowingthenotationofSzapudi&Szalay(1998)[49], cordingtoitsshape.WeassumethePSFhasaGaussianprofile thenumberofeventpairswithinadistancerisdefinedas withσ = 1,whichcorrespondstoamedianof0.7◦,similarto whatisexpectedfortheIceCubeneutrinodetector[41]. P (r)= Ψ(x,y) (x,y) (3) DD r XX 2.2. Simulationofthebackgroundofatmosphericneutrinos x∈Dy∈D Asimulatedsampleconsistingonlyofatmosphericneutrino P (r)= Ψ(x,y) (x,y) (4) RR r events was constructed injecting uniform random events on a Xx∈RXy∈R sphere.Inreality,atmosphericneutrinosreachthedetectorwith where the summations run over event coordinates in the data a zenith dependent component [42], but within a declination sample D, and in a sample R of randomly distributed events. bandof∼10◦scaleslikeintheexamplesweconsiderhere,the Ψ (x,y)= 1onlyifacertainpairselectioncriteriaaresatisfied r spatial distribution of atmospheric neutrino events in the final inthereal(random)sample,andisequalto0otherwise. After sample is uniform random, where the intensity at each point thenormalizationofthenumberofpaircounts: followsaPoissonprocess. Atotalof50000backgroundeventswereinjectedrandomly DD(r)= P (r)N(N−1) (5) DD through the northern sky, a number which could be represen- X tative of the total atmospheric neutrino events with E > 500 RR(r)= P (r)N (N −1) (6) RR R R GeVexpectedfortheIceCubedetectorinitsfinalconfiguration. X withNandN beingthetotalnumberofeventsintherealand Thisproducesandexpectationof207backgroundeventsinthe R 10◦×10◦regionwithinthedeclinationband30◦ <δ<40◦that random sample, the so-call natural estimator of the two-point correlationfunction,η ,is: wehaveconsideredinourexamples. n DD η (r)= −1 (7) n RR 3 which representsthe excess probability, with respect to a ran- detection. To obtain the p-value of an observation, we must domdistribution,offindinganeventatadistancer ofanother therefore know the distribution of our test statistics under the event. background-onlyhypothesis.IntheMPSmethod,theteststatis- Inthissection,weintroducethisformalismforthedetection tics is a function of the angular scale Θ. For each Θ exam- ofhighenergyneutrinosfromanextendedregion.Theclassical ined, we must construct the probability distribution of Φ(Θ). two-pointcorrelationfunctionmethod,brieflydescribedabove, The number of background events in a given area A = πΘ2 was adapted to our specific case and optimized for discovery. isproducedbya Poissonprocess; asaconsequence,thenum- The aim of our method is to determine whether the observed berofpairsofbackgroundeventswithinadistanceΘfollowsa spatialpropertiesofneutrinoeventsinsidetheareaunderinves- Gammadistribution.However,withthedefinitionofeventpairs tigationarecompatiblewiththoseexpectedfromadistribution inMPS,theparametersoftheGammadistributionaredifficult ofbackground-onlyevents(atmosphericneutrinoevents),orif toestimatefromobservables,andweobtainedthedistributions anextraterrestrialcomponenthastobeinvokedinordertoex- withMonteCarlosimulations. plaintheobservations,andatwhichlevelthebackground-only hypothesisisrejected. 4. Analysisoftheeventpattern Duetothedifferencesourapproachposestothenaturaldef- initionofthetwo-pointcorrelationfunction,wedefinedourtest In this section, we present our results about the ability of statistics as a clusteringfunction, and in what followswe will both a stardard search method and the MPS method to find a refertoourproposedmethodastheMultiPointSource(MPS). significantneutrinoeventspatternoverextendedregions. The HerewedescribehowtheMPSmethodisdefined. testswereperformedoversimulatedskymaps,inwhicharegion Let R be the region under study, in which a total number Rof10◦×10◦exhibitsneutrinoemissionwithsomecorrelation of N events have been registered in the final data sample inside structure(section2.1). atthelocations(r ,r ,...r ),definedbythecoordinatesr = 1 2 Ninside i Standardsearchmethodsdealwiththeidentificationofhot (θ,φ)onthesky. MPSmakesatwo-pointsamplingofRwith i i spots, definedas a spatialconcentrationofevents. Thesearch circularbinsofvariableareaA =πΘ2centeredatthelocations forhotspots is done by mappingthe sky using differenttech- of each of the events inside the region, r. In the sampling of i niques; the ones commonly used in neutrino astronomy are the region, the angular distance, Θij, from an event i located basedoneither”classical”binnedmethods,orlikelihood-based insideRtoaneventj(atanylocation)ismeasuredforeachof methods with different degrees of sophistication in the mod- theN eventspresentinR(i=1,...,N ;j=1,...,N ). inside inside total ellingofthedata[37,38].Regardlessofthemethodusedinthe Thenumberofpairsijismeasuredasafunctionoftheangular analysis,thesearcheshavebeenusuallyoptimizedforthedis- separationandthehistogramofeventpairsasafunctionofthe coveryofpoint-likeemission,andhencecorrelationsofevents angulardistanceΘisconstructedfromthesemeasurements. beyondthesinglepoint-sourcescaledonotenterintheanalysis. Theanalysisthenmakesuseofascale dependentcumula- Theexplorationofthesky,seekingforsourcesofhighenergy tive clustering function, Φ(Θ), defined as the excess, with re- neutrinos,is doneby superimposinga gridoverthe eventdis- specttothenullhypothesis,inthenumberofeventpairswithin tribution.Classicalbinnedmethodscountthenumberofevents acertainangulardistanceΘ: within a circular fixed-area bin centered at each of the nodes in the grid, resulting in estimates of the intensity of the pro- Θ DD(Θ)dΘ cessesthatgeneratethe observedeventpatternateachsample Φ(Θ)= R0 (8) Θ point.Thegridstepismuchsmallerthantheangularresolution RR(Θ)dΘ R0 achievedin the analysis, and the bin size is usually optimized whereDD(Θ)= DD ,RR(Θ)= RR ,andthesumruns tohavethebestsignaltonoiseratioforpoint-sources. Likeli- ij ij Xij Xij hoodmethodsusethesametypeofscananalysis,buttheygive over all non-repeated pairs in the real data sample and in the a probabilistic assignment of an event to a component(signal backgroundcase,respectively.Inourcase,DD (RR )=1only ij ij orbackground)accordingto its distance to the pointat which ifeithertheeventiortheeventj,orboth,arewithintheregion the intensityisbeingestimated. Ateachgridpoint, the likeli- under study, and it is equal to zero otherwise. That is, MPS hoodofamixturemodelofsignalplusbackgroundiscompared does not correlate events with specific locations, but rather it toapurebackgroundhypothesis,andtheregionunderstudyis considerseacheventinsidetheregionasapointsourceinorder imagedasaprobabilitydensitymap. todetermineitsdegreeofcorrelationwiththerestoftheevents. The performanceof both classical and likelihoodmethods Thisfeatureispreciselywhatnamesthemethodas”MultiPoint aresimilarintermsofdiscovery,aslongastheyuse thesame Source”. Withthisdefinitionwemeasureboththeintensityof eventinformation[37]. Giventhattheeventdensitymapsob- the process thatgenerated the observedneutrinoeventpattern tainedfromabinnedanalysisofferaclearvisualinspectionof aswellasitscorrelationstructure. thespatialeventpattern,aswellasamorestraightforwardcom- Theultimateresultoftheanalysisinneutrinotelescopesis parisonwiththeresultsfromMPS,weusedaclassicalbinned the p-value of the observation, that is, the probabilitythat the methodasthestandardscananalysisofoursimulatedskymaps. observed event pattern is just a realization of the atmospheric Thescanof thetest regionof10◦ ×10◦ was donein steps neutrino background field. A discovery is claimed when this of 0.25◦ × 0.25◦. At each point, the local event density was probability is below 2.8 × 10−7, which corresponds to a 5σ 4 measured and compared to the one expected under the back- eachangularscale. Themeasuredspatialcorrelationsbetween groundhypothesis,wherebylocalwemeanwithinafixed-area events below 5◦ follow a power-law with exponential decay, binaroundthesamplepoints. consistentwiththesignalfieldthatwasusedinthesimulations, Both the MPS and the binned scan of R were applied to and the discoveryof the simulated astrophysicalneutrino sig- background+signalsamplesandthecorrespondingsignificances nalgoesuptoangularscalesof∼2.5◦. Therefore,MPSresults werecalculatedwiththep-valueoftheoutcomesofeachmethod. havethepotentialtodiscoveramorecomplicatedstructureofa The probability distributions were computed after the analy- possibleastrophysicalneutrinosignalthanwhatwas observed sis of n randombackground-onlysamples with both the MPS withthestandardscanoftheregion. method and with a binnedscan of R. Each of these simulated datasetsyieldsneventpatternswithadifferentnumberN(n) 4.2. LowS/Ncases inside ofbackgroundeventsinsideR.Theaverageclusteringfunction In this example a total of 40 signal events were injected in the background case and its dispersion at different angular in the region. With a background expectation of 207 events scalesisobtainedafterapplyingMPSovern=104background- withinR,thissituationcorrespondstoabackgrounddominated onlydatasets. Theobtainedprobabilitydistributionswerefitted sample.Thiscaseexemplifiesamorerealisticsituation,sincea to a Gamma distribution. The binnedscan was applied to the totalof40signaleventspresentatthefinalsampleofneutrino samebackground-onlydatasetsandthedistributionofthenum- telescopesfromaregionof10◦×10◦constitutesamorerealistic berofeventswithinthesearchbinforeachofthenodesinthe situationgiventhecurrenteffectiveareasofneutrinodetectors gridwasfittedtoaPoissondistribution. andsourceswithmoderateneutrinofluxes[41]. Inthenextsections,wepresentourresultsundertwodiffer- We illustrate here three simulated examples of such situa- entscenarios:asituationofhighsignaltonoiseratio(S/N),and tion. Fig.4showstheresultofa1◦ binnedscanforthreereal- asituationinwhichtheS/Nisverylow.ThecaseofahighS/N izationsofthebackgroundfieldplus40signaleventsfollowing underlinesthedifferencesintheinformationextractedfromthe thespatialdistributionoffigure1. Thethreecasesarecompat- sameeventpatternwiththetwodifferentmethodsusedinthis iblewithbackgroundfluctuations,reachinga3σlevelatmost. paper. Thestudyofalow-signalcaseillustrateshowtheMPS Fig. 5 shows the same scan, but in which signal events have and a standardscan ofR dealwith the backgrounddominated been removed. The comparisonof figs. 4 and 5 manifests the samplescharacteristicofneutrinotelescopes. random appearance of events even in the signal+background maps,wherethemostsignificantspotsoccurredalwaysatran- 4.1. HighS/Ncase dom locations, as expected in background-onlyskymaps, but In this example a total of 100 signal events were injected with a slightly higher significance due to the additional pres- randomlyfollowingthedistributionoffigure1convolvedwith ence of signal events in the region. If we combine the three a Gaussian with σ = 1, representative of the PSF of current simulatedsamples(figures6(a),6(b)),correspondingtoalarger neutrino telescopes. On top of the signal, background events periodofdatatakingintherealsituation,theS/Nisstilltoolow wererandomlygeneratedasexplainedinsection2.2. toproduceasignificantdetectionfromthebinnedscan,andthe Fig. 2 shows a realization of the signal+background field minimump-valueachievedonlyreaches3σat0.5◦ scales(fig- imaged as a significance event density map from the results ure 6(a)). If, in addition, we correctfromthe trials associated of the binned scan of R with circular bins of radius 0.5◦, 1◦, to the scan of an extended region, this significance is further 1.5◦, 2◦. In this simulated data set, a total of N = 294 reduced. However, althoughthe significance of these individ- inside signal+backgroundeventshavefallen withinR, yieldinga 6σ ualspotsisnotenoughforadetection,theirdistributionisnot excessofeventsinsidetheentireR,clearlyrepresentingahigh commonofarandomdistributionofbackgroundevents.Thisis S/Ncase. illustratedwhenwe useMPSto quantifythedeparturesofthe Theappearanceoftheresultingimagesisacombinationof wholeeventpatternwithinRfromadistributionofbackground diverseeffects:thespatialstructureofthesignalintensityfield, events. WithMPS,theminimump-valueoftheobservedevent thesmearingofthissignalbecauseoftheinstrumentalerrorin pattern reaches 4.3σ observation (figure 6(c)). The trial fac- theeventlocations,andthesizeofthesearchbinarea.Thesig- torsfromscanningseveralclusteringscaleswithMPSarevery nificances obtained then reflect the balance between the clus- small, and the MPS post-trial significance remains practically tering of the signal at the scales of the search bin radius, and unchanged, from the pre-trial p-value of 10−5.5 to a post-trial thescalesatwhichrandomaccumulationofbackgroundevents p-valueof10−5.3,yieldingalsoa4.3σfinalresult. ismoreprobable. Adiscovery(i.e. ap-value< 2.8×10−7 )is Therefore,inthetypicalsituationsofneutrinotelescopesof achievedwhensamplingtheregionwithbinsof1.5◦radius(fig- lowS/N,theonlyhintofapossibleneutrinosignalwouldbethe ure2(c)),butthesignificancedropsconsiderablywhenobserv- accumulationofrelativelyweakspotswithintheregionwhich ing at different angular scales, and any information regarding is believedto bea factoryofcosmic rays. Aslongas theS/N thespatialstructureofthesignalwithintheregionunderexam- is low, these most significant spots do not necessarily have to inationislost. However,thisinformationisrecoveredwhenwe appearat the same location in the analysisof the same region studythespatialcorrelationsbetweeneventswithMPS.There- in different epochs, since they have an important background sultsoftheanalysisoftheregionwithMPSareshowninfigure component,whichfluctuatesrandomlywithintheregion. The 3. Figure 3(a) shows the clustering function of the events up signal would be missed by standard scan analysis, but could to5◦scales,andfigure3(b)showsthesignificancesobtainedat bedetectedbycorrelationanalysislikeMPS.Eventually,after 5 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 33223322 1104..04..4747665.5.63963988..4664466422 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 3333 2222110404....6616165.5.55881414..6666222121 40 4.5 40 39 39 4 5 38 38 3.5 37 37 4 dec (deg) 333456 223.5(p_value)og10 dec (deg) 333456 3 (p_value)og10 1.5-l 2 -l 33 33 32 1 32 1 31 0.5 31 30 30 300 301 302 303 304 305 306 307 308 309 310 300 301 302 303 304 305 306 307 308 309 310 R.A. (deg) R.A. (deg) (a) Significancemapofeventdensitiesat0.5◦scales (b) Significancemapofeventdensitiesat1◦scales map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 3333 1212110404....6684845.5.66889595..7676221111 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 33123312 1104..04..5252665.5.77877888..8733873322 40 40 8 39 39 3 38 7 38 2.5 37 6 37 dec (deg) 333456 45 (p_value)og10 dec (deg) 333456 12.5(p_value)og10 3 -l -l 33 33 1 2 32 32 0.5 31 1 31 30 0 30 0 300 301 302 303 304 305 306 307 308 309 310 300 301 302 303 304 305 306 307 308 309 310 R.A. (deg) R.A. (deg) (c) Significancemapofeventdensitiesat1.5◦scales (d) Significancemapofeventdensitiesat2◦scales Figure2:Resultsfromthebinnedscan.Thecolorscaleisinunitsofstandarddeviation. Ex2 100 signal events Ex2 100 signal events 2.2 10 8 2 e) u al Θ) _v 6 Φ(1.8 (pg10 o -l 4 1.6 2 1.4 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Θ (deg) Θ (deg) (a) Clusteringfunction (b) Significance oftheclustering function ateachoftheangularscales tested. Figure3:ResultsfromtheMPS someyearsofintegrationtime,theS/Nwouldbehighenough background events, provided there is some clustering of neu- to overcome the backgroundfluctuations, providingan image trinosourceswithintheregionunderexamination. oftheneutrinoemissionintheregion.Butbeforethissituation isachieved,weexpecttofindadistributionofneutrinoevents whichdeparturessignificantlyfromtheaveragedistributionof 6 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 222233 11 ....44 66666633..21214488002424992255 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 3232 3322110.0.55..55664455..11884488..3232221111 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 332332 221105.05...6666665.5.00008822..7257252211 40 40 40 39 3 39 3 39 2 3378 2.5 3378 2.5 3378 11..68 dec (deg) 333456 12.5(p_value)-log10 dec (deg) 333456 12.5(p_value)-log10 dec (deg) 333456 0111...824(p_value)-log10 33 1 33 1 33 0.6 32 0.5 32 0.5 32 0.4 31 31 31 0.2 33000 301 302 303 304 305 306 307 308 309 310 33000 301 302 303 304 305 306 307 308 309 310 33000 301 302 303 304 305 306 307 308 309 310 R.A. (deg) R.A. (deg) R.A. (deg) (a) Significance map of event densities at 1◦ (b) Significance map of event densities at 1◦ (c) Significance mapofeventdensities at1◦ in scalesinsample1 scalesinsample2 sample3 Figure4:Resultsfromthebinnedscanoversignal+backgroundsamples map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 222233 11 ....00337676664444060688....4747882266 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 322322 11 5..5.. 65656633..54454488009869862255 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 3333 2222110505....6676765.5.33889191..5656221111 334890 122..82 334890 12.8 334890 11..46 1.6 1.2 37 1.6 37 37 dec (deg) 333456 0111...824(p_value)-log10 dec (deg) 333456 0111...824(p_value)-log10 dec (deg) 333456 001..68(p_value)-log10 33 0.6 33 0.6 33 0.4 32 0.4 32 0.4 32 31 0.2 31 0.2 31 0.2 33000 301 302 303 304 305 306 307 308 309 310 33000 301 302 303 304 305 306 307 308 309 310 33000 301 302 303 304 305 306 307 308 309 310 R.A. (deg) R.A. (deg) R.A. (deg) (a) Significance map of event densities at 1◦ (b) Significance map of event densities at 1◦ (c) Significance mapofeventdensities at1◦ in scalesinsample1 scalesinsample2 sample3 Figure5:Resultsfromthebinnedscanoverbackground-onlysamples map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 22223333 11....05057676665.5.19190088..8787262622 map EMMRREMMRRnnMMMMeeeettaaaaSSSSrrnnnnii eexyxy sxysxymm aapp 3232 3322110.0.55..44664455..44880066..3737221111 Combined Ex1+Ex2+Ex3 40 40 6 3.5 39 39 3 38 3 38 5 2.5 dec (deg) 3333334567 1122..55(p_value)-log10 dec (deg) 3333334567 112.5(p_value)-log10 (p_value)-log10 234 32 0.5 32 0.5 1 31 31 33000 301 302 303 304 305 306 307 308 309 310 33000 301 302 303 304 305 306 307 308 309 310 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 R.A. (deg) R.A. (deg) Θ (deg) (a) Significance map of event densities at 0.5◦ (b) Significance map of event densities at 1◦ (c) Significanceoftheclusteringfunctionateach scalesinthecombinedsample scalesinthecombinedsample oftheangularscalestestedinthecombinedsam- ple. Figure6:ResultsfromthebinnedscanandfromMPSoverthecombinedsample 5. Discussion Galaxy. Massive andyoungstellar populations,the birth sites ofGalacticcore-collapsesupernova,areassociatedtothespiral Thediscoveryofhighenergyneutrinoemissionfromapar- armsoftheMilkyWay,followingahierarchicalschemewhere ticularregionoftheGalaxywouldsuggestalocalinjection of starsaregroupedinclusters,andthestellarclustersthemselves high energy protons or heavier nuclei; as well as their inter- formpartofopenclustercomplexes. action not very far away from their sources of origin, before Under the assumption that the explosion of a supernova they lose theirenergyby diffusion in Galactic magnetic fields is the most plausible energy source for cosmic ray accelera- [50,51]. Whereasthediscoveryofindividualpointsourcesof tionintheGalaxy,weproposeinthispapertosearchforneu- highenergyneutrinosseemschallengingbecauseofthelimited trino emission in the regions where massive stars die, that is, sensitivityofneutrinodetectors,theagglomerationofneutrino where the cosmic ray acceleration process takes place in the sourcesinsidethesameregionoftheskycouldbedetectedasa supernovaremnantshocksthatformaroundtheexplosionsite. significantdeparturefromthedistributionofatmospheric neu- GiventhedistributionofmassivestarclustersintheGalaxy,we trino events. Such clustering of neutrino sources would be a can find such potential cosmic ray factories at angular scales naturalconsequenceof the distribution of stellar matterin the whichcouldevenreacharound∼10◦ormore,dependingifwe 7 also want to consider clustering of potential accelerators due [9] Adriani,O.,Barbarino,G.C.,Bazilevskaya, G.A.,etal.2009,Nature, to projectioneffects. Thistypeofsearchthereforeimpliesthe 458,607 [10] Strong,A.W.,Moskalenko,I.V.,&Ptuskin,V.S.2007,AnnualReview analysis of extended regions, much larger than the detector’s ofNuclearandParticleScience,57,285 angular resolution. We emphasize the usefulness of a search [11] Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2010,ApJ,710,133 method which accommodates different degrees of complexity [12] Ackermann,M.,Ajello,M.,Allafort,A.,etal.2012,A&A,538,A71 inthespatialdistributionofastrophysicalneutrinoevents,and [13] Ackermann,M.,Ajello,M.,Atwood,W.B.,etal.2012,ApJ,750,3 [14] Abramowski,A.,Acero,F.,Aharonian,F.,etal.2012,A&A,537,A114 trytonotrestrictourselvesonlytothecaseofpoint-likeemis- [15] Abdo,A.A.,Allen,B.,Berley,D.,etal.2007,ApJ,658,L33 sion. Inthispaper,weproposeamethodtosearchforneutrino [16] Acciari,V.A.,Aliu,E.,Arlen,T.,etal.2009,ApJ,703,L6 emission from extended regions which takes into account all [17] Ackermann,M.,Ajello,M.,Allafort,A.,etal.2011,Science,334,1103 theseconsiderations,andthatweconvenientlynamedtheMulti [18] Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.2006,Na- ture,439,695 PointSource(MPS).Comparingtoasinglesourcesearch,the [19] Abdo,A.A.,Allen,B.,Aune,T.,etal.2008,ApJ,688,1078 MPSwouldgiveabetterresultonlyiftheemissiondeviatessig- [20] Wakely,S.P.,&Horan,D.2008,InternationalCosmicRayConference, nificantlyfromsphericalsymmetry,whereasitwouldbecom- 3,1341 parabletoastandardbinnedsearchintheoppositecase. [21] ForTheIcecubeCollaboration, Resconi,E.,&FortheIceCubeCollab- oration2009,NuclearInstrumentsandMethodsinPhysicsResearchA, Insituationsinwhichthesearchforextraterrestrialneutri- 602,7 nos goes beyond the single and spherically symmetric source [22] Kalberla,P.M.W.,Burton,W.B.,Hartmann,D.,etal.2005,A&A,440, approach,wehaveshownthatcorrelationanalysislikeMPSare 775 able to discovera significant neutrinoevent pattern inside the [23] Dame,T.M.,Hartmann,D.,&Thaddeus,P.2001,ApJ,547,792 [24] Churchwell,E.,Babler,B.L.,Meade,M.R.,etal.2009,PASP,121,213 regionunderinvestigationwithahighersignificancethanstan- [25] Elmegreen,B.G.2011,arXiv:1101.3111 dardsearches,whichscantheregionlookingforsinglesources. [26] delaFuenteMarcos,R.,&delaFuenteMarcos,C.2008,ApJ,672,342 Insimulatedexamplesofahighsignaltonoiseratio,where [27] Schneider,N.,Bontemps,S.,Simon,R.,etal.2006,A&A,458,855 [28] Efremov,Y.N.1978,SovietAstronomyLetters,4,66 also a standard scan of the region results in a discovery, the [29] Higdon,J.C.,&Lingenfelter,R.E.2005,ApJ,628,738 MPSisproventobeworthperforminginordertoextractinfor- [30] Stutzki, J.,Bensch, F.,Heithausen, A.,Ossenkopf, V.,&Zielinsky, M. mationoftheneutrinoeventpatternatdifferentangularscales, 1998,A&A,336,697 where no significant information is extracted from the scan. [31] Falgarone,E.,Hily-Blant,P.,&Levrier,F.2004,Ap&SS,292,89 [32] Elmegreen,B.G.,&Scalo,J.2004,ARA&A,42,211 Evenmore interesting, giventhe currentstatus of neutrino as- [33] Schneider,N.,Bontemps,S.,Simon,R.,etal.2011,A&A,529,A1 tronomy,is the case ofa verylowS/N, wherewe haveshown [34] Khalil,A.,Joncas,G.,&Nekka,F.2004,ApJ,601,352 thatevenwhenthestandardscanofaparticularpatchofthesky [35] Lazarian,A.,&Pogosyan,D.2000,ApJ,537,720 donotyieldanyhintofanastrophysicalsignal,MPSindicates [36] Braun, J.,Baker, M.,Dumm,J.,etal.2010, Astroparticle Physics, 33, 175 theexistenceofastrophysicalneutrinosignalinsidetheregion [37] Braun,J.,Dumm,J.,dePalma,F.,etal.2008,AstroparticlePhysics,29, understudy. 299 The conclusions of this paper about the potential of the [38] Aguilar, J.A.,&Herna´ndez-Rey, J.J.2008, Astroparticle Physics, 29, search methodwe proposeto discoverneutrinoemission with 117 [39] Mart´ınez, V.J., &Saar, E.2002, Statistics ofthe Galaxy Distribution, respecttostandardsearchstrategiesareindependentonthespa- PublishedbyChapmanHall/CRC,BocaRaton,ISBN:1584880848, tial correlation function that we adopted for the simulations. [40] Salmon,J.1996,ApJ,460,59 Theexamplesusedherearehypothetical,andnotattempttode- [41] Abbasi,R.,Abdou,Y.,Abu-Zayyad,T.,etal.2011,ApJ,732,18 scribe the neutrinoemission from any particularregionof the [42] Abbasi, R., Abdou, Y., Abu-Zayyad, T.,etal.2011, Phys.Rev.D,83, 012001 Galaxy, but to illustrate the usefulness of our method for de- [43] Robaina,A.R.,Bell,E.F.,Skelton,R.E.,etal.2009,ApJ,704,324 tectingasignificanteventpatterneveninstronglybackground [44] Peebles,P.J.E.1980,ResearchsupportedbytheNationalScienceFoun- dominatedsamples. dation.Princeton,N.J.,PrincetonUniversityPress,1980.435p., [45] HighResolutionFly’sEye(HIRES)Collaboration2004,NuclearPhysics BProceedingsSupplements,136,46 [46] Finley,C.B.,&Westerhoff,S.2004,AstroparticlePhysics,21,359 TheauthorsarethankfultoAdayRobainaforusefuldiscus- [47] Abbasi, R., Ackermann, M., Adams, J., etal. 2009, Phys.Rev.D,79, sionsaboutthetwo-pointcorrelationfunction.YolandaSestayo 062001 [48] Kerscher,M.,Szapudi,I.,&Szalay,A.S.2000,ApJ,535,L13 acknowledgesthefinancialsupportfromJ.M.Paredesthrough [49] Szapudi,S.,&Szalay,A.S.1998,ApJ,494,L41 ICREAAcademia. [50] Torres,D.F.,Li,H.,Chen,Y.,etal.2011,MNRAS,417,3072 [51] Ahlers,M.,Mertsch,P.,&Sarkar,S.2009,Phys.Rev.D,80,123017 [1] Atwood,W.B.,Abdo,A.A.,Ackermann,M.,etal.2009,ApJ,697,1071 [2] Hinton,J.A.2004,NewAstronomyReview,48,331 [3] MAGIC Collaboration 2008, Nuclear Physics B Proceedings Supple- ments,175,395 [4] Weekes,T.C.,&theVERITASCollaboration2010,arXiv:1001.5305 [5] MILAGROCollaboration2006,NuclearPhysicsBProceedingsSupple- ments,151,101 [6] Picozza,P.,Sparvoli,R.,Adriani,O.,etal.2011,ParticlePhysicsatthe YearofAstronomy,200 [7] Abdo,A.A.,Ackermann, M.,Ajello, M.,etal.2009,PhysicalReview Letters,103,251101 [8] Abdo,A.A.,Ackermann, M.,Ajello, M.,etal.2009,PhysicalReview Letters,102,181101 8