Unconventional Strong Spin-Fluctuation Effects around the CriticalPressure ofthe Itinerant Ising-TypeFerromagnet URhAl Yusei Shimizu,1,∗ Daniel Braithwaite,1 Bernard Salce,1 Tristan Combier,1 Dai Aoki,1 Eduardo N. Hering,1 Scheilla M. Ramos,1 and Jacques Flouquet1 1Univ. Grenoble Alpes, INAC-SPSMS, CEA-Grenoble, F-38000 Grenoble, France. (Dated:February3,2015) Resistivity measurements were performed for the itinerant Ising-type ferromagnet URhAl at temperatures downto40mKunder highpressureupto7.5GPa,usingsinglecrystals. Wefoundthatthecriticalpressure 5 oftheCurietemperatureexistsataroundPc ∼5.2GPa. NearPc,theA-coefficientoftheAT2 Fermi-liquid 1 resistivitytermbelowT∗islargelyenhancedwithamaximumaround5.2-5.5GPa.AbovePc,theexponentof 0 theresistivityρ(T)deviatesfrom2. AtPc,itiscloseton = 5/3, whichisexpectedbythetheoryofthree- 2 dimensional ferromagnetic spin fluctuations for a 2nd-order quantum-critical point (QCP). However, TC(P) disappearsasa1st-orderphasetransition,andthecriticalbehaviorofresistivityinURhAlcannotbeexplained b bythetheoryofa2nd-orderQCP.The1st-ordernatureofthephasetransitionisweak,andthecriticalbehavior e isstilldominated bythespin fluctuationat low temperature. Withincreasing pressure, thenon-Fermi-liquid F behaviorisobservedinhigherfields.Magneticfieldstudiespointoutaferromagneticwingstructurewithatri- 2 criticalpoint(TCP)at∼4.8-4.9GPainURhAl.Oneopenpossibilityisthattheswitchfromtheferromagnetic totheparamagneticstatesdoesnotoccursimplybutanintermediatestatearisesbelowtheTCPassuggested l] theoreticallyrecently. Quitegenerally, ifadrasticFermi-surfacechangeoccursthroughPc,thenatureofthe e interactionitselfmaychangeandleadtotheobservedunconventionalbehavior. - r t PACSnumbers:71.27.+a,75.30.Kz,75.30.Mb,75.40.-s s . t a I. INTRODUCTION plestotheorderparameter19,20. Theyshowedthata2nd-order m phase transition at high temperature changes to a 1st-order - transitionbelowatri-criticalpoint(TCP)with1st-orderwing d Since the 1960-1970s, the understandingof dynamic crit- n ical phenomena and physical properties of itinerant spin- planes, which terminate at zero temperature in a finite mag- o fluctuation systems has been one of the main topics in the netic field, i.e. at a quantum-critical-end point (QCEP)19,20. c fields of magnetism in condensed matter physics1–6. This is Previously, it has also been discussed that the TCP emerges [ due solely to the thermal spin fluctuations21,22 and the mag- becausethesequestionsleadtounderstandnotonlyweakitin- 2 erantmagnetismind-andf-electronsystemsbutalsorecently netoelasticcoupling23,24. v observed anomalous non-Fermi-liquid (NFL) behaviors and So far, the quantum criticality around the QCEP with the 1 magneticallymediated Cooperinstabilities7,8 caused by spin metamagnetic transition has been classified into the same 0 fluctuationsnearquantum-phasetransitions(QPTs). criticality as the QCP for an Ising-type transition25. How- 7 6 Sofar,itwaswidelybelievedthatbothitinerantferromag- ever, there is no symmetry change around a QCEP, whereas 0 netic (FM) and antiferromagnetic (AF) compounds usually the symmetry of the ordered phase is clearly distinguished . have the quantum-criticalpoints (QCPs), where a 2nd-order from the paramagnetic (PM) phase for a QCP. It has re- 1 0 phase transition occurs at T = 0 by tuning some physical cently been pointed out theoretically that the quantum criti- 5 parameter,such as pressure, or atomic substitution, etc. The cality of the metamagnetic transition accompanied with the 1 self-consistent-renormalized(SCR)theorybyMoriyaandhis Fermi-surface change (Lifshitz transition) has another uni- : coworkersgivesatheoreticalbasetodescribeNFLbehaviors versality class, which differs from other symmetry-breaking v i ofitinerantFM andAFmetallicsystemsnearQCPs6–8. Fur- phase transitions26,27. Also, as unconventionalsuperconduc- X thermore, critical phenomena around magnetic QCPs were tivity associated with FM order has been discovered only r investigated theoretically using the renormalization-group in uranium materials (UGe228, URhGe29, and UCoGe30), it a methodbyHertz9, andMillis10. Actually,someitinerantAF is intriguing to study the quantum criticality and the spin- compounds obey the Moriya-Hertz-Millis theory for critical fluctuationeffectsaroundthe FM QPT for itineranturanium behaviorsnearQCPs11. compounds. However, for FM quantum criticality, the situation is dif- Recently, a FM wing structureand a QCEP have been re- ferent. Surprisingly, it has been reported that an almost ported for UCoAl, which shows a 1st-order metamagnetic FM helimagnet, MnSi12,13, and several ferromagnets, such transitionat∼0.7TwithaFMmomentof∼0.3µB/Uatlow as UGe214,15, and ZrZn217,18, do not show the QCP at zero temperature31–33. This compound has a hexagonal ZrNiAl- field but show a 1st-order phase transition when TC is sup- typestructurewithspacegroupP¯62m,inwhichthereisnoin- pressedbyapplyingpressure. Toexplainthesebehaviors,re- versionsymmetry. Theuraniumatomsformaquasi-Kagome´ cently specific attentions were given to new quantum treat- lattice,thusmagneticfrustrationeffectsarepossiblyexpected. mentfor FM QPT; for example, Belitz and Kirkpatrickcon- From high-pressure studies, it is considered that in UCoAl sideredparticle-holeexcitationsfroma Fermisurfacewith a a TCP exists at negative pressure of −0.2 GPa34, and the lowfrequencyandalongwavelength(softmode),whichcou- metamegnetictransitioncanbeexplainedbytheFMwings32. 2 d) II. EXPERIMENTALPROCEDURES hifte (a) TC 4.15 GPa s Single crystals of URhAl were grown by the Czochralski y URhAl 4.3 nits.] (verticall 0 T 4.9 454...805 pmasthunueervlnelisidltniszcgreueelnsmolisdfseewt∼tirhvihtoi2htidy0ga0hoinnf×pisnraea1ssm0tiset0uputrrl×paee-srwae3(rs#0ecsruµe1frumpear-ne3ntrdu.afnoTc#eirhnm2.eg)esRdwdaeemhbvsiyiipccshluteeis3vwi9gin,et4eyg0roe.dmmWlieaeesemtasrmsyotuhnderadaiend--- u b. 5.2 notallowaprecisedeterminationoftheformfactorofresis- r a tivity.Therefore,weextrapolatedA(P)linearlyto0GPa,and R [ obtainedabsolutevaluesofρ(T,H)andAbynormalizingthe 8 12 16 20 24 28 extrapolatedvalue[A(P = 0)]tothezero-pressurevalue(A T [K] =0.27µΩ cm/K2 forJ ⊥ c), sincethepressurevariationof A-coefficientisalmostlinearforP <4.8GPa. 120 Thelow-T measurementswere carriedoutfor sample#1 (b) 5.53 GPa using a 3He-4He dilution refrigerator in temperatures down to 40 mK and in fields up to 7 T under high pressures up to m] 100 URhAl 5.23 6.03 7.5 GPa. Here, the magnetic field was applied almost along c 0 T Ω 6.63 the c-axis (easy-magnetizationaxis) and the current was ap- ρµ [ 80 7.34 psulireedmpeenrtpseunnddiceurlhairgthoptrheessfiuerledwdeirreecptieornfo.rmTheedhaitgzhe-rTo mmaega-- neticfieldusing4Hecryostatforsample#1aswellas#2to 60 4.51 checkthereproducibility. 3.75 Asapressuretransmittingmedium,liquidargonwasused, 0.0 1.0 2.0 3.0 4.0 andpressurewasdeterminedwiththerubyfluorescencetech- T [K] nique. For high-T measurements, since there is a volume increase of helium gas in bellows of the pressure-tuningde- FIG. 1: (Color online) (a) Temperature dependence of resistance viceaboveliquid-heliumtemperature,thismaycauseaslight (verticallyshifted)ofURhAl(sample#1)between6and30K,mea- change of the force, which is applied to the pressure cell. suredatzerofieldandhighpressures,4.15,4.3,4.5,4.8,4.9,5.0,and Then, the determinationof pressureis moreprecise for low- 5.2 GPa. The arrows indicate the Curietemperatures (TC) at each T measurementsbelow∼4Kthanforhigh-T measurements pressure. Thedashedlinesareguidestotheeyes. (b)Temperature above∼5K. dependence of resistivity of URhAl (sample #1) below 4 K, mea- sured atzero fieldand high pressures, 3.75, 4.51, 5.23, 55.3, 6.03, 6.63,and7.34GPa. III. RESULTSANDDISCUSSION In order to examine the pressure dependence of the Curie temperatureofURhAl,wefirstshowthetemperaturedepen- Since the TCP in UCoAl is estimated to exist at a negative denceoftheresistanceatvariouspressures(shiftedvertically) pressure, it is notobservablefromhydrostatic-pressuremea- between6and30K inFig. 1(a). Onecanseetheclearkink surements. In order to understand the critical phenomena anomaly in the resistivity curves due to the FM transition at near the itinerant FM QPTs, further experimental examples the Curie temperature (TC), as indicated by the arrows [Fig. arenecessary. 1(a)].TCshiftstolowertemperaturewithincreasingpressure, andthekinkanomalybecomestoobroadtodetermineTCfor Inthispaper,wereportpressure-inducedquantumcritical- P >5.0GPa. ityofa5f itinerantIsing-typeFMcompound,URhAl,which Figure 1(b) shows results of resistivity measurements be- has the same crystal structure as that of UCoAl. URhAl low 4 K at high pressures from 3.75 to 7.34 GPa. At 3.75 shows a FM transition at 25-27 K at ambient pressure36–38, and4.51GPa,TC is19and17K,respectively,andURhAlis andtheFMmoment(∼0.9µB/U)isstronglyIsing-typewith FM in the temperaturerangeof Fig. 1(b) at these pressures. themagnetization-easyaxisalongc,similartotheIsing-type The variation of resistivity ρ(T) is small at low temperature metamagnetisminUCoAl. TheatomicradiusofRhislarger intheFM state. Ontheotherhand,from5.2to7.3GPa, the thanthatofCo,sothe5f-electronicstateinURhAlmaycor- variation of resistivity is very large comparedto that at 3.75 respond to a state in which negative pressure is applied for and4.51GPa. Sincewedidnotobservethekinkanomalyin UCoAl35. Therefore, the high-pressure study of critical be- theresistivityduetotheFMtransitionabove5.2GPa,URhAl haviorsforURhAlcanhelptounderstandthemetamagnetism appearstobePMinthehigh-pressureregionabove5.2GPa. inUCoAlaswellasthegeneralproblemofFMquantumcrit- Figure 2 shows the obtained T-P phase diagram at zero icality. field. There is no significant sample dependence of TC(P). 3 25 TABLEI:TheA-coefficientofresistivity, A[µΩcm/K2], theelec- URhAl tronic specific-heat coefficient γ [mJ/K2mol], and the values of 20 Pc 0 T A/γ2[µΩcm(molK)2/(mJ)2]forURhAl,UCoAl32,andUGe244. Here,A(0)isthevalueofA-coefficientatambientpressureatzero K] 15 FM PM field. T [ 10 Curie Temperature P [GPa] A γ A/γ2 A/A(0) URhAl 0(FM) 0.27 75 4.8×10−5 − Sample #1 5 Sample #2 Pc ∼5.2 8 30 0 UCoAl 0 0.28 75 5.0×10−5 − 70 0.54 0.2 0.7 A 8 2] ρ PQCEP ∼1.5,7T 0.4 1.4 K 0 65 ρ m/ 6 T * 0 [µ UGe2 0 0.007 30 7.8×10−6 − Ω c 4 Sample #1 60 cΩ 1.3 0.1 110 8.3×10−6 14.3 µ m A [ 2 55 ] 0 50 andA(P)arepredictedtovaryasT∗(P)∝(P −Pc)3/2and 3.0 A(P)∝(P−Pc)−1,respectively,leadingtoA∝(1/T∗)2/3; K] inotherwords,A×(T∗)2/3 isconstant10,41. ForURhAl,we * [ 2.0 obtain A ∼ 8 µΩcm/K2 and T∗ ∼ 0.4 K at Pc, leading to T 1.0 A×(T∗)2/3 ∼4.3,andA∼3.5µΩcm/K2andT∗ ∼1.5Kat 0.0 7.5GPa,leadingtoA×(T∗)2/3 ∼4.6.Thisroughestimation 0 1 2 3 4 5 6 7 8 suggeststhattheobservedlargeA-coefficientemergesdueto P [GPa] the FM spin-fluctuation effects. However, we would like to pointoutthepeculiarityofcriticalbehavioroftheFMQPTin FIG.2: (Coloronline)T-PphasediagramofURhAlatzerofieldfor URhAl;asshowninthe3rdpanelofFig. 2,T∗(P)doesnot thesamples#1and#2.Thedashedlinesareguidestotheeyes.The varyasT∗(P) ∝ (P −Pc)3/2 (thesolidcurve)anddoesnot Aplo-cttoeedf.ficTihenetsaonliddtchuervreesiindduiaclarteessiTsti∗v(iPty)o∝fth(Pes−amPpcl)e3#/21,warheicahlsios go to zero as P → Pc. Also, the fact that T∗ is finite at Pc predictedbythespin-fluctuationtheoryfora2nd-orderFMQCP10,41. conflictswithpresenceofa2nd-orderQCPinURhAl. The maximum value of A ∼ 9 µΩcm/K2 in URhAl near Pcisquitelargeforuraniumintermetalliccompounds.While the heavy-electron superconductor UBe13 shows the excep- TC(P)suddenlydisappearsabove5.0GPa. Ourresultssug- tionally large A-coefficient (∼ 90-100 µΩcm/K2)42,43, a lot gestthattheFMcriticalpressureexistsatPc ∼5.2GPa. ofuraniumcompoundsshowtheA-coefficientoflessthan∼ InFig. 2,wealsoplottheA-coefficientandtheresidualre- 1 µΩ cm/K2 as summarized in the Kadowaki-Woodsplot43. sistivityρ0asafunctionofpressure,whereρ(T)=ρ0+AT2. Table I shows the A-coefficient, the electronic specific-heat ThepressurevariationoftheA-coefficientisverysmall(A∼ coefficient (γ), and the ratio A/γ2 for URhAl38, UCoAl32, 0.4-0.5µΩcm/K2)forP <4.8GPa,whereasitshowsadras- andUGe244. Besides,A/A(0)indicatestheratioofAdivided ticincreaseabove5.0GPa.TheA-coefficientbecomesamax- by the A-coefficient at 0 GPa and zero field, i.e. A(0). As imum(A∼9µΩcm/K2)ataround5.2-5.5GPa,suggestinga for UCoAl, the A-coefficient is A ∼ 0.28 µΩ cm/K2, and large enhancement of the density of states at Fermi energy theelectronicspecific-heatcoefficientisγ ∼75mJ/K2mol32. [D(ǫF)] of itinerant electrons above Pc. Interestingly, the TheA-coefficientofUCoAlincreasesneartheQCEP(∼1.5 largeincreaseoftheA-coefficient(A ∼4µΩcm/K2)beyond GPa, 7 T)32, but the enhancementof A is not so large com- Pc indicatesthatthelargeenhancementofD(ǫF)remainsup pared to the pressure-inducedlarge A-coefficient in URhAl. to∼7.5GPa(Fig.2). Thebehavioroftheresidualresistivity, Also, the A-coefficient of UGe2 increases ∼14-fold under ρ0(P),accompaniesthebehavioroftheA-coefficient,A(P). highpressure,butthemaximumvalueofA-coefficientisnot Below4.8GPa,ρ0(P)increaseswithincreasingpressureal- so large (∼ 0.1 µΩ cm/K2) at ∼1.3 GPa44. On the other most linearly, then suddenly decreases with increasing pres- hand, a large A-coefficient (∼ 5 µΩcm/K2) near the critical sureabove4.9GPa. At0Tρ0(P)showsastep-likebehavior pressurehasbeenreportedinanitinerantheavy-electronFM at∼4.8GPaslightlybelowPc ∼5.2GPa. compound U4Ru7Ge645. The observed large A-coefficient We also plot T∗, the maximum temperature for the T2- in URhAl near Pc is comparable with the value observed regime, in the 3rd panel of Fig. 2. T∗ is about ∼ 2-3 K in in cerium heavy-electroncompoundssuch as CeCu2Si243,46. thelow-pressureregionbelowPc,butitsuddenlydecreasesat Fromthecomparisonwithotherheavy-electronmaterialsus- Pc, whereT∗(P)showsaminimum(T∗ ∼0.4K),andthen ingtheKadowaki-Woodsrelation,thequantumcriticalregion graduallyincreaseswithincreasingpressure. inURhAlmaybedescribedgrossomodobythestronglycor- InFMspinfluctuationframewitha2nd-orderQCP,T∗(P) related heavy quasiparticle with the large D(ǫF) caused by 4 85 10 5.53 100 (a) (c) 6.63 80 90 URhAl 5.23 URhAl 8 URhAl Ω cm]80 4.9 30 G TPa 6.03 6.63 7.34 Ω cm]7750 4 T 67..0334 5.53 2m/K] 6 01 TT ρµ [70 4.82 ρµ [65 Ω c 4 23 TT 4.93 5.23 µ 5 T 60 3.75 60 A [ 7 T 2 50 55 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 T 2 [K2] T 2 [K2] 0 90 75 70 (b) 6.03 6.63 (d) µΩ cm]8700 U 2R ThAl 7.34 5 5.2.533 µΩ cm]7605 U 7R ThA 6l.03 55 6..52.6333 ρµΩ [ cm]0 665505 ρ [ ρ [ 4.82 4.93 7.34 60 3.75 60 3.75 50 2 3 4 5 6 7 8 P [GPa] 50 55 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 T 2 [K2] T 2 [K2] FIG.4:(Coloronline)PressuredependenceoftheA-coefficientand 64 (e) theresidualresistivityρ0 ofURhAl(sample#1)inzeroandmag- 62 URhAl 5.23 GPa neticfields,obtainedfromtheexpression,ρ(T) = ρ0+AT2. The 0 T dashedlinesareguidestotheeyes. m] 60 T * c Ω 58 µ 6.03 ρ [ 56 T * for0Tmeasuredat5.23,6.03,and7.34GPaasafunctionof 54 7.34 T2. The arrows indicate the temperature, T∗ (Fig.2), below 52 whichthe T2-regimeworks. Foran appliedfield of 2 T, the 0.0 0.2 0.4 0.6 0.8 1.0 T 2 [K2] large A-coefficient is suppressed at 4.93, and 5.23 GPa, and ρ(T) shows the T2-temperature dependence, similar to that FIG.3: (Coloronline)ρ(T)vsT2 plotofURhAl(sample#1)at at4.82,and 3.75GPa. On theotherhand, the slopeof ρ(T) highpressuresfrom3.75to7.34GPain(a)0T,(b)2T,(c)4T,and becomeslargeat around6-6.6 GPa at 2 T. For 4 T, and 7 T, (d)7T.(e)Theenlargedfigureofρ(T)curvesfor0Tmeasuredat thevariationofρ(T)athigh-pressureregionabove∼6.6GPa 5.23,6.03,and7.34GPaasafunctionofT2below1K.Thearrows becomeslargerthanforpressuresbelow∼6.0GPa. indicateT∗(Fig.2),belowwhichtheT2-regimeworks. Here,T∗at InFig. 4,wesummarizethepressuredependenceoftheA- 7.34GPaisabout∼1.1K.Thesolidlinesaretheresultsoffitting byρ(T)=ρ0+AT2. c#o1e)f,ficoibetnatinaenddftrhoemretshiedueaxlprreessissitoivni,tyρ(ρT0)of=UρR0hA+lA(sTam2,pilne zeroandmagneticfields. Withincreasingmagneticfield,the divergence of the A-coefficient is suppressed, and the step- spin fluctuations. However, we should be careful about the abovediscussionsincethevalueofA/γ2 isnotuniversalde- likebehaviorofρ0becomesbroad(Fig. 4). pendingonthecorrelationofthesystem47–49. Since the behaviorsof the A-coefficientand ρ0 above 5.0 Next,weshallseelow-T ρ(T)curvesinzerofieldandmag- GPa differevidentlyfromthose below∼ 5.0GPa inthe FM neticfields. Figures3(a),(b),(c),and(d)showtheresistivity state, it is considered that URhAl is not in the FM state any ρ(T) vs T2 under high pressures from 3.75 to 7.34 GPa for moreabove5.0GPa. Thisisconsistentwiththefactthatthe 0, 2, 4, and 7 T, respectively. For zero field, at lower pres- anomaly due to the FM transition disappearsabove 5.0 GPa sures than 4.8 GPa, we find ρ(T) = ρ0 +AT2 behavior, as (Fig. 2). TheCurietemperature,TC(P),possiblybecomesa predictedfor an itinerantFM state at low temperature(T ≪ 1st-orderphasetransition,andthenTC(P)suddenlycollapses TC)50. Ontheotherhand,theresistivityshowsaremarkable above5.0GPa. variationwith a largeincreaseof the slope(A-coefficient)at TheexperimentallyobservedlargeenhancementoftheA- 0 T between 4.82 and 4.93 GPa. Around 5-6 GPa, the tem- coefficient suggests a large mass enhancement due to spin- peratureregionwherethe resistivitycanobeythe expression fluctuation effects and/or a variation of Fermi surface. Gen- ρ(T) = ρ0 + AT2 is much smaller than at 4.82, and 3.75 erally, large fluctuation effects occur for a 2nd-order phase GPa. InFig. 3(e),weshowtheenlargedfigureofρ(T)curves transition with a divergence of the correlation length of the 5 thenalargemaximumintheA-coefficientmayemergedueto 10 theincreaseofcorrelationlengthasT →0. 4.51 GPa URhAl 4.93 GPa Figure5showstheA-coefficientandtheresidualresistivity 8 5.23 GPa as a function of magnetic field. At 4.5 GPa, A(H) value is 2K] 5.45 GPa verysmall,andA(H)monotonicallydecreaseswithincreas- m/ 6 56..5033 GGPPaa ingfield. At5.0GPa, theA-coefficientbeginsto increasein Ω c 6.90 GPa zeroandlowfields,andA(H)issuddenlysuppressedbymag- µ 4 7.34 GPa neticfieldof∼1T.Ataround5.2-5.5GPa,theA-coefficient A [ isverylargeinzerofieldandremainslargeupto1-1.5T,then 2 rapidlydecreasesathighfields(1.5-2T).At6.0GPa,thede- creaseofA(H)occursathigherfieldnear3T.At6.9and7.3 GPa,thevalueofA-coefficientat0Tbecomesabouthalfof 0 theAvalueat5.5GPa,andaftershowingaslightmaximumat around2 T, itmonotonicallydecreaseswith increasingfield. m] 64 At6.9and7.3GPa,ρ0(H)increaseswithincreasingfield,and c showsasmoothmaximumataround3T. Ω 60 To search for the FM wing structure, we look at the mag- µ [0 56 netic field dependence of the resistivity [ρ(H)] under high ρ pressure. Figure 6 showsρ(H) under5.53GPa at 2.5, 1.75, 52 1, 0.75, and 0.1 K with A(H) and ρ0(H) obtainedfrom the temperaturedependenceof ρ(T) = ρ0 +AT2. ρ(H) curve 0 1 2 3 4 5 6 7 8 bendsataround2.5-3Tforeachtemperature. Wedefinethe µ H [T] 0 anomalyatHmatT →0fromA(H)andρ0(H)asindicated bythearrowsinFig. 6.Atthelow-fieldregionbelowHm,the FIG. 5: (Color online) Magnetic-field dependence of the A- A-coefficientis very large comparedto the high-fieldregion coefficient and the residual resistivity ρ0 of URhAl (sample #1), above Hm. On the other hand, the high-field region above obtainedfromtheexpression,ρ(T)=ρ0+AT2. Hm correspondsto the FM side, where the resistivity obeys 90 ρ(T)=ρ0+AT2withthesmallA-coefficient. Theanomalyinρ(H)curvessupportsthepresenceofFM 2.5 K 80 wing structure in URhAl. In Fig. 7(a), we plot the P-H 1.75 K m] phase diagram for Hm obtained from the magnetic field de- µΩ c 70 1 K pµe0nddHemnc/edsPof∼A3-c.5oe±ffi0c.1ienTt/GanPda.ρT0.henWweeobestatiimnattheethreelaTtiCoPn ρ [ 60 at PTCP ∼ 4.8-4.9GPa, when Hm → 0, using the value of 0.1 K µ0dHm/dP. In UCoAl, which has the same crystal struc- 50 0.75 K URhAl ture as URhAl, a clear 1st-order metamagnetic transition is 8 5.53 GPa 70 seenatHm duetotheFMwing. Accordingtohighpressure studies32, the metamagnetic transition field of UCoAl varies 2K] 6 65 asµ0dHm/dP ∼3.5T/GPa32,whichisverysimilartothatof µΩA [ cm/ 4 Aρ 60 [ cmρµΩ UinRThaAblle..WIIe. summarizethevaluesofPTCP andµ0dHm/dP 0 ] 2 55 TABLEII:ThevaluesofPTCP andtheslopeoftheFMwing, i.e. µ0dHm/dP forURhAlandUCoAl32. 0 50 0 1 2 3 4 5 6 7 8 PTCP[GPa] µ0dHm/dP [T/GPa] µ0H [T] URhAl 4.8-4.9 3.5±0.1 UCoAl −0.2 3.5 FIG. 6: (Color online)Magnetic field dependence of resistivity of URhAlforthesample#1,measuredat5.53GPa. Thedashedlines areguidestotheeyes. WhenwecrosstheFMwing,weexpectthe1st-orderPM- FM phase transition at Hm. At the 1st-order transition in UCoAl,theA-coefficientshowsastep-likebehaviorasafunc- tionofmagneticfield32. Ontheotherhand,thestep-likebe- magnetic order. In contrast, such an effectwould not be ex- haviorintheA-coefficientofURhAlnearHmisratherbroad. pected for a 1st-order phase transition. Nevertheless, if the ThismayindicatethatthetransitionatHmisweakly1st-order transitionnearthePcisonlyweakly1st-orderandthedropof in URhAl. However,the samplequalitycan be the originof theFMmomentattheFM-PMphasetransitionisverysmall, thebroadnessofthetransition. the critical behavior becomes similar to that of a QCP, and We shall compare A(H) for URhAl with that for UCoAl. 6 T Curie Temperature T 7 (a) C P ~ 4.8-4.9 GPa TCP URhAl URhAl 2nd Order PM Weakly 1st Order 6 a] TCP P QCEP G 5 P [ from ρ (H) 0 GPa 0 P FM (0 T) H from A(H) 4 QCEP Pc ~ 5.2 GPa µdH /dP ~ 3.5 T/GPa 0 m 3 0 1 2 3 4 5 6 7 FIG.8: (Coloronline)SchematicT-P-H phasediagramoftheFM µ H [T] wingsinURhAl[SeealsothetoppanelofFig.2andFig.7(a)]. 0 A [µΩ cm/K2] 2 4 6 8 at ∼ 5.0 GPa is about20 times larger than the A-coefficient above Hm (Fig. 5). In UCoAl, on the other hand, the A- coefficient in the PM state below Hm is about only 2 times 7 4 largerthantheA-coefficientaboveHm at0and0.54GPa32. The difference of the A-coefficient between URhAl and 6 6 5 3 1 2 UmCenotAs;lthmeaFyMbeorrdeelareteddmtoomtheanttoinfUthRehmAalgisne3titcimoersdelarregderm(o∼- Pa] 7 0.9 µB/U ) than the magnetic-field-inducedFM moment (∼ G 5 (b) 0.3 µB/U) in UCoAl. As shown theoretically by Yamada21, P [ URhAl thermallyfluctuatingmagneticmomentsenhancethescatter- ing of quasiparticles in the PM state, and may cause such a 4 largeA-coefficient. At present, theorderedmomentnearPc hasnotyetbeenstudiedforURhAl,sofurtherstudiesarenec- essarytoclarifythispoint. 3 The behavior of the A-coefficient changes in association 0 1 2 3 4 5 6 7 with the wing structure. To see the relationship between µ H [T] 0 the enhancementof A-coefficientand the FM wing, it is in- triguingto see the contourplotof A-coefficienton the P-H FIG.7: (Coloronline)(a)PlotoftheobservedanomaliesinA(H) phasediagram. Figure7(b)showsthecontourplotoftheA- andρ(H)ofURhAlontheP-H phasediagramforthesample#1. coefficientontheP-H phasediagram,obtainedfromρ(T)= Thedashedlineindicatestheresultoflinerfitting. (b)Contourplot ρ0+AT2. Thered-coloredregioninthisplotshowstheen- oftheA-coefficientofresistivityonURhAlontheP-H phasedia- hancement of the A-coefficient, whereas the purple-colored gram,obtainedfromtheexpressionρ(T)=ρ0+AT2forthesample region shows the small A-coefficient. The A-coefficient is #1. largest at around 5.2-5.5 GPa in zero field. With increasing pressure and magnetic field, the A-coefficientis suppressed. ThelargeenhancementofA-coefficientoccursoutsideofthe ForUCoAl,astep-likebehaviorinA(H)atHmisseenunder FMwing(redregion). lowpressureregionbelow0.54GPa.For0.54GPa,thediffer- InFig. 8,weplottheschematicT-P-H phasediagramof enceofpressurefromtheTCP(∼−0.2GPa)isestimatedto the FM wings in URhAl [See also the top panel of Fig. 2 beδP ≡P −PTCP ∼0.74GPa. SinceweestimatePTCP ∼ and Fig. 7(a)]. The theoretically suggested 1st-order wing 4.8GPa forURhAlin thepresentwork,thepressureof0.54 planes terminate at the QCEP at zero temperature in a finite GPa inUCoAlmaycorrespondto apressureof4.8+δP ∼ field. InUCoAlthe magnetic-fielddependenceofA(H) co- 5.54GPa in URhAl. At∼ 5.5GPa, we obtainHm ∼ 2.5 T efficient shows a sharp maximum at the PM-FM transition forURhAlfromFig. 7(a),whichisclosetothevalueofHm near the QCEP (P ∼ 1.5 GPa in H ∼7 T)32,38. Such a forUCoAlat0.54GPa. field enhancementin A(H) was not observed in the present Incontrast,theenhancementoftheA-coefficientinURhAl work, suggesting that the QCEP of URhAl may exist above is much larger than the value in UCoAl (see, Table I), sug- ∼7T.Alternatively,theinterplaybetweenspinfluctuationand gesting that the density of states (mass enhancement and/or Fermi-surface instability can lead to complex phenomenaas thechangeofFermisurface)neartheQPTismoredrasticin discussedlater. URhAlthanUCoAl. InURhAl,theA-coefficientbelowHm Asclosetothe criticalpressure,thetemperaturerangefor 7 at Pc or if there is a mark of a new pressure-induced phase 2.4 intermediatebetweentheFMandthePMphases. URhAl 0 T Recently it has been shown theoretically that anothernew 2 T 2.2 phase possiblystabilizes near the FM-PM QPT51–56; if there 7 T are quantum fluctuations in terms of fermionic particle-hole n 2.0 excitations on the Fermi surface, some deformations of the Fermi surface enhance the phase space available for the 1.8 quantum fluctuations, and such a Fermi-surface instability causesanothertypeoforderingtogainthefreeenergyofthe 1.6 system53–56. 2 3 4 5 6 7 8 9 Ithasbeenshownthattwocasesofneworderingarepos- P [GPa] sibleneartheFM-PMQPT:(i)spiralmagneticphase,and(ii) spin-nematic phase54. The energy scale of the spin-nematic FIG.9: (Coloronline)Pressuredependence oftheexponent(n) of phasetransitionisalmost10timessmallerthanthecaseofspi- resistivity[ρ(T)=ρ′0+A′Tn]forURhAl(sample#1)at0,2,and ralmagneticphase54,thereforeaspiralmagneticphasemight 7T.Thedashedlinesareguidestotheeyes. bemorelikelytooccur. Aspiralmagneticphaseemergesbe- lowtheTCPasan intermediatestatebetweentheuniformFM andthePMstates54,55.ThetransitionbetweentheuniformFM Fermi-liquidregime[ρ(T) = ρ0+AT2]isfoundtobevery andthe spiralmagneticstates occursas a Lifshitz transition, small(T∗ ∼ 0.4K),an alternativedescriptionis tofocuson whereas the transition between the spiral magnetic state and theNFLbehavior. Weanalyzedtheresistivitydatabytheex- the PM state is of 1st-order54. Interestingly, an anisotropic pression,ρ(T)=ρ′0+A′Tn.Here,themaximumtemperature dispersionforelectronbandchangesthenatureofthespiral- fortheNFLregimeρ(T) = ρ′0+A′Tn,i.e.,T∗∗ ∼ 2.2Kat to-PM phase transition, and the transition possibly becomes ∼ Pc. Figure 9 shows the pressuredependenceof the expo- 2nd-order54. nentofresistivity(n). AsseeninFig. 9,at0Ttheexponent Thepossiblepresenceoftheintermediatenewphasemight n is about2 below 4.8 GPa, whereasn(P) decreases with a explainwhywecannotseeaclear1st-ordertransitionbetween step-likevariationtoaminimumataround∼5.0-6.0GPa. At the FM and the PM states above Pc, differentfrom the case around ∼5.0-6.0GPa, the values of n are about 1.6-1.8. At of UCoAl. In order to explore such a new phase around the 2 T and 7 T, the step-like behavior and the minimum of the QPT,furtherexperimentalstudiesarerequired. Inparticular, exponentn(P) shift to higher pressure regions. At 7 T, the measurements of thermodynamic quantities and observation dipofn(P)ataround∼7.0GPabecomesshallowandbroad, of Fermi-surface change through Pc for URhAl, though ex- andthevalueofn(P)becomesslightlylargerthanat0Tand perimentallychallenging,woulddeepentheunderstandingthe 2T. Fermi-surfaceinstabilityandthenatureoftheFMQPT. The exponent n (Fig. 9) varies as a function of pressure InURhAl,nosuperconductivitywasobservedunderhigh- corresponding to the behavior of the A-coefficient (Fig. 4). pressureupto7.5GPa atlow temperaturedownto∼ 0.1K. Above Pc, the exponent n is nearly 1.6-1.7, which is close At presentwe cannotrule outthe possibilitythat the sample to the value (n = 5/3) suggested from the SCR theory for qualityaffectstheemergenceofsuperconductivityandthesu- three-dimensionalFMspinfluctuationnearaQCP.However, perconductingtransitiontemperatureistoolowtobedetected. thisNFL behaviorseemstoconflictwith thepresenceofthe However,evenifasuperconductivitydoesnotoccur,theFM FM 1st-order wing structure in URhAl. A weakly 1st-order systemwouldresolvetheinstabilityduetothequantumfluc- nature at the FM wing may explainthe NFL behaviorin the tuationatT →0bytheoccurrenceofanothernewphaseas- resistivity. sociated with the Fermi-surfaceinstability as mentionedjust Hereafter, we note that the critical behavior around Pc in above. URhAlisdifferentfromthetheoreticalsuggestionfora2nd- It is interesting to consider why the intermediate phase order FM QCP. It is suggested that the ratio of T∗ for the possibly appears in URhAl. One may consider that the Fermi-liquid regime to T∗∗ for the NFL regime is enhanced lack of local inversion center and/or the quasi-Kagome lat- as T∗∗/T∗ ∝ (P − Pc)−3/4 as approaching Pc for a 2nd- tice in ZrNiAl-type structure can induce the intermediate orderFMQCP10,41. ForURhAl,T∗∗doesnotchangeclearly, phase. However,theZrNiAl-typehexagonalsymmetrystruc- i.e., T∗∗ ∼ 2.1±0.2 K. Inaddition,T∗(P) is almostlinear ture (P¯62m: D3 ) does not lead to Dzyaloshinskii-Moriya 3h (Fig. 2). These experimentalresults forURhAl suggestthat interaction57, which could induce a helimagnetic order58. thespin-fluctuationeffectscannotbeexplainedsimplybythe Such an intermediate phase has not yet been observed in 2nd-orderFMQCPagain. UCoAl,whichhasthesameZrNiAl-typestructure,aroundthe InURhAl,theNFLproperties(seeFig,9)areobservedfar PM-FMphasetransitioninducedbyuniaxialstressalongthe above Pc, and the pressure domain of the enhancement of c-axis59–61. Therelationshipbetweenthecrystalstructureand the A-coefficient appears quite asymmetric around Pc. Fur- theoccurrenceoftheintermediatephaseremainsopenques- thermore the enhancement of the A-coefficient extends over tion.TheauthorsinRef.54suggestthattheintermediatephase a large P window (5.5-7 GPa). Then the key question is if maygenerallyoccurevenforasimplesphericalFermisurface the switch from the FM state to the PM state simply occurs due to the Fermi-surface instability accompanyingthe quan- 8 tum fluctuations (particle-hole excitations on the Fermi sur- andthemagnetic-fielddependencesoftheresistivity maybe face). As seen in Fig. 9, the NFL behaviorof the resistivity consistentwith the presenceof a FM wing structure with an isremarkableinURhAlfarabovePc. Suchstrongquantum- estimatedTCPat4.8-4.9GPa. Atleastwiththepresentqual- fluctuation effects near the FM-PM QPT may invoke the in- ityofthecrystalthe1st-orderphasetransitionappearsweak. termediatephaseinthismaterial. TheresistivityshowstheNFLbehaviorabove5.0GPaupto 7.5GPa. URhAlmaybeamaterialinwhichtheswitchfrom the FM state to the PM state occursthroughan intermediate IV. CONCLUSION phasearoundtheQPT. The quantum criticality of the three-dimensional-Ising- type itinerant FM compound URhAl was studied by low- ACKNOWLEDGMENT temperatureresistivity measurementsunderhighpressureup to7.5GPa.TheCurietemperatureissuppressedwithincreas- ing pressure, and suddenly disappears above 5.0 GPa. Our WewouldliketothankS.Kambe,G.Knebel,K.Ishida,Y. resistivity results suggest the FM critical pressure of ∼ 5.2 Tada, K. Hattori, S. Hoshino, and Y. Ikeda for valuable dis- GPa. Above5.2GPa,thegroundstateisnotFM,andtheA- cussions and helpful comments. This work was supported coefficientislargelyenhancedataround5.2-5.5GPainzero by ERC starting grant New Heavy Fermion, KAKENHI, and low-field region. The characteristics of the temperature REIMEI,ICC-IMR,andANRprojectPRINCESS. ∗ Electronicaddress:[email protected] 26 Y. Yamaji, T. Misawa, and M. Imada, J. Phys. Soc. Jpn. 76, 1 S.Doniach,andS.Engelsberg,Phys.Rev.Lett.17,750(1966). 063702(2007). 2 N.F.Berk,andJ.R.Schrieffer,Phys.Rev.Lett.17,433(1966). 27 M.Imada,T.Misawa, andY.Yamaji,J.Phys.: Condens.Matter 3 M.T.Ble´al-Monod,S-K.Ma,andD.R.Fredkin,Phys.Rev.Lett. 22,164206(2010). 20,929(1968). 28 S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. 4 T.Moriya,Phys.Rev.Lett.24,1433(1970). Haselwimmer,M.J.Steiner,E.Pugh,I.R.Walker,S.R.Julian, 5 T.Moriya,andA.Kawabata,J.Phys.Soc.Jpn.34,639(1973). P.Monthoux, G.G.Lonzarich,A.Huxley,I.Sheikin,D.Braith- 6 T.MoriyaandT.TakimotoJ.Phys.Soc.Jpn.64,960(1995). waite,andJ.Flouquet,Nature406,587(2000). 7 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, 29 D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, Springer-VerlagBerlinHeidelbergGmbH,(1985). J-P.Brison,E.Lhotel,andC.Paulsen,Nature413,613(2001). 8 T.Moriya,andK.Ueda,Rep.Prog.Phys.66,1299(2003). 30 N.T.Huy,A.Gasparini,D.E.DeNijs,Y.Huang,J.C.P.Klaasse, 9 J.A.Hertz,Phys.Rev.B14,1165(1976). T.Gortenmulder,A.DeVisser,A.Hamann,T.Go¨rlach,andH.v 10 A.J.Millis,Phys.Rev.B48,7183(1993). Lo¨hneysen,PRL99,067006(2007). 11 Anotheralternativeisthelocalcriticalitypicturewiththefluctua- 31 A.V.Andreev,R.Z.Levitin,Y.F.Popov,andR.Y.Yumaguzhin, tionsfortheFermisurface;see,Lo¨hneysen,A.Rosch,M.Vojta, Sov.Phys.SolidState,27,1145(1985). andP.Wolfle,Rev.Mod.Phys.79,1015(2007). 32 D.Aoki, T. Combier, V. Taufour, T.D. Matsuda, G.Knebel, H. 12 C.Pfleiderer,G.J.McMullan,S.R.Julian,andG.G.Lonzarich, Kotegawa,andJ.Flouquet,J.Phys.Soc.Jpn.80,094711(2011). Phys.Rev.B55,8330(1997). 33 T.D.Matsuda,Y.Aoki,H.Sugawara,H.Sato,A.V.Andreev,and 13 C.Pfleiderer,S.R.Julian,andG.G.Lonzarich,Nature414,427 V.Sechovsky,J.Phys.Soc.Jpn.68,3922(1999). (2001). 34 N.V.Mushnikov,T.Goto,K.Mamishima,H.Yamada,A.V.An- 14 C. Pfleiderer, and A. D. Huxley, Phys. Rev. Lett. 14, 147005 dreev,Y.Shiokawa,A.Iwao,andV.Sechovsky,Phys.Rev.B59, (2002). 6877(1999). 15 V.Taufour,D.Aoki,G.Knebel,andJ.Flouquet,Phys.Rev.Lett. 35 A.V.Andreev,I.K.Kozlovskaya, N.V.Mushnikov, T.Goto,V. 105,217201(2010). Sechovsky,Y.Homma,andY.Shiokawa,J.AlloysCompd.284, 16 H.Kotegawa,V.Taufour,D.Aoki,G.Knebel,andJ.Flouquet,J. 77(1999). Phys.Soc.Jpn.80,083703(2011). 36 P.A.Veenhuizen,F,R.deBoer,A.A.Menovsky,V.Sechovsky, 17 M.Uhlarz,C.Pfleiderer,andS.M.Hayden,Phys.Rev.Lett.93, andL.Havela,J.Phys(Paris)12,485(1988). 256404(2004). 37 P.Javorsky´,L.Havela,F.Wastin,P.Boulet,andJ.Rebizant,Phys. 18 N.Kabeya, H.Maekawa, K.Deguchi, N.Kimura, H.Aoki, and Rev.B69,054412(2004). N.K.Sato,J.Phys.Soc.Jpn.81,073706(2012). 38 T.Combier,DoctoralThesis,CEA-Grenoble(2014). 19 D. Belitz, T. R. Kirkpatrick, T. Vojta, Phys. Rev. Lett.82, 4707 39 B.Salce,J.Thomasson, A.Demuer, J.J.Blanchard, J.M.Mar- (1999). tinod,L.Devoille,andA.Guillaume,Rev.Sci.Instrum.71,2461 20 D.Belitz,T.R.Kirkpatrick,andJ.Rollbu¨hler,Phys.Rev.Lett.94, (2000). 247205(2005). 40 A.Demuer,C.Marcenat,J.Thomasson,R.Calemczuk,B.Salce, 21 H.Yamada,Phys.Rev.B47,11211(1993). P. Lejay, D. Braithwaite, and J. Flouquet, J. Low. Temp. Phys. 22 H.Yamada,PhysicaB391,42(2007). 120,245(2000). 23 V.P.Mineev,J.Phys.Conf.Ser.400,032053(2012). 41 J.Flouquet,arXiv:cond-mat/0501602(2005). 24 G.A.Gehring,Europhys.Lett.82,60004(2008). 42 G. Remenyi, D. Jaccard, J. Flouquet, A. Briggs, Z. Fisk, J. L. 25 A.J.Millis,A.J.Schofield,G.G.Lonzarich,andS.A.Grigera, Smith,andH.R.Ott,J.Phys.(Paris)47,367(1986). Phys.Rev.Lett.88,217204(2002). 43 K.Kadowaki, andS.B.Woods, Solid.State.Commun. 58, 507 9 (1986). 49 A.P.Morales,DoctoralThesis,CEA-Grenoble(2014). 44 N.Tateiwa,T.C.Kobayashi, K.Hanazono,K.Amaya,Y.Haga, 50 K.Ueda,andT.Moriya,J.Phys.Soc.Jpn.39,605(1975). R.Settai,andY.Onuki,J.Phys.:Condens.Matter13,L17(2001). 51 D. L. Maslov, and A. V. Chubukov, Phys. Rev. B 79, 075112 45 H. Hidaka, S. Takahashi, Y. Shimizu, T. Yanagisawa, and H. (2009). Amitsuka,J.Phys.Soc.Jpn.Suppl.80,SA102(2011). 52 A.V.Chubukov,andD.L.Maslov,Phys.Rev.Lett.103,216401 46 A.Holmes,D.Jaccard,andK.Miyake,Phys.Rev.B69,024508 (2009). (2004). 53 G.J. Conduit, A.G.Green, and B.D.Simons, Phys.Rev. Lett. 47 ThelinkbetweentheenhancementofAandγ wouldnotbeob- 103,207201(2009). vious if the system changes from a weakly correlated coupling 54 U.Karahasanovic,F.Kru¨ger,andA.G.Green,Phys.Rev.B85, (γcor ∼γband)toastronglycorrelatecoupling(γcor ≫γband)48, 165111(2012). whereγbandandγcoraretheelectronicspecific-heatcoefficientof 55 S. J. Thomson, F. Kru¨ger, and A. G. Green, Phys. Rev. B 87, theelectronicbandandthecontributionfromthemassenhance- 224203(2013). ment due to the strong correlation, respectively. Here, the total 56 C.J.Pedder,F.Kru¨ger,andA.G.Green,Phys.Rev.B88,165109 electronic specific-heat coefficient is γ ≡ γcor +γband48. For (2013). γcor ≫ γband, A/γ2 ∼ A/γc2or, whereas for γcor ∼ γband, 57 M.Kataoka,andO.Nakanishi,J.Phys.Soc.Jpn.50,3888(1981). A/γ2 ∼ A/(γcor +γband)2 < A/γc2or. Therefore, the value 58 I.E.Dzyaloshinskii,Sov.Phys.JETP19,960(1964). of A/γ2 is not universal depending on the strength of correla- 59 Y. Ishii, M. Kosaka, Y. Uwatoko, A. V. Andreev, and V. Se- tion in the system. Recently, it was revealed for the AF heavy- chovsky,PhysicaB334,160(2003). electroncompound CeRh2Si2 thattheratioA/γ2 goesfromthe 60 K.Karube,S.Kitagawa,T.Hattori,K.Ishida,N.Kimura,andT. weak coupling regime to the strong coupling regime around Pc Komatsubara,J.Phys.Soc.Jpn.83,084706(2014). withincreasingpressure49. 61 Y. Shimizu, B. Salce, T. Combier, D. Aoki, and J. Flouquet, J. 48 K.Miyake,T.Matsuura,andC.M.Varma,Solid.State.Commun. Phys.Soc.Jpn.84,023704(2015). 71,1149(1989).