ebook img

Uncertainty Quantification and Stochastic Modelling with EXCEL PDF

536 Pages·2022·34.777 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Uncertainty Quantification and Stochastic Modelling with EXCEL

Springer Texts in Business and Economics Eduardo Souza de Cursi Uncertainty Quantifi cation and Stochastic Modelling with EXCEL Springer Texts in Business and Economics Springer Texts in Business and Economics (STBE) delivers high-quality instructional content for undergraduates and graduates in all areas of Busi- ness/Management Science and Economics. The series is comprised of self- containedbookswithabroadandcomprehensivecoveragethataresuitable for class as well as for individual self-study. All texts are authored by established experts in their fields and offer a solid methodological back- ground,oftenaccompaniedbyproblemsandexercises. Moreinformationaboutthisseriesathttp://www.springer.com/series/10099 Eduardo Souza de Cursi Uncertainty Quantification and Stochastic Modelling with EXCEL Editors EduardoSouzadeCursi DepartmentMechanics/CivilEngineering INSARouenNormandie Saint-EtienneduRouvray,France ISSN2192-4333 ISSN2192-4341 (electronic) SpringerTextsinBusinessandEconomics ISBN978-3-030-77756-2 ISBN978-3-030-77757-9 (eBook) https://doi.org/10.1007/978-3-030-77757-9 #TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,even in the absence ofa specific statement,that such names are exemptfrom the relevant protective lawsand regulationsand thereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrue andaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressedorimplied, withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremains neutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Introduction This book presents a collection of methods of Uncertainty Quantification (UQ), that is, a collection of methods for the analysis of numerical data, namelywhenuncertaintyorvariabilityisinvolved. The general aim of UQ is to characterize the observed variability in a quantityXbyusingarandomvariableU. Intheidealsituation,theconnec- tion between X and U is perfectly known and the random variable U has a known distribution. Unfortunately, such a situation may be unrealistic in practice and we must also consider situations where this knowledge is imperfect or even non-existent, for example, situations where U is simply unknown:variabilityisobservedwithoutpreciseknowledgeofthecause. UQtriestousealltheavailableinformationabout(X, U)toconstructan explanationofXbyUintoaformwhichwillbeusefulforuseinnumerical calculationsinvolvingX.Theinformationmaybe,forinstance,anequation, anumericalprobleminvolvingboththevariables,orsamples. The methods of UQ are general and may be applied to a wide range of situations. They generally belong to the large and well-supplied family of methods based on functional representations, that is, on expansions of the unknowns in series of functions – we find these approaches particularly in Fourier analysis, spectral methods, finite elements, Bayesian optimization, and quantum algorithms. It is a large family with numerous and very diversifiedapplications. Our objective is to present the practical use of UQ techniques under ® EXCEL . We assume that you are a mean user of this software, that is to sayyouareabletoperformstandardtaskswithoutdifficulties,butwedonot ® assumethatyouhaveanexpertknowledgeofEXCEL andVBA.Someof the worksheets proposed by this book contain VBA code, but we do not assumethatyouareaVBAprogrammer.Obviously,ifyouareanexpertin ® EXCEL and VBA, you will find a large amount of improvements in our codes and worksheets: do not hesitate in making your own enhancements and,eventually,insharingthem. ® ® EXCEL is a part of Microsoft Office . It is an application that works withspreadsheets–whichareakindoftableshavingalargenumberoflines ® andcolumnsonwhichwemayperformmathematicaloperations.EXCEL offers also the possibility of object programming using Visual Basic for v vi Introduction ® Applications(VBA).EXCEL offerswidepossibilitiesfordataanalysisand ® scientificcalculations.TherearemanybooksdevotedtotheuseofEXCEL , goingfromthebasicusetotheadvancedprogramming.Youmayalsofinda ® lot of books concerning specific applications of EXCEL , namely in Finance, Management, Operations Research. If you are familiar with EXCEL, you probably know the extent of the possibilities offered by this software.If,inaddition,youarefamiliarwithVisualBasicforApplications ® (VBA), then you can appreciate the full range of possibilities of EXCEL . ® The community of the users of EXCEL and some commercial software provide you with many useful add-ins, such as linear algebra, numerical calculus,probability,statistics,andsimulation. Forinstance,youmayusethefreeadd-inMATRIX,whichprovidessome usefulmacrosforlinearalgebraandworkswithrecentversionsofversionof ® EXCEL . There is a free powerful extension of MATRIX, known as XNUMBERS, which includes many numerical methods – XNUMBERS ® works with recent versions of EXCEL , but you need to use VBA to ® effectively use it. Another free add-in is MATHLAYER , which is a ® ® MATLAB /OCTAVE-like extension of EXCEL , offering the possibility ® of programming analogously to MATLAB /OCTAVE: programs may be ® written in separate files or directly in EXCEL worksheets – in addition, ® ® ® MATHLAYER allowstheuseofMATLAB /OctaveprogramsinEXCEL Workbooks. A simple-to-use add-in is SDAT, designed for chemistry, but performinggeneraltaskssuchasregression,differentiation,andstatistics.If you are mainly interested in operations research, you may use the Jensen Library,anoldsolverproposingmanyclassicalmethodsforthisfield.These are a few examples among a lot of resources available for the users of ® EXCEL –wecannotcitealltheexistingadd-insandweapologizeforthe non-citedexistingcontributions. ® Inthisbook,weusetheadd-insproposedbyEXCEL :theSOLVER,the ANALYSIS TOOLPACK, and VBA, which are standard complements of ® EXCEL .Thischoiceismadebyreasonsofconcentrationonthepurposeof thisbook:wedon’twanttolosethereaderintheforestofadd-ins,but–on thecontrary–wewanttokeepthereaderonthecentraltopicallthetime.Of ® course,youmayuseyourpreferredadd-ininsteadofthestandardEXCEL tools. Inthenextchapter,wedescribesomebasicoperationsthatarenecessary ® touseallthepowerofEXCEL . Contents ® 1 SomeTipstoUseEXCEL . . . . . . . . . . . . . . . . . . . . . . 1 1.1 HowtoActivatetheSOLVERandtheANALYSIS TOOLPACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 HowtoIncludeaThird-PartAdd-In. . . . . . . . . . . . . . . . 2 1.3 DisablingWarningsontheAdd-Ins. . . . . . . . . . . . . . . . 3 1.4 HowtoActivatetheVBATools. . . . . . . . . . . . . . . . . . . 6 1.5 HowtoInsertaVBAModule. . . . . . . . . . . . . . .. . . . . . 7 1.6 HowtoImportaVBAModule. . . . . . . . . . . . . . . . . . . . 10 1.7 MatrixFormulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 FixingVolatileFormulas. . . . . . . . . . . . . . . . . . . . . . . . 11 1.9 UsingAddressesofCells. . . . . . . . . . . . . . . . . . . . . . . . 12 ® 1.10 UsingNamesinEXCEL . . . . . . . . . . . . . . . . . . . . . . . 14 1.11 HowtoRuntheSOLVER. . . . . . . . . . . . . . . . . . . . . . . 16 1.12 HowtoIncludeIterativeCalculationsinYour Workbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.13 HowtoIncludeaControlinYourWorkbook. . . . . . . . . 25 1.14 HowtoIncludeaChartinYourWorkbook. . . . . . . . . . . 27 1.15 HowtoUseaVarianttoStoreAnythinginaVariable. . . 30 1.16 HowtoUseaCollectiontoStoreAnything inaVariable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.17 HowtoIncludeaClassinYourWorkbook. . . . . . . . . . . 33 2 SomeUsefulNumericalMethods. . . . . . . . . . . . . . . . . 43 2.1 LinearSystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.1 UsingtheInverseMatrix. . . . . . . . . . . . . . . . . . 43 2.1.2 UsingtheSOLVER. . . . . . . . . . . . . . . . . . . . . 45 2.1.3 UsingGauss-JordanPivoting. . . . . . . . . . . . . . . 47 2.1.4 UsingLUDecomposition. . . . . . . . . . . . . . . . . 49 2.1.5 UsingQRDecomposition. . . . . . . . . . . . . . . . . 49 2.1.6 UsingRelaxationIterations. . . . . . . . . . . . . . . . 50 2.2 Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.1 UnconstrainedOptimizationUsingthe SOLVERinaWorksheet. . . . . . . . . . . . . . . . . 51 2.2.2 UnconstrainedOptimizationUsingthe SOLVERinVBA. . . . . . . . . . . . . . . . . . . . . . . 53 vii viii Contents 2.2.3 ConstrainedOptimizationUsingthe SOLVERinaWorksheet. . . . . . . . . . . . . . . . . 54 2.2.4 ConstrainedOptimizationUsingtheSOLVER inVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.5 LinearProgrammingUsingtheSOLVER inaWorksheet. . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.6 LinearProgrammingUsingtheSOLVER inVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3 NonlinearEquations. . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.1 NonlinearEquationsUsingtheSOLVER inaWorksheet. . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.2 NonlinearEquationsUsingtheSOLVER inVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.3 NonlinearEquationsUsingNewton-Raphson. . . 65 2.3.4 OverdeterminedLinearSystems. . . . . . . . . . . . 68 2.4 OrdinaryDifferentialEquations. . . . . . . . . . . . . . . . . . . 70 2.4.1 Runge-Kutta’sMethods. . .. . . . . . .. . . . . . .. . 71 2.5 NumericalIntegration. . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.6 MultiobjectiveOptimization. . . . . . . . . . . . . . . . . . . . . . 77 2.7 InterpolationofDiscreteNumericalData. . . . . . . . . . . . 80 2.8 NumericalDerivatives. . . . . . . . . . . . . . . . . . . . . . . . . . 84 ® 3 ProbabilitieswithEXCEL . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1 Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.1 MassFunctionsandMassDensities. . . . . . . . . . 90 3.1.2 TheCaseofFinitePopulations. . . . . . . . . . . . . 91 ® 3.2 CombinatorialProbabilitieswithEXCEL . . . . . . . . . . . 93 3.3 ConditionalProbability,Bayes’Formula,and Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4 RandomVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4.1 StatisticsofaRandomVariable. . . . . . . . . . . . . 98 3.4.2 NumericalEvaluationofStatistics. . . . . . . . . . . 102 3.4.3 ClassicalInequalities. . . . . . . . . . . . . . . . . . . . 104 3.4.4 CharacteristicFunctionandMoments. . . . . . . . 105 3.5 RandomVectorsandPairsofRandomVariables. . . . . . . 106 3.6 DiscreteandContinuousRandomVariables. . . . . . . . . . 112 3.6.1 DiscreteVariables. . . . . . . .. . . . . . . . . . .. . . . 112 3.6.2 ContinuousVariablesHavingaPDF. . . . . . . . . 114 3.7 SequencesofRandomVariables. . . . . . . . . . . . . . . . . . . 119 3.8 Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.8.1 MaximumLikelihoodEstimators. . . . . . . . . . . . 130 3.8.2 SamplesfromRandomVectors. . . . . . . . . . . . . 132 3.8.3 EmpiricalCDFandEmpiricalPDF. . . . . . . . . . 136 ® 3.9 FrequentistProbabilitieswithEXCEL . . . . . . . . . . . . . 140 3.9.1 TestingAdequacytoaDistribution. . . . . . . . . . 141 3.9.2 TestingIndependence. . . . . . . . . . . . . . . . . . . . 144 3.10 GeneratingUniformRandomnumbers. . . . . . . . . . . . . . 147 3.10.1 UsingBuilt-InFunctions. . . . . . . . . . . . . . . . . . 147 Contents ix 3.10.2 UsingtheDataAnalysisTool. . . . . . . . . . . . . . 148 3.10.3 UsingVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . 149 3.11 GeneratingNormalRandomNumbers. . . . . . . . . . . . . . 151 3.11.1 UsingBuilt-InFunctions. . . . . . . . . . . . . . . . . . 151 3.11.2 UsingtheAnalysisToolPack. . . . . . . . . . . . . . . 152 3.11.3 UsingVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.12 GeneratingTriangularRandomNumbers. . . . . . . . . . . . 155 3.13 GeneratingRandomNumbersbyInversion. . . . . . . . . . . 157 3.14 GeneratingDiscreteRandomNumbers. . . . . . . . . . . . . . 158 3.14.1 UsingBuilt-InFunctions. . . . . . . . . . . . . . . . . . 158 3.14.2 UsingtheAnalysisToolpack. . . . . . . . . . . . . . . 158 3.14.3 UsingVBA. . . . . . . . . . . . . . . . . . . . . . . . . . . 160 3.15 GeneratingRegularRandomFunctions. . . . . . . . . . . . . . 161 3.16 GeneratingRegularRandomCurves. . . . . . . . . . . . . . . . 165 4 StochasticProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.1 StationarityandErgodicity. . . . . . . . . . . . . . . . . . . . . . . 172 4.2 DeterminationoftheDistributionofaStationary Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.3 WhiteNoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 4.4 MovingAverageProcesses. . . . . . . . . . . . . . . . . . . . . . 181 4.5 AutoregressiveProcesses. . . . . . . . . . . . . . . . . . . . . . . . 188 4.6 ARMAProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 4.7 MarkovProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 4.8 DiffusionProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 4.8.1 TimeIntegralandDerivativeofaProcess. . . . . 215 4.8.2 SimulationoftheTimeIntegralofaWhite Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 4.8.3 BrownianMotion. . . . . . . . . . . . . . . . . . . . . . . 223 4.8.4 RandomWalks. . . . . . . . . . . . . . . . . . . . . . . . . 226 4.8.5 Itoˆ’sIntegrals. . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.8.6 Itoˆ’sCalculus. . . . . . . . . . . . . . . . . . . . . . . . . . 230 4.8.7 NumericalSimulationofStochastic DifferentialEquations. . . . . . . . . . . . . . . . . . . . 236 5 RepresentationofRandomVariables. . . . . . . . . . . . . . 243 5.1 TheUQApproachfortheRepresentationofRandom Variables. . .. . . .. . . .. . . .. . .. . . .. . . .. . . .. . . .. . 243 5.2 Collocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 5.2.1 FindingtheCoefficientsoftheExpansion inaWorksheet. . . . . . . . . . . . . . . . . . . . . . . . . 254 5.2.2 SolutionUsingVBA. . . . . . . . . . . . . . . . . . . . . 256 5.2.3 SolutionUsinganAdaptedWorkbook. . . . . . . . 259 5.3 VariationalApproximation. . . . . . . . . . . . . . . . . . . . . . . 265 5.3.1 FindingtheCoefficientsoftheExpansion inaWorksheet. . . . . . . . . . . . . . . . . . . . . . . . . 266 5.3.2 SolutionUsingVBA. . . . . . . . . . . . . . . . . . . . . 268 5.3.3 SolutionUsinganAdaptedWorkbook. . . . . . . . 270

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.