Uncertainty and Operations Research Meilin Wen Uncertain Data Envelopment Analysis Uncertainty and Operations Research Forfurthervolumes: http://www.springer.com/series/11709 Meilin Wen Uncertain Data Envelopment Analysis 123 MeilinWen ScienceandTechnologyonReliability andEnvironmentalEngineeringLaboratory SchoolofReliabilityandSystemsEngineering BeihangUniversity Beijing,Beijing,China ISSN2195-996X ISSN2195-9978(electronic) ISBN978-3-662-43801-5 ISBN978-3-662-43802-2(eBook) DOI10.1007/978-3-662-43802-2 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014944128 ©Springer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In the past 30 years, data envelopment analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating relative efficiency of decision-making units (DMUs). DEA has been successfully applied to many different types of entities engaged in a wide variety of activities in many contexts worldwide. Although DEA offers more advantages than many other statistical approaches, some limitations have to be considered. One important problem is its sensitivity to data. Therefore, a key to the success of the DEA approach is the accurate measure of all factors, including that of inputs and outputs. However, in manysituations,suchasinamanufacturingsystem,inaproductionprocess,orina servicesystem,inputsandoutputsaresovolatileandcomplexthattheyaredifficult to measure in an accurate way. Thus, various uncertain DEA methods have been proposedtohandlethedatavariationinDEA.Thisbookisintendedtopresentthe milestonesintheprogressionofuncertainDEA. UncertainTheories Based on different uncertain theories, uncertain DEA methods deal with the problems involving uncertain inputs and uncertain outputs. Chapter 1 will present the basic introduction to uncertain theories which are crucial for the following chapters, including probability theory, credibility theory, uncertainty theory, and chancetheory. Introduction toDEA Chapter2isintendedtorepresentamilestoneintheprogressionofDEA,including acomprehensivereviewanddiscussionofbasicDEAmodelsandextensionstothe basicDEAmethods. v vi Preface StochasticDEA Incorporation of random variations into DEA analysis has received considerable attention in recent years. Chapter 3 will present some stochastic DEA model extensionsoftheusualdeterministicDEAformulations.Thiskindofmodelsmakes itpossibletoreplace“efficient”and“notefficient”with“probabilityefficient”and “probabilitynotefficient,”respectively. FuzzyDEA Fuzzinessisabasictypeofsubjectiveuncertainty,whichhasbeenappliedinDEA recently. Chapter 4 will provide some fuzzy DEA methods based on credibility measure, including fuzzy DEA models, fuzzy sensitivity analysis, fuzzy fully rankingmethods,andfuzzycongestion. UncertainDEA Uncertainty theory is a branch of axiomatic mathematics for modeling human uncertainty. Chapter 5 will apply uncertainty theory to DEA so as to produce a new method of dealing with the empirical data. Besides uncertain DEA models, uncertain sensitivity analysis, uncertain fully ranking methods, and uncertain congestionwillalsobetakenintoaccount. Hybrid DEA In order to evaluate the DMUs in which uncertainty and randomness appear simultaneously, Chap.6 will introduce a hybrid DEA method based on chance measure.HybridDEAmodels,hybridfullyrankingmethods,andhybridcongestion willbeincludedinChap.6. Purpose Thepurposeofthisbookistoprovidesomemethodsindealingwithuncertaintyin DEA.ThebookpresentsfouruncertainDEAmethodsbasedondifferentmeasures includingprobabilitymeasure,credibilitymeasure,uncertaintymeasure,andchance measure.Thebookissuitableforresearchers,engineers,andstudentsinthefields of management science, economics, operations research, industrial engineering, informationscience,andsoon. Preface vii Acknowledgment This work was supported by the National Natural Science Foundation of China (No.71201005). Beijing,China MeilinWen October1,2013 Contents 1 UncertainTheories........................................................... 1 1.1 ProbabilityTheory...................................................... 1 1.1.1 ProbabilityMeasure ............................................ 1 1.1.2 RandomVariable................................................ 2 1.1.3 OperationalLaw................................................ 4 1.1.4 ExpectedValue.................................................. 6 1.2 CredibilityTheory ...................................................... 11 1.2.1 CredibilityMeasure............................................. 11 1.2.2 FuzzyVariable.................................................. 17 1.2.3 ExpectedValue.................................................. 22 1.3 UncertaintyTheory ..................................................... 23 1.3.1 UncertainMeasure.............................................. 24 1.3.2 UncertainVariable.............................................. 24 1.3.3 OperationalLaw................................................ 27 1.3.4 ExpectedValue.................................................. 31 1.4 ChanceTheory.......................................................... 35 1.4.1 UncertainRandomVariable.................................... 35 1.4.2 UncertainRandomMeasure.................................... 36 1.4.3 OperationalLaw................................................ 38 1.4.4 ExpectedValue.................................................. 40 References..................................................................... 44 2 IntroductiontoDEA......................................................... 45 2.1 SymbolsandNotations ................................................. 46 2.2 CCRModel.............................................................. 46 2.3 BCCModel.............................................................. 50 2.4 AdditiveModel.......................................................... 53 2.5 SBMModel ............................................................. 56 2.6 RussellMeasureModel................................................. 57 References..................................................................... 58 ix