ebook img

Ultrawideband Antennas - Design and Applications PDF

202 Pages·2011·5.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrawideband Antennas - Design and Applications

ULTRAWIDEBAND ANTENNAS Design and Applications Daniel Valderas CEIT and Tecnun, University of Navarra, Spain Juan Ignacio Sancho Tecnun and CEIT, University of Navarra, Spain David Puente Universidad Politécnica de Madrid, Spain Cong Ling Imperial College London, UK Xiaodong Chen Queen Mary, University of London, UK Imperial College Press ICP P684tp.indd 2 9/1/10 11:10 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ULTRAWIDEBANDANTENNAS Design and Applications Copyright © 2011 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13978-1-84816-491-8 ISBN-101-84816-491-2 Typeset by Stallion Press Email: [email protected] Printed in Singapore. Contents Foreword v Acknowledgements vii Authors ix 1. IntroductiontoUltrawidebandSystems 1 CongLing 1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 UWBSchemes . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Impulseradio/timehopping . . . . . . . . . . . . . . . 3 1.2.2 Directsequence . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Frequencyhopping . . . . . . . . . . . . . . . . . . . 6 1.2.4 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 IndustryStandards . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Singlebandversusmultiband . . . . . . . . . . . . . . 11 1.3.2 Standards. . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. FiguresofMeritforUWBAntennas 15 DavidPuenteandDanielValderas 2.1 RequirementsforaUWBAntenna . . . . . . . . . . . . . . . 16 2.1.1 Efficiencyandmatching . . . . . . . . . . . . . . . . . 16 2.1.2 Signaldistortionanddispersion(ringing) . . . . . . . . 17 2.1.3 Stabilityoverfrequencyofthetransmission-reception transferfunction . . . . . . . . . . . . . . . . . . . . . 17 2.2 UWBAntennaParameters . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Variabilityinthefrequencydomain . . . . . . . . . . . 19 2.2.2 Variabilityinthetimedomain:Pulsedistortionparameters 23 2.2.3 Variabilityinthespacedomain . . . . . . . . . . . . . 24 2.3 SimulationintheTimeDomain . . . . . . . . . . . . . . . . . 27 xi xii UltrawidebandAntennas:DesignandApplications 3. ClassificationofUWBAntennas 29 DavidPuenteandDanielValderas 3.1 HelicalAntennas . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Frequency-independentAntennas . . . . . . . . . . . . . . . . 31 3.2.1 Spiralantennas . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Biconicalantennas . . . . . . . . . . . . . . . . . . . . 32 3.3 Log-periodicAntennas. . . . . . . . . . . . . . . . . . . . . . 34 3.4 HornAntennas . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 3Dhornantennas . . . . . . . . . . . . . . . . . . . . 36 3.4.2 2Dhornantennas . . . . . . . . . . . . . . . . . . . . 38 3.5 UWBAntennasDerivedfromResonantAntennas . . . . . . . 39 3.5.1 3Dmonopoles . . . . . . . . . . . . . . . . . . . . . . 39 3.5.2 2Dresonantantennas . . . . . . . . . . . . . . . . . . 46 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4. UWBMonopoleAntennaAnalysis 51 DanielValderasandJuanI.Sancho 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Current-conductivePartsonPlanarMonopoleAntennas . . . . 51 4.2.1 Currentsparallelandperpendiculartothegroundplane: Aworkinghypothesis . . . . . . . . . . . . . . . . . . 51 4.2.2 Non-radiatingcurrentsinaPMA . . . . . . . . . . . . 54 4.3 TransmissionLineModelforUWBMonopoleAntennas . . . . 56 4.3.1 Generaldescription . . . . . . . . . . . . . . . . . . . 56 4.3.2 Descriptionofthemodel . . . . . . . . . . . . . . . . 58 4.3.3 Purposeoftheanalogy. . . . . . . . . . . . . . . . . . 58 4.3.4 Graphicalapproach:TheSmithChart . . . . . . . . . . 59 4.4 DesignBasedonTLM . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 DesignofanUWB-PMAantennawithagivenbandwidth 61 4.4.2 DesignofanUWB-PMAantennahavingamaximised bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.3 DesignofomnidirectionalUWBantennas . . . . . . . 62 4.4.4 DesignofdirectionalUWBantennas . . . . . . . . . . 62 4.4.5 Designof2DPCBantennasforUWB . . . . . . . . . 62 4.4.6 Casestudy1:Semi-rectangularplanarmonopolecase . 62 4.4.7 Casestudy2:Broadbandmatchingofafull-rectangular planarmonopolecase . . . . . . . . . . . . . . . . . . 65 Contents xiii 5. UWBMonopoleAntennaBandwidthSynthesis 69 DanielValderasandJuanI.Sancho 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 DefiningtheLowerLimitoftheFrequencyBand. . . . . . . . 70 5.3 ObtainingtheUpperFrequencywithStaircase ProfileinTLM . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.1 OnestepinaPMA’sprofileaccordingtoTLM . . . . . 71 5.3.2 TwostepsinaPMA’sprofileaccordingtoTLM . . . . 74 5.3.3 Analyticalestimateoftheupperlimitofthebandfora rectangularstaircasemonopole . . . . . . . . . . . . . 75 5.4 ObtainingtheUpperFrequencythroughSlotEtching . . . . . 78 5.5 CaseStudy1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.5.2 Simulationandmeasurements . . . . . . . . . . . . . . 83 5.6 CaseStudy2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.6.2 Simulationandmeasurements . . . . . . . . . . . . . . 87 5.7 CaseStudy3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.7.2 Simulationandmeasurements . . . . . . . . . . . . . . 90 5.7.3 Discussion:Impedancematchingandtransferfunction . 92 6. UWBMonopoleAntennaBandwidthMaximisation 95 DanielValderasandJuanI.Sancho 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.1 ModifyingtheprofileoftheedgeofthePMAclosestto thegroundplane . . . . . . . . . . . . . . . . . . . . 97 6.1.2 ApplyingTLM:Changingthecharacteristicimpedance 97 6.2 CaseStudy:MaximisingAMPImpedanceBandwidth . . . . . 101 6.2.1 Lowerfrequencylimitoftheband:InitialL,W andp parameters . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.2 Adjustingthewidth . . . . . . . . . . . . . . . . . . . 102 6.2.3 Changingtheheightpoverthegroundplane . . . . . . 102 6.2.4 Implementingabevelledcut . . . . . . . . . . . . . . . 102 6.2.5 Changingtheprofileclosetothefeed . . . . . . . . . . 105 6.2.6 Simulationandmeasurements . . . . . . . . . . . . . . 106 6.3 DiscussionofSpectralEfficiencyinBroadbandAntennas . . . 108 xiv UltrawidebandAntennas:DesignandApplications 7. UWBFoldedMonopoleAntennas 115 DanielValderasandJuanI.Sancho 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 CurrentDistributioninanAntennaFolded alongVerticalAxes . . . . . . . . . . . . . . . . . . . . . . . 117 7.3 TLMAppliedtoanFMA . . . . . . . . . . . . . . . . . . . . 117 7.4 CaseStudy:MaximisingFMAImpedanceBandwidth . . . . . 120 7.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4.2 Simulationandmeasurements . . . . . . . . . . . . . . 123 7.4.3 Designoptions . . . . . . . . . . . . . . . . . . . . . . 133 8. RevolutionMonopoleAntennas 139 DanielValderasandJuanI.Sancho 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.1.1 CurrentdistributioninanRMA . . . . . . . . . . . . . 140 8.1.2 TLMappliedtoanRMA . . . . . . . . . . . . . . . . 143 8.1.3 Casestudy:MaximisingRMAimpedancebandwidth . 143 9. PrintedCircuitMonopoles 157 DanielValderasandJuanI.Sancho 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.2 CurrentDistributioninaPCM . . . . . . . . . . . . . . . . . 158 9.3 TLMAppliedtoaPCM . . . . . . . . . . . . . . . . . . . . . 158 9.4 CaseStudy:TailoredBandwidthforUWBPCM . . . . . . . . 160 9.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 160 9.4.2 Simulationsandmeasurements . . . . . . . . . . . . . 161 10. ApplicationsofUWBAntennas 167 XiaodongChen 10.1 UWBCommunications . . . . . . . . . . . . . . . . . . . . . 167 10.1.1 Antennasrequiredinimpulseradiosystem . . . . . . . 168 10.1.2 AntennasrequiredinMB-OFDMsystem . . . . . . . . 171 10.2 EMMeasurement . . . . . . . . . . . . . . . . . . . . . . . . 173 10.2.1 EMspectrummonitoring . . . . . . . . . . . . . . . . 173 10.2.2 EMCtesting . . . . . . . . . . . . . . . . . . . . . . . 173 10.3 MedicalImaging—BreastCancerDetection . . . . . . . . . . 174 Contents xv 10.3.1 Hornandtaperedslotantennas . . . . . . . . . . . . . 175 10.3.2 Stackedpatchantennas . . . . . . . . . . . . . . . . . 176 10.4 Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.4.1 Antennaarrayinimpulseradars . . . . . . . . . . . . . 178 10.4.2 Broadbandphasearray . . . . . . . . . . . . . . . . . 180 Bibliography 183 Index 191 Chapter 1 Introduction to Ultrawideband Systems Cong Ling ImperialCollegeLondon In this chapter, we introduce the basics of ultrawideband (UWB) systems, the spectrum and regulations, and the advantages of UWB over conventional narrowband systems. We outline different schemes to realise UWB: impulse radio/timehopping,directsequence,frequencyhoppingandorthogonalfrequency division multiplexing (OFDM). Then we show the industrial standards and applicationsofUWB. 1.1. Overview UWBreferstosystemswithverylargebandwidth(Ghavamietal.,2008;Aiello and Batra, 2006; Arslan et al., 2006). This very large bandwidth offers several advantagesincludinglowpowerconsumption,highdaterate,hightimeresolution, low-cost implementation, obstacle penetration, resistance to interference, covert transmission,co-existencewithnarrowbandsystemsandsoon.Suchadvantages enableawiderangeofapplicationsofUWBtocommunications,radar,imaging andpositioning. Arguably, the first experiment on UWB was conducted by Hertz in 1893 (Ghavami et al., 2008). In other words, the first wireless communication system was based on UWB. Hertz used spark gaps and arc discharges between carbon electrodes to generate electromagnetic waves. The usage of such wideband pulse waveforms was the dominant technique for many years after Hertz’s first electromagneticexperiment.However,astechnologyprogressed,theemphasisof communicationsshiftedtonarrowbandsinusoidalwaveforms.Itwasnotuntilthe 1990s that investigations into impulse radio sparked new interest in UWB. The technologyofimpulseradiowasmadepossiblebythecorrespondingtechniques forgeneratingshortpulsesdevelopedinthe1960s. 1 2 UltrawidebandAntennas:DesignandApplications Perhaps the greatest advantage of UWB is most evident from the famous Shannon formula for the capacity of a band-limited channel in Gaussian noise (Ghavamietal.,2008): (cid:2) (cid:3) P C =Wlog 1+ , (1.1) WN 0 whereCisthechannelcapacityinbits/second(bps),W isthechannelbandwidth inHz,P isthesignalpowerinWattsandN isthenoisepowerspectraldensityin 0 Watts/Hz.TheShannonformulashowsthat,giventhenoisepowerspectraldensity N ofthechannel,thesignalpowerPcanbetradedoffwiththebandwidthWwhile 0 maintainingthesamechannelcapacityC.Inparticular,wecandecreaseP ifmore bandwidth is available. On the other hand, given P the capacity C will increase withW.Fromaninformation-theoreticperspective,thistrade-offbetweenpower and bandwidth motivated the development of wideband communication systems suchasspreadspectrumandUWB.Thetrade-offbetweenpowerandbandwidth wasknowneveninanalogcommunication.Frequencymodulation(FM)usesmore bandwidthinreturnforhighersignalqualitythanamplitudemodulation(AM). In spread-spectrum communication, the signal power is spread over a much widerbandwidththantheoriginal(Simonetal.,1994).However,thebandwidth of traditional spread-spectrum communication (on the order of MHz) is not comparable with that of UWB, which is on the order of GHz. This definition of UWB is not unique. Federal Communications Commission (FCC) in United States of America (USA) defines UWB as systems with bandwidth larger than 500MHzorrelativebandwidthW/fc(fcisthecarrierfrequency)largerthan20% (Aiello and Batra, 2006). Figure 1.1 shows the spectral mask of UWB defined by the FCC Part-15 rule and that of indoor UWB (FCC, 2002). Similar rules have been approved in other countries of the world. In particular, a very wide bandwidthof7.5GHzbetween3.1GHzand10.6GHzisavailableforUWBatthe poweremissionlevel−41.3dBm/MHz.InFig.1.1,thestricterlimitationofpower emissioninthefrequencybandbetween0.96GHzand1.61GHzisduetoexisting servicessuchasmobilecommunications,positioningsystemsandmilitaryusage. BecauseofthelowpowerspectraldensityofUWB,itsinterferencecanoften beignoredbymanyexistingsystemsoccupyingthesamefrequencybands.This property enables the unlicensed operation of UWB devices. Moreover, the short pulses of UWB lead to multipath immunity, i.e., the propagation paths can be identified due to its fine time resolution. This is because the resolution of the UWBreceiverisapproximately1/W;thelargerW is,thehigheristheresolution (Ghavami et al., 2008). The fine time resolution is very useful for ranging and positioning.Theshortpulsesalsoenablethepenetrationthroughwallsandground. IntroductiontoUltrawidebandSystems 3 Fig.1.1. SpectralmaskdefinedbyFCCforUWB.(FCC,2002.) Moreover, pulse-based UWB does not require carrier modulation, thus reducing thesizeandcostofUWBdevicescomparedtoconventionalnarrowbandsystems. 1.2. UWBSchemes Despitebeingseenasabreakthroughtechnology,UWBiscloselyrelatedtoexisting spread-spectrum communication. In particular, impulse radio, one of the UWB schemes,isalsoknownastime-hopping(TH)inspread-spectrumcommunication. Other schemes to realise UWB include direct-sequence, frequency hopping and OFDM.Quitenaturally,UWBoffersthesamepossibilityofcode-divisionmultiple access (CDMA) as conventional spread spectrum does, by assigning different signaturecodestodifferentusers.Here,wepresentanoutlineofdifferentUWB schemes. The details of UWB transceiver design and signal processing can be foundinYangandGiannakis(2004)andQiuetal.(2005). 1.2.1. Impulseradio/timehopping Impulse radio was the first proposed UWB scheme (Win and Scholtz, 1998; Win et al., 2009) and has received most of the attention in the research community. Another name for impulse radio is time-hopping. Time-hopping is not a new technology; it has been used in spread-spectrum systems for many decades. Figure 1.2 shows the principle of impulse radio, where each data

Description:
Ultrawideband (UWB) technology, positioned as the cutting edge of research and development, paves the way to meet the emerging demands set by broadband wireless applications, such as high-speed data transmission, medical imaging, short-range radars, electromagnetic testing, etc. This resource builds
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.