ebook img

Ultrastructural organization of the larval spiracles in Libellula depressa L. (Anisoptera: Libellulidae) PDF

2007·1.6 MB·English
by  GainoE
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrastructural organization of the larval spiracles in Libellula depressa L. (Anisoptera: Libellulidae)

Odonatologica36(4):373-379 December 1,2007 Ultrastructural organization of thelarval spiracles inLibellula depressa L. (Anisoptera: Libellulidae) E.Gaino*,S.Piersanti andM.Rebora DipartimentodiBiologiaCellulare eAmbientale,Università degliStudidi Perugia, ViaElcediSotto,I-06123Perugia,Italy ReceivedFebruary9,2007/RevisedandAcceptedMarch 17,2007 Inthe last larval instar (F-0)of L. depressa,2paired spiracles, in the formof elongatedeye-shapedstructures,arelocatedintheanteriorregionofthemesothorax segment.Afinestructural analysisofthese spiraclesunderthescanningandelectron microscopesrevealsthateach spiracleconsistsofawell-developedcuticularperitreme with adorsal-anterior lip bearingathin laminar coat and aventral-posteriorlip bearingafilterapparatus.Thefilterapparatusderivesfromaseriesoffoldsforming discrete groupsadheringtooneanothertodelimit emptyspaces and producinga honeycomb-likestructure.Thisstructureiscoherentwiththeneed toavoidentryof waterwhenthe larvaissubmerged.The functionofthesespiraclesduringtheinsect developmentisdiscussed,notingthatin anisopteranlarvae therectal epithelium, formingthe socalled branchial basket,isthe main respiratory organ. INTRODUCTION Inpterygoteinsects, spiracles areimportant structuresinvolvedinthebalance betweengasexchange andtranspiratorywaterloss. Thegrossmorphology ofthe spiracles hasbeenstudiedinrepresentatives ofanumberoflepidopteran families (SCHMITZ & WASSERTHAL, 1999); using electronmicroscopy they showed important detailsof the organization of the spiracle apparatus in both larvae andadults. Inthe Diptera, studiesonthe spiracle apparatusof water-living lar- vaeshowed thatthemorphology ofthissystem differs markedly fromgroupto group,not only in organization butalso inlocationandinrelationto the devel- opmental stadiumconsidered(FAUSTO etah, 1999). In addition, inimmature "CorrespondingAuthor:Prof. Elda Gaino,Tel.: ++390755855729;fax:++390755855733;E-mail [email protected] 374 E.Gaino,S.Piersanti& M.Rebora stadiaofDiptera, ithasbeendemonstratedthattheorganisation ofthe spiracle apparatusvariesaccording toenvironmentalconditions(KHOLE, 1979;NIKAM & KHOLE, 1989; FAUSTO etal., 1999). Spiracle structure is also a usefultool for taxonomicpurposes(MAROL1 et al., 1992; FAUSTO et al., 1998;MILL, 1998a). Anatomicalstudies of the adultand larval spiracles of Odonata have been carried out (TILLYARD, 1917; WOLF, 1935). Differences in the morphology of thoracic and abdominalspiracles have beendescribedin the adultsofPan- talaflavescens (TONAPI, 1960).In certainadultAfrican dragonflies, MILLER (1962) carried out anexhaustiveanalysis ofspiracle controlandof the factors altering itsactivity, suchas changes inwater balance (MILLER, 1964a), degree of hypoxia andchanges intemperature(MILLER, 1964b). Inanisopteran larvaetherectalepithelium, formingthe socalledbranchialbas- ket, is themainrespiratoryorgan andthefunctionofthetwomesothoracicspir- aclesis unclear. Thegoalofthepresent study is thefinestructuralanalysis ofthespiracles of the last larval instar of Libellula depressa. Thisspecies is apond-dwelling drag- onfly, commonandwidespread inItaly(UTZERI, 1995)andthroughout therest of Europe(CARCHINI, 1983). MATERIALANDMETHODS Larvae ofLibellula depressa,attributedtotheultimatestage(F-0)onthebaseoftheirheadwidth andbody length(D1GIOVANNIetat,2000),werecollected inpondsincentralItaly(Perugia,Um- bria).Inthelaboratory,thespecimenswerekept inplasticcontainers(60x40x40cm)with water,de- tritus,floraand faunafromthecollectingsite.Thelarvaewerefedadlibitumwithplankton(Daphnia sp. and Cyclopssp.). Forelectron microscopy,the larvaeweredissected underastereomicroscope,afterhavingcutoff the headtoreducestress, andplacedinto2.5%glutaraldehydeincacodilate buffer(pH,7.2)forfive hours. Afterwards,the materialwasrinsedin thesamebufferand post-fixedin 1%cacodilate buff- ered osmium tetroxide for 30minutes. Forscanningelectron microscopy (SEM),the material was dehydratedinacrescent ethanol seriesupto 100%,critical-pointdriedinaCPD 030Bal-Tec. Speci- menswerethenmounted onstubswithsilverconductingpaint, sputter-coatedwithgold-palladium in anEmitech K550Xsputter,andobserved withaPhilips EM 515SEM. Fortransmission electron microscopy(TEM),dehydratedspecimenswereinfiltratedwith anEpon-Aralditemixture.Ultrathin sectionswerecut with adiamond knifeonaLeica EMUC6 ultramicrotome,collected onformvar- coatedcopper grids,stained withuranyl-acetateand lead citrate,and observedin aPhilipsEM208 TEM. RESULTS Inthe laststage (F-0)of Libelluladepressa larvae,two paired spiracles, inthe formofelongated eye-shaped structures,are locatedintheanteriorregionofthe mesothoraxsegment(Fig. 1).Eachspiraclemeasuresabout800pminlength. The view fromtheexterior shows thateach spiracle consists ofawell developed cu- Ultrastructure oflarvalspiraclesin Libellula depressa 375 ticularperitremewitha dorsal-anteriorlipanda ventral-posteriorlip(Figs 1-2). Along itsexternalborder, theventrallipbearsafilterapparatuswhilethedorsal lipbearsathinlaminarcoat(Fig. 2).Thefilterapparatusconsistsof aseriesof longfolds, emerging fromthecuticularperitreme. Thefoldsformdiscretegroups whereseveralfoldsare incontact.Theoveralleffectis a honeycomb-like surface (Figs 3-4). Movinginwardstowardstheatrium, itswallsappearcompletely cov- eredwithshortfoldsthatshowanirregular honeycomb-like patternbothonthe ventral(Fig. 4)andonthedorsalsurface(Fig. 5). Theatriummeasuresabout 100pminhighandabout250pmin depth(Fig. 6) Figs 1-5.Scanningelectronmicrographsofthemesothoracic spiraclesofthelastlarval instar(F-0) ofLibellula depressa:(1)twomesothoracic spiracles(arrows)in the form ofelongatedeye-shaped structures;— (2)detail oftheleftspiracleshowingthedorsal-anterior lip(DL),bearingathinlami- narcoat(arrow),and theventral-posteriorlip(VL)withthefilterapparatus(FA);— (3)detailofthe filterapparatus(FA)derivingfromaseriesoffoldsformingdiscrete groups (whereeach fold in the groupadherestotheadjacentones)todelimitemptyspacesproducingahoneycomb-likesurface;— (4)viewofaspiraclefromtheinsidelookingoutwards(thebottomofthespiraclehasbeenremoved). Notethesequence offolds formingthefilterapparatus(FA),Theventralwall oftheatriumshows an irregularhoneycomb-likestructure(arrow);- (5)detailoftheupperwall oftheatriumconsistingof shortfolds witha similar,irregular,honeycomb-likepattern(arrow);DL, dorsallip. 376 E.Gaino, S.Piersanti & M.Rebora On itsventral surfacethefolds delimitingthewallsbecomeprogressively shorter from thefilterapparatusto the innerend ofthe atrium, where they are hardly visible. Thelaminarcoat fits overthe edge of thefilterapparatus(Fig. 6). Thinsections, observedundertheTEM,revealthatalltheatriumisbordered by athin electron-densecuticle (Figs 7-9).The foldsof the filterapparatus are 30-50pm high.Theirinnercore consists ofafibrouscomponentcoveredby thin cuticle whichexpands at theapex to produce contact points linkingthefolds to oneanother(Fig. 7).Thedorsallipbearsathinlaminarcoatborderedbycuticle, whichis thickerontheexternalsurface, andincludesafibrousregion interposed Figs6-9. A semithin section underthe lightmicroscope(6)and transmission electron micrographs (Figs7-9) ofthemesothoracic spiraclesofthelastlarvalinstar (F-0)ofLibellula depressa:(6)section ofaspiracleshowingtheatrium(A), theventralsurfaceofwhich hasfoldsthat becomeprogressively shorter fromthefilterapparatus(FA)toitsinnerlimit (arrow),where theyarehardlyvisible.Note that thelaminarcoat(LC)onthedorsal lip(DL)fitsovertheedgeofthefilterapparatus(FA)onthe ventral lip(VL); —(7)detail ofthe foldsofthefilterapparatuswith theirinnercoreconsistingofa fibrousmaterialcoveredbythincuticlewhichexpandstoproducecontactpoints linkingthe foldsto oneanother(arrows); — (8)detailofthethinlaminar coat(LC)ofthedorsallipbordered bycuticle which isthickerontheexternalsurface(arrow).Thefibrousmaterialinterposedbetween thetwocu- ticularlayersalso fillsaprotrusion (P)atthebaseofthe laminar coat.Double arrowspointoutshort folds ontheupperwall oftheatrium; - (9)detailsoftheventralsurfaceoftheatriumshowingthat thewalls ofitsinnerlimit aredecorated byveryshort cuticular folds(arrows). Ultrastructureoflarval spiraclesinLibellula depressa 377 betweenthe twocuticularlayers (Fig. 8).Afibrousregion also fillsaprotrusion (P) atthebaseofthelaminarcoat, betweenthe latterandthefirstfolds (3-5 pm high)oftheatrium(Fig. 8).Theventralsurfaceoftheatrium, inits innerlimit, showswallsdecoratedby veryshort cuticularfolds, irregularlyexpanded attheir apices (Fig. 9). DISCUSSION Thetwo mesothoracicspiracles ofAnisoptera larvaeseemtobeopenonly in the finalstadium, even ifthey are also present in earlierdevelopmental stages (CORBET, 1999). AccordingtoCORBET(1999), larvaeofmanyspecies ofAni- soptera,intheirfinalstadium,leavethewaterpartly orwholly andintermittently or irrevocably, days orevenweeksbeforeemergence.Thisbehaviourmayreflect theneedtoexpose thethoracicspiracles to theair.Thelarvaeofpond-dwelling Anisoptera commonly congregateat thepond margin with theirspiracles open as metamorphosis proceeds (CORBET, 1999).Inparticular, thelarvaeofLibel- luladepressa, closetothefinalmoult,tendto spend timeinsuchlocations, some- timesreturninginto the water(personal observation). Thefinestructureofthe spiraclesofthefinallarvalstadiumofL. depressa is coherentwiththeneedtoavoidwaterentering when thelarvaissubmerged. In- deed,eachspiracle hasa dorsallaminarlip fitting over thefilterapparatuswith afibrousprotrusion onitsbaseontheinternalside.Thisprotrusion could help to seal the lip to the edgeof thefilter. Thehoneycomb-like surfaceofthefilter andoftheatriumwallsmayfunctionas a hydrofuge structure,abletoresist wa- terentryintothetrachealsystem. A honeycomb-like structure withthisfunction hasbeendescribedin thespiracles ofPeriplaneta americana(MILLER, 1981; MILL, 1998a). InAnisoptera larvae the mainrespiratory organ is represented by the rectal epithelium (MILL, 1998b). Infact, by comparing variousstructural modelsfor gasexchange intheinternalgillsof theanisopteran Aeshnacyanea,KOHNERT etal.(2004) concludedthatrectal gillsalonecan satisfy themetabolicdemandof this active carnivorousinsect. In addition, CORBET (1999) reports thatlarval Anisoptera, withtheirthick integument, probably rely almost entirely on their rectal gills,except perhaps in veryearly stadia, when theintegument isrelatively unsclerotizedandtranspiration viathecuticleis possible. Previousinvestigations onthelarvaeofL. depressa, belonging to thefinalsta- dium, gaveevidencethattheseinsects areableto survive forseveral days outof water,ifkept inairwithhighrelative humidityvalues(PIERSANTI etah,2007; REBORA et ah, 2007). In such conditionswe can hypothesize that the larvae couldtakeoxygenfromtheairthroughtheirrectalepitelium. Indeed,asreported by CORBET(1999), terrestrialorsemiterrestriallarvaecommonly employrectal respiration and larvaeofaquatic species, in response to lowoxygen concentra- 378 E.Gaino,S.Piersanti& M.Rebora tion,climbbackward tothewatersurfaceandplace theiranalpyramid intheair (seereviewin CORBET, 1999). Eventhough during theexperiments withL. depressa larvaeit was not detect- ed ifthethoracicspiracles were involvedinoxygen uptake, wecannot excludea possibleroleofthesestructuresin gasexchange. Aninvolvementofthespiracles in dragonfly larvalbreathing has neverbeenshown, neverthelessithasbeenhy- pothesized insomeprimitive semiterrestrialspecies, like Uropetala carovei(Pet- aluridae)(GREEN, 1977).Inaddition, thefinallarvalstadiumofthelivingfossil anisozygopteran Epiophlebia superstes leavesthewaterfourorfivemonthsbefore moultingand,during this period,gasexchange probably occurs through theme- sothoracictrachealspiracles (see reviewinWICHARD etah, 2002). Thepresentworkrepresentsafirstapproach tothefinemorphologyofthespir- acles in larvalanisopteran dragonflies andgives anessentialbaseforphysiologi- cal studiesof therolethatthesestructures mayperform during development. REFERENCES CARCHINI, G,, 1983. Odonata: guideper ilriconoscimento delle speciecmimali delleacqueinterne italiane. CNR,Valdonega,Verona. CORBET, P.S., 1999.Dragonflies:behaviour andecologyofOdonata. HarleyBooks,Colchester. DIGIOVANNI,M.V.,E.GORETTI.G.LAPORTA&D.CECCAGNOLI,2000.Larvaldevelop- mentofLibellula depressa(Odonata:Libellulidae)frompoolsincentral Italy.Ital. J. Zool. 67: 343-347. FAUSTO, A.M., M.D. FELIC1ANGEL1, M.MAROLI& M. MAZZINI, 1998. Morphological study oflarval spiracularsystem ineightLutzomia species (Diptera,Psychodidae). Insect Sci.Appl. 14:483-488. FAUSTO,A.M..A.R.TADDEI,M.MAZZINI& M.MAROLI, 1999. Morphologyand uitrastruc- ture ofspiraclesinphlebotominesandfly larvae. Med. vet.Ent. 13: 101-109. GREEN, L.F.B., 1977.AspectsoftherespiratoryandexcretoryphysiologyofthenymphofUrope- talacarovei (Odonata:Petaluridae).N. Z. J.Zooi 4: 39-43. KHOLE,V.V., 1979.Spiraculardevelopmentin theblowflylarvae(Calliphoridae:Diptera). Biovig- janam5:43-52. KOHNERT,S„S.RPERRY &A.SCHMITZ,2004. Morphometricanalysisofthelarvalbranchial chamber in the dragonflyAeshna cyanea Muller (Insecta, Odonata. Anisoptera).J. Mor- phol.261: 81-91. MAROLI,M,A.M.FAUSTO&M.MAZZINI,1992. Morfologiadeglistadilarval! deiflebotomi (Diptera,Psychodidae). 1.Gli stigmirespirator!di Phlebotomuspapatasi,P.pemiciosuseP. perfiliewi. Parasilologia34(1):221-222. MILL,P.J., 1998a.Tracheae and tracheoles. In: F.WHarrison & M. Locke, [Eds], Microscopical anatomyofinvertebrates,Vol.l1,pp. 303-336, Wiley-Liss,NewYork. MILL,P.J., 1998b.Gills. In:F.WHarrison&M.Locke,[Eds],Microscopicalanatomyofinvertebrates. Vol.l1,pp. 337-381,Wiley-Liss,New York. MILLER,P.L., 1962.Spiraclecontrol inadult dragonflies(Odonata).J. exp. Biol. 39:513-535. MILLER,P.L., 1964a.Factorsalteringspiraclecontrol in adultdragonflies:waterbalance. J.exp. Biol41:331-343. MILLER, P.L., 1964b.Factorsalteringspiraclecontrolin adultdragonflies:hypoxiaand tempera- ture. J.exp. Biol. 41: 345-357. Ultrastructureoflarval spiraclesinLibellula dcprcssa 379 MILLER, P.L., 1981. TheAmericancockroach. Chapman& Hall,London. NIKAM,T.B.&V.V.KHOLE, 1989.Insectspiracularsystems.EllisHorwood EntomologyandAc- arology,Chichester,London. PIERSANTI,S„ M.REBORA, G. SALERNO&E,GAINO, 2007. Behavioural strategiesofthe larvaldragonfly Libellula depressa(Odonata:Libellulidae)in dryingpools.EthologyEcol- ogy Evolution 19(2): 127-136. REBORA, M„S.PIERSANTI,G.SALERNO,E.CONTI&E.GAINO, 2007.Waterdeprivation tolerance and humidityresponse inalarval dragonfly:apossibleadaptationforsurvival in dryingponds.Physiol. Em. 32: 121-126. SCHMITZ, A. & L.T. WASSERTHAL, 1999.Comparativemorphology ofthe spiracles of the Papilionidae, Sphingidae,and Saturniidae (Insecta: Lepidoptera).Int. J. Insect Morphol. Embryo!.28: 13-26. TONAPI, G.T., I960. On thestructure and mechanism ofthe spiracularregulatory apparatusin Pantalaflavescens Fabr. (Odonata).Cas. ceskoslov. Spot. ent. 57:340-342. TILLYARD, R.J., 1917. Thebiologyofdragonflies.CambridgeUniv. Press,Cambridge. UTZERI,C, 1995. Checklist dellespeciedellafaunaitahana: Odonata. Calderini,Bologna. W1CHARD,W„ W. ARENS & G. E1SENBEIS,2002, Biologicalatlasofaquaticinsects. Apollo Books,Stenstrup. WOLF,FI., 1935.Daslarvale undimaginaleTracheensystemderOdonatenundseineMetamorphose. Z. wiss. Zool. 146: 591-620.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.