ebook img

Ultrasound Guidance for Epidural Anesthesia PDF

93 Pages·2013·1.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrasound Guidance for Epidural Anesthesia

Ultrasound Guidance for Epidural Anesthesia by Hussam Al-Deen Ashab MSc,BiomedicalEngineering,DukeUniversity,2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Applied Science in THE FACULTY OF GRADUATE STUDIES (ElectricalandComputerEngineering) The University Of British Columbia (Vancouver) April 2013 (cid:13)c Hussam Al-Deen Ashab, 2013 Abstract We propose an augmented reality system to automatically identify lumbar verte- brallevelsandthelaminaregioninultrasound-guidedepiduralanesthesia. Spinal needle insertion procedures require careful placement of a needle, both to en- sure effective therapy delivery and to avoid damaging sensitive tissue such as the spinal cord. An important step in such procedures is the accurate identification of the vertebral levels, which is currently performed using manual palpation with a reported success rate of only 30%. In this thesis, we propose a system using a trinocular camerawhich tracks an ultrasound transducer during theacquisition of a sequence of B-mode images. The system generates a panorama ultrasound im- ageofthelumbarspine,automaticallyidentifiesthelumbarlevelsinthepanorama image, and overlays the identified levels on a live camera view of the patient’s back. Severalexperimentswereperformedtotesttheaccuracyofvertebralheight in panorama images, the accuracy of vertebral levels identification in panorama images, the accuracy of vertebral levels identification on the skin, and the impact on accuracy with spine arching. The results from 17 subjects demonstrate the feasibility of the approach and capability of achieving an error within a clinically acceptablerangeforepiduralanesthesia. The overlaid marks on the screen are used to assist locating needle puncture site. Then, an automated slice selection algorithm is used to guide the operator positioninga3Dtransducersuchthatthebestviewofthetargetanatomyisvisible in a predefined re-slice of the 3D ultrasound volume. This re-slice is used to ob- serve,inrealtime,thetrajectoryofaneedleattachedtothe3Dtransducer,towards ii the target. The method is based on Haar-like features and AdaBoost learning al- gorithm. We have evaluated the method on a set of 32 volumes acquired from volunteersubjectsbyplacingthe3DtransduceronL1-L2,L2-L3,L3-L4andL4- L5 interspinous gaps on each side of the lumbar spine. Results show that the needle insertion plane can be identified with a root mean square error of 5.4 mm, accuracyof99.6%,andprecisionof78.7%. iii Preface This thesis was prepared under the supervision of Dr. Purang Abolmaesumi and Dr. Robert Rohling. They introduced the research topic of generating a panorama image of the lumbar spine, automatically identifying the lumbar lev- els in the panorama image, overlay the identified levels on a live camera view of the patient’s back, and the idea of identifying lamina region from the lumbar spineultrasoundvolumestoassistinneedleinsertion. Moreover,theyrevisedthe manuscriptsofaconferencepaper,journalpaperandthisthesis. AversionofChapter2hasbeenpublishedattheIEEEEngineeringinMedicine andBiologySociety(EMBS)conference, under thetitle“AREA:AnAugmented RealitySystemforEpiduralAnaesthesia”andintheIEEETransactionsonBiomed- ical Engineering, under the title “An Augmented Reality System for Epidural Anaesthesia (AREA): Pre-Puncture Identification of Vertebrae”. The work was co-authored by Victoria A. Lessoway, Siavash Khallaghi, Alexis Cheng, Robert Rohling and Purang Abolmaesumi [6]. Part of the code used for the system was originally written by Alexis Cheng and Siavash Khallaghi. The author modified and re-wrote these parts, and added to the code in order to develop a complete working system. Moreover, the author was responsible for testing the system and doingalltheanalysis. DatafromsubjectswereacquiredbyVictoriaA.Lessoway(BritishColumbia WomensHospitalandHealthCentre,DepartmentofUltrasound). Ethicsapproval for this study was obtained from the UBC Research Ethics Board with certificate number: H07-0691forthestudyinChapters2,andChapter3. iv Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x ListofAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ThesisObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 LumbarSpineAnatomy . . . . . . . . . . . . . . . . . . 5 1.4.2 RegionalAnalgesiaandAnesthesia . . . . . . . . . . . . 7 1.5 UltrasoundGuidanceforEpiduralAnalgesiaandAnesthesia . . . 9 1.5.1 UltrasoundImageRegistrationandTrackingMethods . . . 9 1.5.2 AugmentedReality . . . . . . . . . . . . . . . . . . . . . 11 v 1.5.3 UltrasoundImageFilteringandVertebralLevelIdentifica- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.4 AutomaticSliceSelection . . . . . . . . . . . . . . . . . 13 1.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 LumbarLevelIdentification . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 UltrasoundImageCalibration . . . . . . . . . . . . . . . . . . . . 17 2.3 ImageAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 PanoramaGeneration . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 VertebralIdentification . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 ExperimentsandResults . . . . . . . . . . . . . . . . . . . . . . 30 2.7.1 AccuracyofVertebralHeightinPanoramaImage . . . . . 33 2.7.2 Accuracy of Vertebral Level Identification in Panorama Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7.3 AccuracyofVertebralLevelIdentificationontheSkin . . 35 2.7.4 AccuracyofSpineArching . . . . . . . . . . . . . . . . . 36 2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8.1 AccuracyofVertebraeHeightinPanoramaImages . . . . 37 2.8.2 Accuracy of Vertebral Levels Identification in Panorama Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8.3 AccuracyofVertebralLevelsIdentificationontheSkin . . 40 2.8.4 AccuracyofSpineArching . . . . . . . . . . . . . . . . . 40 3 InsertionSliceDetection . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 DataAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 FeatureExtractionandConstructionofWeakClassifier . . . . . . 45 3.4 LearningClassifiers . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.1 TrainingCascadeClassifiers . . . . . . . . . . . . . . . . 51 vi 3.5 SliceSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 ExperimentsandResults . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 ConclusionandFutureWork . . . . . . . . . . . . . . . . . . . . . . 62 4.1 SummaryofContributions . . . . . . . . . . . . . . . . . . . . . 63 4.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 A AdditionalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 vii List of Tables Table2.1 Typesofexperimentsperformed,goldstandardused,andmea- surements/labelsthathavebeendefinedinthispaper. Numbers used in the table refer to the measurements defined within the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table2.2 Mean±standarddeviationofCurvilinearvertebralheight,Panorama vertebralheight,andtheabsoluteerrorcalculatedasthediffer- ence between those two measurements. Units are in millime- tres;N=17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table2.3 Mean of the absolute error between AREA and Panorama ver- tebral levels, and between Kerby and Panorama vertebral lev- els. Unitsaremillimetres,N=17. . . . . . . . . . . . . . . . . 31 Table2.4 Number of false AREA and Kerby vertebral counts (N = 82). Usingthelineartransducer,thesonographercouldnotidentify three of the vertebrae because they were fused with a neigh- bouringvertebra. . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table2.5 Actual vertebral count, AREA vertebral count and Kerby ver- tebral count (N = 82). For the actual vertebral count, the sono- grapher could not identify three of the vertebrae because they werefusedwithaneighbouringvertebra. . . . . . . . . . . . . 35 viii Table2.6 Mean and standard deviation of the absolute difference be- tweenAREAactualvertebraelabelsattherestingpositionand actualvertebraelabelsattherestingpositionmeasuredonsub- ject’sback. Unitsaremillimetres,N=17. . . . . . . . . . . . . 35 Table2.7 Comparison of the absolute error of AREA for different spine archingangels. Unitsaremillimetres,N=17. . . . . . . . . . . 37 Table3.1 ThedistancebetweenSpinousprocess-FacetandFacet-Transverse process measured from statistical shape model of the spine. Unitsareinmillimetres. . . . . . . . . . . . . . . . . . . . . . 56 Table3.2 The RMS error of selecting optimal slice from ultrasound vol- ume. Error was calculated as the distance between optimal slice the sonographer chose and the algorithm optimal slice. Unitsareinmillimetres. . . . . . . . . . . . . . . . . . . . . . 58 Table3.3 Theperformanceofthemethodinselectingoptimalslicefrom ultrasoundvolume. . . . . . . . . . . . . . . . . . . . . . . . . 58 ix List of Figures Figure1.1 Anatomical structure of the lumbar spine showing vertebral levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure1.2 Needleinsertionintolumbarregionofthespine. . . . . . . . 8 Figure2.1 Markersusedforthecalibrationofultrasoundtransducer. . . . 17 Figure2.2 StylusCalibration. . . . . . . . . . . . . . . . . . . . . . . . 18 Figure2.3 PhantomRegistration. . . . . . . . . . . . . . . . . . . . . . 19 Figure2.4 SegmentationParameterModule. . . . . . . . . . . . . . . . . 20 Figure2.5 FreehandCalibration. . . . . . . . . . . . . . . . . . . . . . . 21 Figure2.6 WorkflowofAREA. . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.7 Ultrasound B-modeimages areacquired by placingthe trans- ducer in the parasagittal plane 10 mm from the midline. The solid line shows the vertebral level the system identifies and thedashedlineshowstheimagingplaneacquiredbythesono- grapher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure2.8 Example of two ultrasound panorama images. (a) Panorama obtained in the parasagittal plane, showing L1, L2, L3, L4, L5 and S1 from left to right. (b) The same panorama image showingtheautomaticallyidentifiedlevelsL1,L2,L3,L4and L5fromlefttoright. . . . . . . . . . . . . . . . . . . . . . . 26 x

Description:
bral levels and the lamina region in ultrasound-guided epidural anesthesia. Spinal site. Then, an automated slice selection algorithm is used to guide the . 3.3 Feature Extraction and Construction of Weak Classifier . world. Medical augmented reality is a promising technology to improve the accu-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.