ebook img

Ultrasound-enhanced conversion of biomass to biofuels PDF

38 Pages·2014·2.36 MB·English
by  Jia Luo
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrasound-enhanced conversion of biomass to biofuels

ProgressinEnergyandCombustionScience41(2014)56e93 ContentslistsavailableatScienceDirect Progress in Energy and Combustion Science journal homepage: www.elsevier.com/locate/pecs Review Ultrasound-enhanced conversion of biomass to biofuels Jia Luoa, Zhen Fanga,*, Richard L. Smith Jr.b aChineseAcademyofSciences,BiomassGroup,KeyLaboratoryofTropicalPlantResourceandSustainableUse,XishuangbannaTropicalBotanicalGarden, 88Xuefulu,Kunming,YunnanProvince650223,China bTohokuUniversity,ResearchCenterofSupercriticalFluidTechnology,GraduateSchoolofEnvironmentalStudies,AramakiAzaAoba6-6-11,Aoba-ku, Sendai9808579,Japan a r t i c l e i n f o a b s t r a c t Articlehistory: Twoimportantchallengesneedtobeaddressedtorealizeapracticalbiorefineryfortheconversionof Received1February2013 biomass to fuels and chemicals: (i) effective methods for the degradation and fractionation of ligno- Accepted31October2013 celluloses and (ii) efficient and robust chemical methods for the conversion of bio-feeds to target Availableonline2December2013 products via highly selective catalytic reactions. Ultrasonic energy promotes the pretreatment and conversionprocessthroughitsspecialcavitationaleffects.Inthisreview,recentprogressandmethods Keywords: for combining and integrating sonication into biomass pretreatment and conversion for fuels and Ultrasound chemicalsarecriticallyassessed.Ultrasonicenergycombinedwithpropersolventsallowsdestructionof Lignocellulose the recalcitrantlignocellulosic structure,fractionation ofbiomass components, and then assists many Pretreatment Microalgae thermochemicalandbiochemicalreactions,withincreasedequilibriumyieldsofsugars,bio-ethanoland Biodiesel gasproductsby10e300%.Sonicationpromoteshydrolysis,esterificationandtransesterificationinbio- diesel synthesis and leads to reduced reaction time by 50e80%, lower reaction temperature, less amounts of solvent and catalyst than comparable unsonicated reaction systems. For algal biomass, sonicationbenefitsthedisruption,lysisandcontentreleaseofmacroandmicroalgaecells,andreduces the time required for subsequent extraction and chemical/biochemical reactions, with efficiencies typically being improved by 120e200%. High-frequency ultrasound of 1e3 MHz allows harvesting of microalgae,liquidproductseparationandin-situprocessmonitoringofbiomassreactions,whilehigh- intensityultrasoundat20e50kHzactivatesheterogeneousandenzymaticcatalysisofthebiomassre- actions.Theuseofultrasoundinconversionofbiomasstobiofuelsprovidesapositiveprocessbenefit. (cid:1)2013ElsevierLtd.Allrightsreserved. Contents 1. Introduction................................................................ ........................................................57 2. Physicalmechanismsforultrasonicenergy.................................................. ...........................................57 2.1. Ultrasound,energytransformationandacousticcavitation ...................................... ..................................57 2.2. Basisforreactordesignandparameters ................................................ .........................................58 2.2.1. Designofultrasonicreactors................................................. ..........................................58 2.2.2. Ultrasonicfrequency .................................................... ..............................................60 2.2.3. Propertiesofhomogeneoussolvents ............................................. .......................................61 2.2.4. Heterogeneouspropertiesofultrasound-assistedreactions .................................................................61 2.2.5. Otherparameters ...................................................... ...............................................62 3. Ultrasonicpretreatmentandreactionsoflignocellulosicbiomass....................................... ................................. 62 3.1. Destructionandfractionationoflignocellulose ....................................................................................63 3.2. Conversionoflignocellulosetosaccharidesandbio-ethanol ...................................... .................................66 3.3. Fermentationoflignocellulosicwastestobiogasandbio-hydrogen .................................. ..............................68 3.4. Mechanismandresearchneeds .................................................................................................68 * Correspondingauthor.Tel.:þ8687165137468;fax:þ8687165160916. E-mailaddress:[email protected](Z.Fang). URL:http://brg.groups.xtbg.ac.cn/ 0360-1285/$eseefrontmatter(cid:1)2013ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.pecs.2013.11.001 J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 57 4. Ultrasound-assistedsynthesisofbiodiesel ............................................................................................. 69 4.1. Esterificationoverhomogeneous/heterogeneouscatalysts ....................................... ..................................69 4.2. Transesterificationoverhomogeneousacids/bases........................................... .....................................69 4.3. Transesterificationoverheterogeneousacids/bases ................................................................................72 4.4. Enzyme-catalyzedhydrolysis/esterification/transesterification...................................... ................................73 4.5. Ultrasonicpretreatmentinsupercriticalsynthesisofbiodiesel ..................................... ................................74 4.6. Ultrasound-assistedconversionofglyceroleaby-productofbiodiesel................................. .............................74 4.7. Mechanismandresearchneeds .................................................................................................74 5. Ultrasonicenhancementofalgaepretreatmentandreactionsforbiofuels ................................................................. 75 5.1. Microalgaegrowthandnutrientaccumulation ....................................................................................76 5.2. Harvestingofmicroalgae ...................................................... ...............................................77 5.3. Pretreatment,extractionandconversionofalgae .................................................................................77 5.4. Mechanismandresearchneeds .................................................................................................78 6. Ultrasonicemulsificationanddemulsificationofcrudebio-oilandbiomaterials................................ ........................... 79 7. Biorefineryprocessmonitoringusinglow-intensityultrasound........................................................................... 79 7.1. Principlesofultrasoundmonitoring .............................................................................................79 7.2. Ultrasoundmeasurementinbiorefinery ................................................ .........................................80 8. Discussiononcriticalissuesandrecommendations.............................................. ....................................... 80 8.1. Selectionandoptimizationofultrasonicfieldparameters........................................ ..................................82 8.2. Impactonchemicalreactionsandheterogeneouscatalysis ...................................... ..................................82 8.3. Impactonenzymesandbiochemicalreactions....................................................................................83 8.4. Energyandprocessingbenefitassessmentincasestudies ....................................... ..................................84 9. Conclusions ................................................................ ....................................................... 87 Acknowledgments ..................................................................................................................87 References................................................................. ........................................................88 1. Introduction contributestoeasierpretreatment,fractionationandchemicalre- actionsofbiomassmaterialsundermildconditions,andresultsin Thelackofmethodstocirculatecarbonsustainablyisthoughtto increased reaction efficiency and higher catalytic activity over be oneof the dominantreasonsfordeterioration ofourenviron- thermochemicalmethods(Challenges1and2).Theapplicationof ment[1].Techniquesthatefficientlycirculaterenewablecarbonare ultrasoundenergyintensifiesmassandheattransferinreactions, anurgentpriorityandiftheuseoffuel-baseddevicesiscontinued, enhances the contact and disengagement of heterogeneous re- efficient methods to produce biofuels are needed. Available actants,intermediatesandproducts,andthereforeacceleratesthe biomass resources that can be considered for use as biofuels are reactionrateorchangesthekinetics(Challenge3). mainly sugars, polysaccharides, lignocelluloses, chitosan, lipids, Reviews on ultrasonic applications are related to biomass algae and polyols [2]. Some of the possible conversion paths of treatment, such as sono-assisted lignocellulosic pretreatment these materials to biofuels [2e7] are acid/base/enzyme-catalyzed [14,15], extraction ofnatural products [16], sonochemistryof car- hydrolysis of biomass to fermentable sugars, fermentation of bohydrate compounds [17], catalytic esterification and trans- cellulosic biomass and sugars to bio-ethanol, bio-hydrogen and esterificationoflipids[18e20],foodprocessing[21],pretreatment othersmallmolecules,catalytichydrocracking,hydrogenationand and fermentation of organic wastes (e.g., bio-sludge) to gaseous reformingoflignocellulosetopolyols,catalyticoxidationofligno- products (e.g., H2, CH4) [22,23] and biochemical engineering/bio- cellulose to aromatic aldehydes, thermal gasification of cellulosic technologies[24e26]suchasbiologicalwastewatertreatmentand biomass to hydrogen and methane, and chemical/enzymatic bioremediation. However, critical assessment of ultrasound- esterification/transesterificationoflipidstomonoesters. assisted pretreatments and reactions of biomass for producing Intheconversionofbiomassresourcestobiofuels,threechal- biofuelsisneededtoconsidertheroleandmechanismofultrasonic lenges must be met. The first challenge is the recalcitrance of intensification and how it can be used advantageously in future lignocellulose[8]andthereticularconnectionoflignin[9].Crude biorefineries. ligninecarbohydrate requires harsh conditions and specialized This review examines ultrasound-assisted pretreatments and solvents to degrade, which makes processing complicated, envi- reactions of biomass materials. Recent applications of ultrasonic ronmentallyproblematicandeconomicallyunsustainable[3]. energy in the pretreatment and conversion of lignocelluloses, The second challenge is the uncertain chemical constituents biodiesel and microalgae are described and critically evaluated. contained in biomass. Raw biomass from different sources has Then, the potential of ultrasound for other related biomass pro- variedcontentsofcellulose,hemicellulose,lignin,freesugars,wax, cessing (emulsification, demulsification and aggregation) and in- proteins,alkaloids,traceorganiccompounds,andinorganics[10]. situprocessmonitoringareintroducedanddiscussed.Finally,key Thethirdandthemostimportantchallengeistheheterogeneity issuesarediscussedandanalyzed. ofbiomassreactionsystems.Biomassmaterialshavelowthermal conductivitythatcreatesabarrierforheatandmasstransfer[11]. 2. Physicalmechanismsforultrasonicenergy Conversionandproductselectivityinbiomasssystemstendtobe poor due to insufficient catalystereactant contact. Immiscible 2.1. Ultrasound,energytransformationandacousticcavitation alcoholelipidecatalyst systems are a fundamental problem in biodieselsynthesis[12]. Ultrasoundismechanicalacousticwavewiththefrequencyrange Ultrasonicenergyprovidesaspecialphysicochemicalenviron- fromroughly10kHzto20MHz[27].Itimpartshighenergytoreac- mentforprocessingbiomasssystems[13].Thehigh-energyimpact tionmediumbycavitationandsecondaryeffects[13,28].Inatypical and corrosion by high-intensity ultrasound to biomass system dynamic process of cavitational bubbles, numerous microbubbles 58 J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 containingsolventvaporsaregeneratedthatgrowandundergoradial Various methods can be introduced to experimentally deter- motion as acoustic energy propagates through the liquid medium minethevelocity,sizeandconcentrationofcavitationalbubblesin [29].Thesemicrobubblesgrowtoamaximumofabout4e300mmin thereactor.Thesuddenchangeofacousticpressureinsoundfieldis diameter[29],andcanbestableortransient.Withlowacousticin- regardedasthecharacteristicofcavitation,whilethefeaturedis- tensity,theradiiofmicrobubblesperiodicallyandrepetitivelyexpand tributioninacousticemissionspectrum,namelythegenerationof andshrink(radialoscillation)withinseveralacousticcycles.While subharmonic, ultraharmonic, or harmonic frequency, is used to acousticenergyhassufficientintensity,somemicrobubblesareun- discriminate between transient cavitation from stable cavitation stablewithinonlyoneor two acoustic cycles. Whenthe resonant [32,35].Cavitationalintensityisrelatedtothepopulationdensityof frequency of bubbles exceeds that of ultrasonic field, the bubbles active cavitational bubbles and the released energy intensity in collapsewithinseveralnanoseconds,whichcreatesspecialphysical bubblecollapse, and is normally quantified through thedetermi- and chemical effects, and enhances thermochemical/biochemical nationofsecondaryeffects.Chemicalmethodshelpinthemapping reactionsortreatment[29]. ofcavitationalintensitydistributionandactiveradicalformationin Theunsymmetricalcollapseofbubblesatabroadsolid/solvent the sonochemical reactors [36,37], including iodine method interface(>200mm)producesmicrojetsathighspeed(>100m/s) (H2O / (cid:3)OH þ (cid:3)H, I(cid:4) þ (cid:3)OH / I2(cid:4) / I3(cid:4)), Fricke method towardsolidsurfaces[27,30].Theinstantaneouscollapseofbubbles (H2O/(cid:3)OHþ(cid:3)H,Fe2þþ(cid:3)OH/Fe3þþOH(cid:4)),salicylicacidmethod also produces strong shockwaves that might be up to 103 MPa (the degree of salicylic acid hydroxylation under sonication), ter- [30,31]. This violent movementof fluid towardorawayfromthe ephthalic acid method (terephthalic acid / hydroxyterephthalic cavitational bubbles is defined as micro-convection, which in- acid),sonoluminescence(instantaneousflashduringthecollapseof tensifies the transport of fluids and solid particles and results in cavitational bubbles), sonochemiluminescence (the reaction of forcesthatcancauseemulsificationordispersiondependingonthe cavitation-induced radicals with chemical reagents such as lumi- conditions, while the strong shockwaves and microjets generate nol),aluminumfoilerosionandelectrochemicalredoxprocess. extremely strong shear forces over those of conventional me- However, these analytical methods have their limitations. chanicalmethods,andareabletoscatterliquidintotinydropletsor Chemicalmethodsinvolvingradicaldeterminationdependonthe crushsolidparticlesintofinepowders. number of radical release at the collapse of cavitational bubbles, The chemical effect of ultrasonic comes from local hotspots while aluminum foil erosion is more suitable for quantitative producedbycavitation.Atthemomentofbubblecollapse,ahuge analysisoftheintensityofsecondaryeffectssuchasshockwaveand amount of energy is released that cannot be immediately trans- microjets.Chemiluminescencerelatesthebehaviorofbubblesthat ferredtothesurroundings.Asaresult,localhotspotsaredeveloped achieve a certain energy level (bubble radius of 2.6e4.1 mm at that have extremely high temperatures (ca. 5000 (cid:2)C), high pres- 575kHz),whilesonoluminescencegivesthemostviolentcharac- sures (ca. 50 MPa) and high rates of heating and cooling in the teristicsinbubbledynamics(activebubbleradiusof5.4e5.5mmat bubbles (>109 (cid:2)C/s) [27]. The extremely high temperature and 575 kHz) [29]. Methods that use advanced technologies such as pressurecandestroythecrystallinestateofsolidmaterials,cause laser diffraction, pulsed multibubble sonoluminescence, laser solids to meltorfuse solid particleswhen theycollidewith each phase-Doppler [38], methyl radical recombination and others other[30].Ultrasonicenergycancausetheformationofshort-life- [29,33]areusednotonlyforanalysisofsinglecavitationalbubbles, timereactiveradicalssuchasH(cid:3)andHO(cid:3)fromreactantsorsolvent but also for the acquisition of qualitative and quantitative infor- moleculesatthemomentofbubblecollapse[27]. mationofbubbleclustersorstreamers[29]. Oneofthemostimportantaspectsofapplyingultrasonicenergy Cavitationisthemainmechanismforultrasoundintensification. to systems is how its energy is transferred to reactant solutions, Thekeytoefficientapplicationofultrasoundiscontrolandselec- whichhasthreesteps:1)thetransformationofelectricalinputto tionoftheenergyintensityandpopulationofactivecavitation.The mechanical energy through a piezoelectric or piezomagnetic energy intensity of cavitation depends on the mean behavior of transducer;2)thedeliveryofvibrationalenergy(acousticenergy) bubbles,whilethepopulationofactivecavitationdeterminesthe fromtheemissiontipofthetransducertotheliquidmedium;3)the cavitational efficiency. Many experimental methods have been conversionoftheenergyofultrasonicstreamingtotheenergythat developed to measure the population and secondary effects of activatesreactantsbyacousticcavitation[32].Energylossesinany cavitation,however,thesemethodshavetheirlimitations. There- stepwillinfluencethetotalenergyefficiency. fore,itisnecessarytousetheoreticalmethodtoestimatetheen- Direction-selectivedeliveryofacousticenergyanditsattenua- ergylevelofcavitationalbubbles. tion in homogeneous or heterogeneous system results in a nonuniformenergyfield.Acousticcavitationefficiency,namelythe 2.2. Basisforreactordesignandparameters conversion efficiency of ultrasonic energy to cavitational energy, alsoplaysaroleinmechanisms.Onlycavitationalbubblesthatgrow Forprocessingofbiomassmaterialswithultrasound,theselection toacertainsizecanaccumulatesufficientenergyforreactantacti- of ultrasonic parameters such as ultrasonic mode (continuous or vation,sincethisenergyisrapidlyreleasedwiththeradialmotionof pulse),frequency,power,processingtemperature,solvent,aeration thebubbleorasbubblecollapseintransientcavitation.Therefore, andthedesignofreactorswithpropergeometricconstructionde- acousticcavitationisregardedasthemostimportantmechanismin terminesthelevelanddistributionofenergyintensityinthesystem, interpretingtheeffectofultrasonicenergyonreactions. and thus influence efficiency and reliability of the results [13,39]. Manyinterestingstudieshavebeenreportedonthedescription Dependingonexperimentalobjectives,parameteroptimizationcan and evaluation of cavitation behavior in sonochemical reactors beverydifferent.Nevertheless,theselectionofultrasonicreactors qualitativelyandquantitatively,bothwiththeoreticalandexperi- andparameterscanbenefitfrommanystudiesonbubblecavitation mentalmethods[29,33,34].Throughtheoreticalcalculationsatthe characteristics,includinggrowth/radialoscillation/collapse,popula- thermodynamic and kinetic level, it is possible to estimate the tion/density,intensityandlifetime,aswellassecondaryeffectssuch growth, size, pressure, temperature and lifetime of cavitational asshockwavesandmicro-convection. bubbles, which are related to the energy level of bubbles [29]. Throughcomputersimulation,itispossibletoestimatethedistri- 2.2.1. Designofultrasonicreactors bution of acoustic energy in an ultrasonic reactor with different Inthedesignofultrasonicreactors,someofthedesignparam- geometriesandoperatingparameters[33]. eterstobeconsideredarereactortypes(e.g.,bath,probe,flatplate Table1 Commonultrasonicreactortypes. Reactors Briefdescription Frequencyandpower/ Advantages Disadvantages Typicalapplicationcases Scale-up intensity Liquidwhistle Ultrasoundgenerated 5e30kHz[13], 1)Lowcost; Lowfrequencyandpoweroutput 1)Vegetableoil Yes[41] bymechanicaloscillation 1.5e2.5W/cm2 2)Suitableforcontinuous emulsification[44,45]; flowreactions 2)Liquidesolidmixture homogenization[13]; 3)Animalfathydrolysis[46]; J. 4)Industrialwastewater Luo degradation[47] et Ultrasonicbath Transduceratbottomor 15kHze>1MHz, 1)Lowcost; 1)Needadditionalmechanical 1)Cleaningofmetalpiece; Possible al. sidepositionofbath; Normally1e2W/cm2 2)Commercialized stirring; 2)Simplechemicalreactions /P reactionvesselfixedat 2)Dispersedandinhomogeneous rog somepositionsinbath a3c)oLuoswticcainvtiteantsioitnyadliesftfiricbiuenticoyn.; ressin Probereactor Directlydeliverofultrasonic Upto>100W/cm2 1)Highpoweroutput; 1)Easyerosionofhorntip[13]; 1)Intensivechemicalreactions; Possible En energytoliquidreactant 2)Concentratedenergydeliver; 2)Concentratedandinhomogeneous 2)Stubbornsolidcrushing. erg throughimmersiblehorn 3)Commercialized acousticintensitydistribution; y a 3)Difficultcontrolofreaction nd temperature; Co 4)Lowcavitationalefficiency. m b Cup-hornreactor Tthraencsudpucbeerinfigttedwithacup; 2109ee520740kWHaz[,48,50] 12))CAovnoicdenctornattaemdiennaetriognydoefliver; 1q)uaOnntliytysureitaacbtiloenfsorsmall Vegetableoilsaponification[49] No ustio n thereactor[48e50] reactantfromhorntiperosion S Resonating Ultrasoundgenerated 20e35kHz, 1)Avoidpossible e Phenoloxidation[52] Possible[40] cien tubularreactor byaxial Upto2kWa[48] contaminationofreactants; ce (Sonitube) vibrationofstainless 2)Capableforhandling 41 steelresonating large-scalefeedstocks. (2 0 tubescontaining 14 flowingreactant )5 6 Reverberative Intensifiedacoustic 17e45kHz, Concentratedandintensified e Biodieselsynthesis[54] Yes e 9 flowreactor intensityby Upto3W/cm2[54] energydeliver,uniform 3 reflectionand ultrasonicfield reverberation[54] PolygonalReactor Transducer e Concentratedandintensified e Celluloseenzymatic Yes arraysurrounds energydeliver,uniform hydrolysis[55,56] thepolygonal ultrasonicfield vesselcontaining liquidreactant a Valuesgivenforacousticenergyusedarepowerratings. 5 9 60 J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 or tube), reactor geometry, transducer design and arrangement, activity in the reactor by theoretical and mapping techniques andvolumeorscaleoffeedstocksforpracticalsystems. [34,58]. Table 1 lists and compares sonochemical reactors that are 3) Replacementofasinglehigh-outputtransducerwithanarrayof commonlyusedinultrasound-assistedbiomassreactions[13,40e transducersthathavelowoutput[58].Byusingseveraltrans- 56].Commercializedbathandprobereactorsarecommonlyused ducers, the following are favored: i) the formation of more inlaboratories,althoughtheyhaveaninhomogeneousdistribution uniform cavitational fields by reducing dead ends of acoustic ofacousticfieldandlowenergyefficiency[33].Forexample,probe- streaming;ii)intensificationofreverberationandsuperposition typereactorshavethehighestcavitationalintensitywithinadis- effects of ultrasonic energy; iii) reduction in the erosion of tanceofonewavelength(about3e5cm)fromtheirradiatingsur- transducer tips due to the lower emission power of each faceofthetransducerorhorntip.Asaresult,thegreatestbenefitof transducer. physicalorchemicalprocessing suchasemulsificationisrealized 4) Superposition of ultrasonic field by changing reactor geome- within the distance of one wavelength for probe-type reactors tries. In a reverberative flow reactor (Table 1), two emission [34,57]. arraysmadeupofseveralultrasonictransducersare mounted Forlarge-scaleorcommercialreactors,designsthatuseprobes on the upside and downside of a metal cuboid reactor, while or transducers have to consider reactor geometry to be able to liquid reactant flows through the inside of the cuboid space handle highand concentratedacoustic intensities [53,55,56].Key [40,54].Basedonthereflectionofultrasonicwaveattheinner pointsinreactordesignandarrangementofultrasonicprobesand wallofthereactorchamberanditsreverberationinthecham- transducersare: ber,theacousticintensityinthistypereactorwillbedoubledor multiplied,anditwillhaveamorenonuniformcavitationfield 1) Positionofultrasonichorninasonochemicalreactor.Forahorn- thansingletransducersystems.Similarideashavebeenadopted typeultrasonicdevice,thepositionoftheultrasonichorninthe insonochemicalpolygonalreactors[55,56,60]andinnercircular reactionvesselinfluencesthefeatureofacousticstreamingand focusingreactors[63]. thusthedistributionofcavitationalactivities[58].Appropriate hornpositiondependsonthereactorsize,processingscaleand A properly designed ultrasonic reactor on laboratory- or in- eventheheightofliquidreactants[59].Conventionalultrasonic dustrialscaleprovidesauniformenergyfieldforbiomassmaterials, hornsareverticallydippedintotheliquidsolutiontoadepthof with a suitable energy level for reactant activation. An advanced only several centimeters, which provides a poor streaming of sonochemicalreactordesignisscalabletocontinuousflowopera- acousticenergyinlarge-scalereactors.Acousticvelocityinthe tionandhasmatchingenergyefficiencyandprocessingbenefitof radial direction is only 10% of the vertical velocity [58]. The thelaboratoryunit. cavitationalactivityislimitedtoaverysmallzoneneartheul- trasonichornthatisonly10%fora2.5Lreactorasanexample 2.2.2. Ultrasonicfrequency [34].Kumaretal.[34,60]proposedthehorntobehorizontally Ultrasonic frequencyinfluencesthebehaviorofbubblecavita- immersed into the sonochemical reactor and longitudinally tionthroughthechangeinthedurationtimeofacousticcycle[40], vibrated,withtheimmersionlengthofthehorntobe82%ofthe whichisshortatrelativelyhighfrequencies(e.g.,2msfor500kHz) horizontallengthofthereactionvesselbasedona7Lvolume. andlongforlowfrequencies(e.g.,50msfor20kHz).Highfrequency Thismodificationchangestheacousticstreamingflowcharac- doesnotfavortheoccurrenceofactivecavitationasthetimeforthe teristicsinthereactor,anditgivesgoodpowerdissipationover growth,radialmotionandcollapseofbubblesmaybeinsufficient.It the reactor volume, and thus generates a nearly uniform cav- alsoleadstorapiddecayofacousticenergyintheliquidmedium. itationalactivitycomparedtoconventionaldesigns. However,theinfluenceofultrasonicfrequencyonpowerdissipa- 2) Surfaceandshapeofthetipofthetransducerorhorn.Largetip tionlevelandenergyefficiencyincavitationreactorsseemstohave diameters of the ultrasonic horn give low ultrasonic energy anumberoffactors.Somefreeradicalreactionsarereportedtobe densities due to the large emitter surfaces, however, rapid acceleratedathighultrasonicfrequenciesofseveralhundredkHz deactivationofa-amylasewasobservedforlargetipdiameters [64]. The relatively high frequencies shorten the duration of an from1 to7 mm [61]. Kadkhodaee and Povey [61] interpreted ultrasoniccycle,whichisaccompaniedbyincreaseinthenumber this unusual phenomenon occurred due to three reasons: i) of useful cavitation events in per unit of time [65]. The formed reaction between (cid:3)OH radicals and enzymes not taking place short-life-timeradicalsmayhaveahigherprobabilitytoescapethe insideofthebubbles;ii)highdensitiesofcavitationalbubbles cavitationalbubblesbeforebeingquenched[40].Ashokkumar[29] around 1 mm sonotrode tip causing serious acoustic attenua- performed methyl radical recombination experiments in Ar- tion; iii) high energy in individual cavitational bubbles being saturatedalcoholsolutionsatthreedifferentfrequencies(20,363 released when bubbles collapse, even though the delivered and 1056 kHz). The volume change of bubbles generated during energy density was low. However, the distribution of acoustic collapseatrelativehighfrequencywasmuchsmallerthanthatin fields is changed byenlarging of tip diameters. In the experi- the low-frequency ultrasonic field, which means that much less ment with alterable tip diameters of the ultrasonic horn, the energy was released at lower collapse temperature. Surprisingly, reactorgeometrywasflat-bottomedglasstubewithfixedinner the determined temperature of cavitational bubbles inwater fol- diameter of 16 mm, with the rating ultrasonic power density lowedthe orderof1056 kHz(4730e5930(cid:2)C) >363 kHz(3930e keeping at about 24.4 W/mL [61]. With an increase of tip 4430(cid:2)C)>20kHz(3430e3930(cid:2)C).Thiscanbeexplainedbythe diameterfrom1to7mm,theproportionalscaleofthesurface waterevaporationthatwouldoccurinoneacousticcycle.Longer areaofthehorntiptothecrosssectionalareaoftheglassinner durationandlargerbubblesizeexistingduringtheradialmotionof tubeincreasesfrom0.4%to19.1%.Widedistributionofacoustic bubbles in the low-frequency ultrasonic field means that more fieldsisgivenbylargeemittersurfacesthusthisinfluencesthe liquid molecules enter into high-energy bubbles, and then they largebulkofenzymesolutions,andispossiblyoneoftherea- vaporize,whichsubstantiallylowerstheactualenergylevelwithin sons for the unusual behavior of a-amylase under ultrasonic the bubbles [29]. Another report demonstrates that the rate of irradiation [62]. Therefore, rational design of scaled-up ultra- energyreleaseofsinglebubblesandthecavitationalefficiencywas sonic reactors requires the quantitative prediction of acoustic higherwithultrasoundathigherfrequenciesbyseveraltimes[62]. streaming, power dissipation, mass transfer and cavitational Therefore, there are optimal values for frequency choice in the J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 61 ultrasonic operation of specific reactions. For the oxidation of from 77.1 to 79.8 ppm and from 0.96e1.90 to 3.55e6.94 ppm, ferrousion,KIandwater,thevalueswere130kHz,200e300kHz respectively[69].Themostactivezoneforsonochemicalreactions and 358 kHz, respectively [33]. However, ultrasonic frequencies isnormallyregardedtobetheinnerofcavitationalbubblesandthe higher than 200 kHz should be used with caution as they have thin liquid shell that surrounds the bubbles. As a result, the adverseeffectsonenergybenefitoftheprocessandonthelifetime degradationefficiencyofphenolsincreasedtothree-fold. ofultrasonictransducers. Theadditionofsurfactantsreducesthedissolutionandcoales- Comparedwithsingle-frequencyultrasound,ultrasonicreactors cence of bubbles in multibubble systems [29,70]. The sizes of withmultiple-frequencydesignscannotablyreduceenergylossin cavitationbubblesin1mMsodiumdodecylsulfatesolutionwere the scattering, reflection and absorption of the acoustic waves. significantlyreducedcomparedwiththoseinwater[29]. Cavitation created withmultiple-frequency designsbenefitsfrom Thephysicalpropertiesoftheliquidmediuminfluencethede- thelowcavitationthresholdoflow-frequencyultrasoundandthe livery and dissipation of acoustic power to the solution. Detri- high collapse rate of high-frequency ultrasound [66]. Dual- mentalattenuationofacousticenergyoccursinviscousmediums (25kHzþ40kHz)andtriple-frequency(20kHzþ30kHzþ50kHz) such as in plant oil [40], which decreases the process benefit of flow cells with bath-type and horn-type devices have been re- ultrasonicoperation. ported to have higher cavitational yields (iodine method) of Physicalpropertiesofhomogeneoussolventshavemanyeffects 7.06(cid:5)10(cid:4)7g/Jand5.67(cid:5)10(cid:4)6g/Jandhigherenergyefficienciesof on ultrasonic cavitation. Low viscosity, relative low volatility and 55%and76%,respectively,muchhigherthansingle-frequencyde- relative high surface tension of liquid solvents are regarded as vice[39,67]. favorable for achieving efficient cavitation. Frequently, water is used as solvent in most ultrasonic operations as it has a higher 2.2.3. Propertiesofhomogeneoussolvents cavitationalintensitythancommonorganicliquids[28]. Thephysicalandchemicalpropertiesofsolventsgreatlyinflu- enceacousticpropagationandcavitation.Thephysicalproperties 2.2.4. Heterogeneouspropertiesofultrasound-assistedreactions includetheviscosity[68],volatility[69],surfacetensionofsingle Active cavitation in ultrasound-assisted reactions is generally and multicomponent solvents, while chemical properties include preferred to occur at the heterogeneous sites in liquids. These the composition in completely miscible binary/ternary organic heterogeneoussitescanbeimpurities,freegasmicrobubblesinthe mixtures, electrolyte solutions, or surfactant solutions, as well as liquid,newnucleiduetocollapseandfragmentationofbubblesin thechemicalactivitiesassociatedwithradicalgeneration. the previous acoustic cycle, and crevices at the heterogeneous Theformationofcavitiesinthebulkliquidphaseunderultra- interfacesuchasreactorwallornon-volatileadditives[28,71].In sonicconditionsmeanstheinevitableweakeningandbreakdown theacousticemissionspectrumofpurewaterwithoutanyimpu- ofintermolecularinteractions.Inthebulkliquid,theseinteractions rities or gas microbubbles, only one peak, corresponding to the arereflectedinthephysicalpropertiesofsolventsthroughchanges fundamentalfrequencyoftheultrasoundisseen,whichmeansthat in viscosity, vapor pressure, boiling point and surface tension. A nocavitationoccursforpurewater[32].Onthecontrary,forwater solventthathashighsurface tensionandhighviscosity probably containingacertainconcentrationofgasnuclei (microbubblesin hasanincreasedenergybarrierfortheformationofcavities,which thereactorcrevices),strongsubharmonic,ultraharmonicandhar- isdetrimentalforcavitation. monicemissionsappearedintheacousticemissionspectrum. Inthegrowthandoscillatingstageofcavitationalbubbles,the The existence of dissolved gas affects the behavior of bubbles surfacetensionandvolatilityaffectthesizeandchemicalcontentof andthusthecavitationintensityinsonochemicalreactors.For(cid:3)OH thebubbles.Relativehighsurfacetensionofsolventsleadstostable radicalreactions,theorderoftherateconstantof(cid:3)OHradicalfor- bubble sizes that tend not to dissolve in the bulk liquid. High mation(mmol/(Lmin)atanultrasoundfrequencyof513kHzunder volatilityofliquidallowsliquidmoleculestoflowintointensified different gas atmospheres was Kr (3.17) > Ar (2.90) > O2 bubbles and evaporate at negative pressure (rectified diffusion), (2.68) >He(0.58)[64].GaseousHehadthelowestrateconstant which reduces the force of bubble collapse. Similar buffering of thatcouldbeattributedtoitshighthermalconductivitycompared cavitational intensity occurs when chemical reactions involving with other gases [72]. When the dissolved gas has high thermal volatilereactantsorintermediatestakeplacewithinthebubbles. conductivity,moreenergyinthecavitationalbubblesistransferred Theadditionofasecondhomogeneouscomponentinamixture tothesurroundingsolution,whileconcurrentlylessenergyisob- can have a remarkable influence on the cavitation behavior tained as the bubble collapse. The solubility of gas in water [29,34,70], because it affects the volatility, surface tension and (Kr[ArzO2[He)isalsoafactorintheresults[72].Lowgas viscosityofthebulksolution.Asecondhomogeneouscomponent solubility inwater does not provide enough nuclei for ultrasonic changesboththeacousticstreamingandpowerdissipationinthe cavitation, while high gas solubility in water might weaken the solution. The addition of 10% (w/v) electrolyte NaCl in water cavitationeffectsastheformedcavitationalbubblesmayredissolve increasedthepowerdissipationby14.7%and57.9%,andcontrib- beforetheircollapse[40]. utedtoanincreaseincavitationalproductionby11.6%and60.8%at Forspecificbiologicalorchemicalprocessingsuchasemulsifica- frequenciesof694and204kHz,respectively[34].Theadditionof tion[73],microbialcelldisruption[74],enzymeactivation[61]and 10% (w/v) NaCl also changes nucleation, growth and collapse of radicalformation[64],appropriateamountsofdissolvedgasprovide eachbubble.Theexpandingratioofcavitationalbubblesizeduring nucleifortheproductionofcavitationalbubbles,andfavorultrasonic itsgrowthincreasedfrom6.2to8.8atfrequenciesof204kHz,with cavitation.Foremulsification,nocleareffectofgascontentisobserved thecollapsetimeofbubblesbeingprolongedfrom3.43to3.84ms onthesizeofemulsiondropletsforaconstantenergydensity[73]. [34].Theintroductionofanon-volatilesaltchangesthevolatility However, for processing of microbial cells, the rate constant of a- and partitioning behavior of solvents. For the sonochemical amylasedeactivationwasrelativelylowerinpre-degassedwater[61]. degradationofvolatilechlorobenzeneandnon-volatilephenol,the Bubbling with CO2 or (CO2 þ H2) during sonication enhanced the introductionof4%(w/v)NaClenrichedtheorganicsattheinterface releaseofpolysaccharidesfromPorphyridiumsp.cells[75]. betweenthebubbleandbulkliquid,withthepartitioncoefficient The presence of foreign additives, including volatile and non- ofchlorobenzeneandphenolincreasedfrom29.2to48.0andfrom volatile substances, not only lowers the very high-energy 3.3 to11.7,respectively[69]. The molarconcentrations of chloro- threshold for cavitation in the pure solvents, but also seems to benzene and phenol vapors entrapped in the bubbles increased induce chemical effects in acoustic cavitation through the 62 J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 promotion or inhibition of radical formation. Katekhaye and actualvolumeofliquidreactantinthereactionvesselforprobe-type Gogate[71]determinedtheeffectofsomeadditivesoncavitational reactors,whileitisthevolumeofthewaterbathinthereactorfor yield with a horn-type reactor (20 kHz, power dissipation of sonication,asthesurroundingliquidinthetankisthefirstreceptorof 0.098 W/mL by calorimetric measurement) using the iodine ultrasonicirradiation. method.Theyusedsolidparticles(CuO,TiO2),salts(NaCl,NaNO2) Factors that influence the energy level of cavitation and the and radical promoters (H2O2, FeSO4, metal iron, CCl4 and tert- energyreleasedduringcavitationtothereactantsarerelatedtothe butanol).Alladditivesshowedapositiveinfluenceoncavitational size change in bubble radial motion, the lifetime of bubbles, the yieldwiththeimprovementbeing40e240%,whiletheadditionof collapse time of bubbles and the chemical compositions in the radicalpromoterssuchastert-butanol,CCl4andFeSO4showedthe bubble. While higher acoustic intensity and lower threshold for bestresults.Withpropercombinationofseveraladditives(suchas cavitation may result in more population of active bubbles. For TiO2 þ H2O2), synergistic effects can be seen with much higher differentintensificationmechanism,theinfluenceoffactorsmaybe cavitationalyieldsthanthoseforusingindividualadditives.How- different. For shockwaves and micro-convection induced intensi- ever,forsomeadditivessuchasTiO2,H2O2andtert-butanol,high fication, the intensity of shockwaves and micro-convection is concentrationscanbedetrimentaltocavitationalyield.Thismight related to the intensity and rate of energy release during bubble be interpreted as the enhancement of the premature rupture of collapse,andthusisdependedontheviolenceoftheextendingand cavitational bubbles or the recombination offreeradicals at high shrinking of bubble size, the evaporation of bubble contents, the concentrations of these additives, while the detailed mechanism adiabaticpropertyofliquidandthetimeforbubblescollapse.For needsfurtherinvestigation. chemicalradicalinducedintensification,itisimportanttoensure As highlightedin Section 2.1, the level and efficiency forcavi- sufficientvolatilesubstratestrappinginthebubblesorstayingat tationenergydependsnotonlyonthetransformationofacoustic the thin liquid shell that was veryclose to the bubbles. It is also energytocavitationenergy,butalsoisrelatedtotheattenuation importanttoshortenthetimeforbubblescollapseandenhancethe and energy absorption of the acoustic wave propagating in the escapeofradicalsfromthebubbles.Fornon-volatilereactants,the system.Forinstance,highdensityofbubblecloudsmaybegener- absorptionofcavitationenergybyviscousliquidorheterogeneous atedatthezoneswithhighultrasoundintensities,suchasthere- systemshouldbealsocarefullyconsidered.Therefore,theoptimi- gionnearthetipofthetransducer.Thebubblecloudscouldabsorb zation of ultrasonic parameters should consider the specific re- orscatteracousticwaves,andresultininefficientenergydelivery actionsandtherealintensificationmechanism. withinthereactor[61].Cavitationenergyisalsoabsorbedbysol- ventsandheterogeneoussystem.Theamplitudeofpressurepulse measuredat 1mm fromthebubblecenterwasonlyone-in-one- 3. Ultrasonicpretreatmentandreactionsoflignocellulosic thousands of its actualvalue [35]. Similarattenuation of acoustic biomass energyandcavitationenergymightbeseeninslurriesorsuspen- sions such as insoluble biomass particles, humin products and Lignocellulosic biomass is one of the most abundant bio- nano-scalecatalysts.Therefore,additional care must betaken for resourcesintheworld,withanannualworldgrowthof170e200 treatingthesetypesystems[58].Therearetwoconflictingaspects billion tons [2]. The structure of lignocelluloses is complex and regardingthepresenceofimpurities:(i)promotionofcavitationby recalcitrant,withcellulose(40e50%),hemicellulose(10e20%)and impuritiesand(ii)acousticattenuationbythescatteringofacoustic lignin (20e30%) as the three most abundant components. The energywhentheacousticwavebypassestheimpurities.Asaresult, primary requirements for the thermochemical and biochemical theexistingandconcentrationofheterogeneousimpuritiesshould conversionoflignocellulosesare: haveareasonablevalue,whichdependsonthesizeandproperties of impurities. However, qualitative and quantitative information 1) Pre-fractionationofrawlignocellulosesbeforereactions.Lignin aboutacousticattenuationinheterogeneoussystemsisstilllacking and hemicellulose should be firstly removed from cellulosic andneedtobestudiedinfuture. materials,astherawlignocellulosiccomplexhinderstheaccess ofenzymemoleculesandchemicalcatalysts.Thecriticalissueis 2.2.5. Otherparameters howtoimprovetheefficiencyandeconomicsinthedestruction Foracousticcavitation,otherfactorsrelatedtothesonochemical oflignocellulosicstructureandtheseparationoftheconnected environmentincludethetemperatureofmedium,thestaticpressure components at mild condition. The reduction in the reaction ofthefluid[73,76]andthelevelofpowerdissipationinthesolution. severity also means less production of by-products (such as Thedetailscanbeseeninthefollowingsectionsandotheravailable phenols,furfuralsandorganicacids)aswellaslessalterationof literature [28,33,40]. However, the selection and optimization of theglucosidicstructureofcellulose. theseparametersconsidersnotonlyacousticcavitation,butalsothe 2) Opening of the crystalline structure of raw cellulose at mild requirementsforrawmaterialsandprocessing. conditions.Comparedwithligninandhemicellulose,theregu- Inmuchofthecontentpresented,powerratingsofacousticlevels larity in the chemical and crystalline structure is the most aregiventodescribethesystemsusedinthestudies.Theratingvalues prominent characteristic of cellulose. Hundreds to tens of mightbeviewedasaspecificationofsonochemicalreactors.How- thousandsofD-glucopyranosesconstitutethemolecularchains ever,itshouldbenotedthatthesepowerratingsarenotpractical throughb(1/4)glucosidiclinkageswithunifiedorientation, powerlevels,sincetherearelossesintheenergytransformation.The whilemostchainsparticipateintherecalcitrantcrystallinere- actualpowerlevelinthereactantsolutionsisnormally10e40%ofthe gion of raw cellulose by intra and intermolecular hydrogen ratedvalues[71,77e80].Actualpowerlevelscanbedeterminedwith bonds.Thismakescellulosestronglyhydrophobic,anddifficult calorimetricmeasurements.Forthesecases,thedeterminedvalues to be dissolved or degraded into common solvents. In the arespecificallynotedas“bycalorimetricmethod”inthisreview.The degradationdynamicsofcellulose,theloweringanddestruction powerlevelsforultrasonicprocessingarelargelyrelatedtothescale of its crystalline structure requires extremely high activation orvolumeofprocessing.Therefore,thevaluesofmeanpowerdensity energy.Forexample,theenergyrequiredforremovingaglucan (the ratio of acoustic power to the volume of liquid reactant) are fromcrystalline cellulose inroomtemperaturewateriscalcu- preferentiallyconsideredandlistedinthisreviewasasubstitutefor lated to be about 8.1 kJ/mol [81], which influences the rawpowervalues.The volume ofliquidreactantisdefinedasthe saccharificationefficiencyandhydrolysisselectivity. J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 63 3) Intensification of mass transfer in heterogeneous reactions Cellulosic materials are crushed to particles or crystalline grains containing solid lignocelluloses. The surface of lignocelluloses havingmicro-orevennano-sizerangesafterbeingsubjectedtoa needstobeincreasedthroughpretreatmentforbettercontact mean rating power of 3.0e10.0 W/mL [88,89]. Sonotreatment of withsolventsforreactions. chemically-separated cellulose inwaterat 6.67 W/mL for 30min gave nano-sized fibers with diameters of lower than 20 nm To meet these requirements, pretreatment and reactions of [88,90,91]. Pinjari and Pandit [86] reported their work on the lignocellulosesshouldbeperformedinsurroundingsthatprovide millingofnaturalcellulosetonanofibrilsusinghydrodynamicand sufficient reaction intensity such as high-energy input to destroy ultrasonic cavitation in succession. Sonication at 3.0 W/mL for lignocelluloses, but remain at relatively mild conditions and low 110minreducedthesizeofthecelluloseparticlesfrom1360nm energyintensitiessuchasroomtemperature,shorttreatmenttime after hydrodynamic cavitation to 301 nm. High-intensity ultra- andneutralpHvaluesofthesolutionforthepurposesofatomef- soundalsoincreasesthesurfaceareaofsolidbiomassbycavitation ficiency. It seems to be contradictory, however, ultrasonic pre- erosion [56,92]. As a result, size reduction and erosion of ligno- treatment can address these requirements, because ultrasonic cellulose particles benefits the extraction of chemicals from treatment features high local strength with its intense cavitation biomassandthesaccharificationofcellulosicmaterials[85,87]. and overall moderate effects. However, much progress has been Applicationofultrasonicenergyaidsinthedissolutionorsol- reported on ultrasound-assisted lignocellulose fractionation, vationofcellulose,hemicelluloseandlignininorganicsolventsand component solvation, thermochemical/biochemical conversion ionic liquids. Ultrasound accelerates the dissolution of cellulose. especiallyforsaccharificationandfermentation.Progressonthese Withultrasoundpre-irradiationfor20minandsubsequentheating topicswillbereviewedinthissection. withoutultrasoundforanother60minat110(cid:2)C,thedissolutionof cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride 3.1. Destructionandfractionationoflignocellulose ([C4mim]Cl) was complete, as compared with 190 min for con- ventionalheatingonly[93].Dissolutionorextractionofligninfrom Ultrasonic energyapplied as pretreatment has special mecha- bagasseorbamboopowdersin1,4-butanediol/watermixtures[94] nistic effects on the structural integrityoflignocelluloses (Fig.1). or95%ethanol[95]ismoreeffectivewithultrasonicenergythan Ultrasonic treatment can destroy wax layers and silica bodies conventionalagitation. depositedontothesurfaceoflignocellulosicstructuresandcanaid Sonication has been used to achieve favorable results in the in their removal [82,83]. The size of biomass particles can be fractionationofrawlignocelluloses[14,96]andextractionofcom- reduced when subjected to high power ultrasound [84e87]. pounds in raw biomasses [16] such as polysaccharides, phenolic Fig.1. Mechanisticeffectsofultrasonicenergy(US)inlignocellulosepretreatmentandconversion[14,16,56,82e84,86,88,100,102](a:ReprintedwithpermissionfromRef.[56], Copyright(cid:1)2011Springer.) 64 J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 Table2 Ultrasound-assistedpretreatmentandreactionsofstarch,celluloseandlignocellulose. Materials Ultrasonicprocessandparametersa Consequentprocessandparameters Keyfindings Ref. Sugary-2maize Pretreatment: Starchhydrolysis: Starchconversionimprovedfrom13.7% [116] Probe,20kHz,4.8e8.3W/mL, 32(cid:2)C3h, to39.2e56.8%. 5e40s, Stargen(cid:3)001 Concentrationof3g/32mL Cornmeal Pretreatment: Starchliquefaction: 1) Glucoseyieldincreasedfrom29.6wt.% [115] Sonicator,40kHz,about1.58W/mL, 85(cid:2)C,1h, to31.6wt.%afterliquefaction. 60/80(cid:2)C,3e10min, Solid/waterweightratioof1/3 2) Bio-ethanolconcentrationincreasedfrom Sampleconcentrationof25wt.% TermamylSC,pH6.0 0.45g/gstarchto0.50g/gafterfermentation. Simultaneoushydrolysisand fermentation(SSF): 30(cid:2)C,32h, Saccharomycescerevisiaevar. ellipsoideus,SANExtraL,pH5.0 Microcrystalline Pretreatment: Microwave-assistedhydrolysis 1) Sizeofcelluloseparticlesreducedfrom [87] cellulose Probe,20kHz,1.5W/mL, oversolidcatalyst: 38mmtoabout0.3mm. 80(cid:2)C,3e9h, Microwavepowerof350W, 2) Glucoseyieldpromotedfrom3.8e4.9% Solid/liquidratioof5g/200mL 150(cid:2)C,1h, to11e21%,comparablewithballmillingor Solid/waterratioof0.5g/5mL, ionicliquidpretreatment. Sulfonatedcarbon 3) Highselectivityof64e71%forhydrolysis, withoutby-productsuchasfurfurals. 4) Muchshortertimeof<1hforcellulose hydrolysis. Triticalemeal Pretreatment: Starchliquefaction: 1) Glucoseandmaltoseyieldsincreasedby [123] Bath,40kHz,about0.05W/mL, 60(cid:2)C,65min 12.3e15.7%and46.7e52.6%afterliquefaction. 40e60(cid:2)C,5min, SSF: 2) SSFtimereducedfrom72hto<48h, Sampleconcentrationof25wt.% 30(cid:2)C,72h, withbio-ethanolcontentincreasedby8.2e10.9%. Saccharomycescerevisiaeyeast Cassavachip Pretreatment: Simultaneousliquefaction-SSF: 1) Ethanolyieldincreasedfrom31.4%to [118] Probe,20kHz,8.5W/mL, 32(cid:2)C,72h, 43.1%aftersonicationat8.5W/mLfor30s. 10e30s, Stargen(cid:3)001þSaccharomyces 2) Fermentationtimereducedfrom72hto36h. Slurrieswith5%totalsolids. erevisiae(ATCC24859) Oilpalmfruit Pretreatment: Hemicellulosehydrolysis: Xyloseyieldincreasedfrom22%to52%. [83] bunch Probe,20kHz,about2e3W/mL, 100e140(cid:2)C,<200min, 25(cid:2)C,15e45min, Solid/liquidratioof1:25, Solid/liquidratioof50g/500mL, 2%H2SO4 2%H2SO4 Switchgrass Pretreatment: Celluloseenzymatichydrolysis: Reducingsugaryieldincreasedfrom8wt.% [56] Hexagonalreactor,20kHz, 50(cid:2)C,5h, ofcontrolgroupto9.75wt.%. 50(cid:2)C,5h, Solid/0.1MCH3COONabuffer Solid/0.1MCH3COONa of10g/250mL bufferratioof10g/250mL Accellerase1500(cid:4) Ricehull Pretreatment: Cellulosefungalpretreatment: Netyieldsoftotalsolublesugarandglucose [121] Bath,40kHz,about0.025W/mL, 28(cid:2)C,18days, were31.8%and32.2%comparedwithcontrol 25(cid:2)C,30min, Solid/liquidratioof35/65, groupvaluesof6.9%and7.6%(solefungal Solidloadingof15%(w/v) P.ostreatus pretreatmentfor18d). Enzymehydrolysis: 45(cid:2)C,48h, Enzyme,pH4.8 Arecanuthusk Limepretreatment: SSF: 1) Delignificationratiosincreasedfrom50e54% [77] (Arecacatechu), Probe,30kHz,100W 35(cid:2)C,72h, to64e68%,withtimereducedfrom>8 bonbogori (36W,calorimetry), Biomassloadingof10wt.%, weeksto1.5e3h. (Ziziphus 35(cid:2)C,1e3h, Cellulase(Accellerase1500)þ 2) Ethanolyields,73.7%forarecanuthusk, rugosa),moj Biomassloadingof3.2e9.0wt.%, Saccharomycescerevisiae,pH4.5 83.1%forbonbogoriand85.2%formoj. (Albizialucida) Lime,0.5wt.%ofbiomass. Kenafcorefiber Ionicliquidpretreatment: Celluloseenzymatichydrolysis: Saccharificationratioincreasedfrom47%to86%. [125] Probe,24kHz,about8W/mL, 50(cid:2)C,48h, 25(cid:2)C,15e30min, Cellulase(fromTrichoderma 1-Ethyl-3-methylimidazolium viride),pH5.0 acetate(5g/0.25gmaterial) Microcrystalline Ionicliquidpretreatment: Celluloseenzymatichydrolysis: Celluloseconversionimprovedfrom75.6%to [126] cellulose Bath,45kHz,about0.01W/mL, 50(cid:2)C,24h, 95.5%withultrasound. 60(cid:2)C,30min, [Mmim][DMP]concentrationof20%, Alkylimidazolium Cellulase(fromTrichoderma dimethylphosphateionic reessei),pH4.8 liquid([Mmim][DMP]) Microcrystalline Ionicliquidpretreatment: Materialregenerationinwater Saccharificationratioimprovedto92.4% [127] cellulose, Probe,24kHz,1.7W/mL, Enzymatichydrolysisof from55.0%withionicliquidpretreatmentonly. bamboo 25(cid:2)C,60min, recoveredmaterial: Cholineacetate 50(cid:2)C,48h, Cellulase(fromTrichodermaviride),pH5.0 Kenafcorefiber Sonocatalytic-Fenton Celluloseenzymatichydrolysis: Saccharificationratiopromotedto22.4e24.3%of [124] pretreatment: 50(cid:2)C,48h, sonocatalytic-Fentontreatmentfrom9.8to11.0%of Probe,24kHz,0.7W/mL, Kenafpowderloadingof2%(w/v), controlgroup,13.0to14.0%of 25(cid:2)C,3e6h, Cellulase(fromTrichodermaviride),pH4.0 sonocatalytic J.Luoetal./ProgressinEnergyandCombustionScience41(2014)56e93 65 Table2(continued) Materials Ultrasonicprocessandparametersa Consequentprocessandparameters Keyfindings Ref. TiO2amountof2g/L, treatmentand14.9to15.3%of Fentonreagent(H2O2, Fentontreatment. 100mM,FeSO4,1mM) Carboxymethyl Pretreatment: Enzymehydrolysis: 1) Maximumreactionrateover [120] Cellulose(CMC) Probe,20kHz,0.72e1.35W/mL, 50(cid:2)C,CMCconcentrationof10g/L, mixedcellulase 50(cid:2)C,20e60min MixedcellulasesfromTrichoderma (70wt.%Trichoderma pH4.8 virideandAspergillusniger,pH4.8 virideþ30wt.%Aspergillus niger.)increasesfrom 6.94(cid:5)10(cid:4)7to9.86(cid:5)10(cid:4)7 mol/(Ls)withultrasound. 2) Maximumreactionrate overAspergillusniger didnotincreasewithultrasound. Waxyricestarch Starchhydrolysis: e Number-averagemolecular [117] Homogenizer,20kHz, weightincreased upto0.12W/mL, from1.3(cid:5)10(cid:4)5to0.2(cid:5)10(cid:4)5. 60(cid:2)C,24h, Concentrationof1% Maizestarch Starchacidhydrolysis: e Glucoseyieldof32e97wt.%,22e100%higher [128] Probe,25kHz,about4W/mL, thancontrolgroup. 90e100(cid:2)C,0.5e2h, H2SO4(3e5wt.%) Glucose Glucosefermentation: e Reactionrateconstant [129] Bath,continuous,40kHz, increasedby1.3e1.5times about0.027W/mL, comparedwithstirring. 20or30(cid:2)C,4e20h, Glucose(20e40wt.%), Saccharomycescerevisiae Sugarcane Alkalinepretreatment: Hydrolyzatefermentation: 1) Celluloseandhemicellulose [100] bagasse(SCB) Probe,24kHz,2.0W/mL, 30(cid:2)C,60h, recoveriesof99%and 50(cid:2)C,20min, Saccharomycescerevisiae,initialpHof5.0. 79%,ligninremovalof75%after Solid/liquidratioof1g/20mL, alkalinepretreatment. 2%NaOH 2) Maximumethanolyieldof0.47g/gglucose, Acidhydrolysis: 0.17g/gofpretreatedSCB. Pulse,cyclecontrol(50%cycle), 50(cid:2)C,30e45min, Solid/liquidratioof1g/20mL, 2%H2SO4 Newspaper, Celluloseenzymatichydrolysis: e Apparentrateconstantsincreasefrom11e13to [78] officepaper, Probe,0.8e6.4Lreactor, 16e24h(cid:4)1for0.8Lreactor,from10e14to pulp 20kHz,0.005e0.075 15e19h(cid:4)1for3.2Lreactor,from8.5e14to W/mL(calorimetry), 14e18h(cid:4)1for6.4Lreactor. 45(cid:2)C,48h, Substrateconcentrationof 7.5e25g/L, Cellulase(fromTrichoderma viride),pH4.8 Sugarcane Alkalinepretreatment: Hydrolyzatefermentation: 1) Afteralkalinepretreatment,80.8% [102] bagasse Probe,continuous,24kHz, 30(cid:2)C48h, ofhemicellulose upto2.0W/mL, Zymomonasmobilis(MTCC89),pH5.7. and90.6%ofligninremoved. 40(cid:2)C,30min, 2) Glucoseyieldafterenzymatic Solid/liquidratioof1g/20mL, hydrolysisincreased 2%NaOH from34.5wt.%ofcontrolto57.6wt.%. Enzymatichydrolysis: 3) Ethanolyieldincreasedfrom43.7g/g Probe,interval,24kHz, glucoseto46.6g/g. upto2.0W/mL, 40(cid:2)C,6h(ultrasonicfor3h), Solid/liquidratioof1g/15mL, Cellulomonasflavigena (MTCC7450),pH6.0 Avicelcellulose, Pretreatment: Hydrolyzatefermentationto Conversionsofavicelcelluloseandsugarcane [132] sugarcane Bath,45kHz,about0.01W/mL, biodiesel: bagasseathydrolysistimeof12h, bagasse 80(cid:2)C,72h, NMMO,20%(w/v) 1) Untreatedsamples,28%and16%. Substrateconcentration 30h, 2) NMMO-treatedsamples,72%and72%. of3%(w/v), R.opacusACCC41043 3) NMMO-ultrasound-treatedsamples,96%and91%. N-methylmorpholine- N-oxide(NMMO) Celluloseenzymatichydrolysis: Bath,45kHz,about0.01W/mL, 50(cid:2)C,12e48h, Substrateconcentration of0.6%(w/v), b-glucosidase(fromAspergillus niger),pH4.8 a Powerlevelsadditionallymarkedwithword“calorimetry”isactuallydeterminedusingcalorimetrymethod,whileotherswithoutlabelsarethepowerratingofthedevice.

Description:
actions. The use of ultrasound in conversion of biomass to biofuels provides a positive process benefit Ultrasound-assisted synthesis of biodiesel . Areca nut husk. (Areca catechu), bon bogori. (Ziziphus rugosa), moj. (Albizia lucida). Lime pretreatment: Probe, 30 kHz, 100 W. (36 W, calorimetry),.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.