ebook img

Ultrasonic Spectral Analysis for Nondestructive Evaluation PDF

359 Pages·1981·32.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrasonic Spectral Analysis for Nondestructive Evaluation

Ultrasonic Spectral Analysis for Nondestructive Evaluation Ultrasonic Spectral Analysis for Nondestructive Evaluation Dale W. Fitting and Laszlo Adler Ohio State University Columbus, Ohio Springer Science+Business Media, LLC Library of Congress Cataloging in Publication Data Fitting, Dale. Ultrasonic spectral analysis for nondestructive evaluation. Bibliography: p. Includes indexes. 1. Non-destructive testing. 2. Ultrasonic testing. 3. Spectrum analysis. 1. Adler, Laszlo, 1932- . Title. TA417.4. FS4 620.1'1274 80-14991 ISBN 978-1-4613-3128-5 ISBN 978-1-4613-3126-1 (eBook) DOI 10.1007/978-1-4613-3126-1 © 1981 Springer Science+Business Media New York Originally published by Plenum Press, New York in 1981. Softcover reprint of the hardcover 1s t edition 1981 AlI rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electrical, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Acknowledgments The authors are grateful to Battelle Memorial Institute for financial support of this work. Special thanks are extended to Mr. G. J. Posakony, Battelle Northwest Laboratories Program Monitor, for his initiation and continuous interest in this problem. Appreciation is also extended to the following: Nondestructive Testing Laboratory, Metals & Ceramics Division, Oak Ridge National Laboratory-especially R. W. McClung, Hugh Whaley (now at Babcock & Wilcox, Lynchburg, Virginia), K. V. Cook, and Bill Simpson-who initiated our interest in ultrasonic spectroscopy; Ultrasonics Group, The University of Tennessee-especially M. A. Breazeale and T. K. Bolland-for their suggestions and cooperation; Maxine Martin for her editorial assistance and excellent typing of the manuscript. Gale Slutski and Kerstin Kleber for transferring our ideas into the illustrations. Last but not least, we would like to acknowledge the scientists, both here and abroad, whose contributions to the field of ultrasonic spectral analysis made this work possible. The work contained in this book was performed while the authors were associated with the University of Tennessee, Knoxville. Ohio State University Dale W. Fitting Laszlo Adler v Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ultrasonic Spectroscopic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Continuous-Wave Sinusoid and Sinusoidal Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Ideal Broadband Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Rectangular Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Other Pulse Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Single Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Exponential Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Arbitrary Pulse Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Coupling Network, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Coaxial Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Response Equalization Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transmitting Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Equivalent-Circuit Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Derivation of Frequency Response from the Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Mechanical Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Broadband Transmitting Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Electrostatic Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Electromagnetic Acoustic Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Transmitting Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Matching Components to Optimize Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Producing an Ultrasonic Pulse Having an Arbitrarily Chosen Spectrum................................................... 34 Laser Generation of Ultrasonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Radiation Coupling, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Mechanical Coupling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Intrinsic Energy Losses-Scattering and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Geometrical Energy Loss-The Ultrasonic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Material under Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Radiation Coupling, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Transfer Function for Disk-to-Disk Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Receiving Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Piezoelectric Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 vii viii Contents Acoustoelectric Transducer 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Capacitive Receiver 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Electrical Coupling Network, II 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Differentia tor 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Low-Pass Filter .. 54 0 0 ...... 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .... 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 .. 0 0 .... 0 0 0 0 0 0 0 0 .. 0 Amplifier 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Analog Gate 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sampling and Digitization 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sampling 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Digitization 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Transient Recorders 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Charge-Transfer Devices 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Equivalent-Time Sampling 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Receiving Subsystems 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Response Equalization Networks .. 67 0 0 0 .... 0 0 0 0 .... 0 0 0 0 .... 0 0 0 0 0 0 0 0 0 0 .... 0 0 0 0 0 .... 0 0 0 Spectrum Analysis 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fourier Analysis 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Analog Spectrum Analyzers 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Digital Spectrum Analyzer 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Additional Analysis Techniques 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Complete Ultrasonic Spectroscopic Systems 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3. Applications of Ultrasonic Spectroscopy to Materials Evaluation 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 Defect Characterization 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 General Considerations 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Theoretical Considerations 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Experimental Work .. 98 0 0 .... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .... 0 ...... 0 0 0 0 .. 0 0 .. 0 0 .... 0 0 0 0 0 0 0 0 0 0 .. 0 Defect Characterization Utilizing Contact Measurements 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Characterization of Defects in Flat Immersed Samples I 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Phase Spectroscopy ...... 106 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ........ 0 0 0 0 0 .. 0 .. 0 0 0 .... 0 0 0 0 0 0 0 0 0 0 .. 0 Inversion Techniques 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Adhesive Bonds I 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Models and Theoretical Developments I 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Experimental Investigations 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Surface Properties 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Surface Roughness 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Periodic Structure 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Corrosion, Deformation, and Fatigue 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Surface-Breaking Cracks 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Subsurface Gradients 122 0 0 0 0 0 0 0 ................ 0 0 0 0 0 0 0 .. 0 0 ...... 0 0 0 .. 0 0 0 0 0 .......... 0 0 Strength-Related Properties 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fracture Mechanics Parameters .... 125 0 0 .... 0 0 0 0 .... 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .... 0 .... 0 0 .. Fracture Toughness 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Microstructure 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Grain Size Distribution 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quantitative Scattering Formulae 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Experimental Determination of Microstructure 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ultrasonic Backscattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Frequency-Dependent Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Intrinsic Energy Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Measurement Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Velocity Dispersion.................................................................. 136 Mechanisms Causing Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4. Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5. Abstracted Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 1 Introduction Ultrasonic spectroscopy is the study of ultrasonic waves resolved into their Fourier frequency components. Since many material properties manifest themselves as amplitude or phase changes in ultrasonic waves used to interrogate a specimen, ultrasonic spectroscopy has proven to be quite valuable. Initially, investigations were carried out using narrowband ultrasonic instru mentation. Later, the value of a broadband ultrasonic pulse was recognized. Analysis of the pulse was found to give information simultaneously over a wide range of frequencies. The first system to utilize multifrequency (broadband) ultrasonic pulses was built by Gericke (1960-059)* at the Army Research Laboratory. His system used a contact transducer operated in the pulse-echo mode. Gericke also appears to have been the first to use the term ultrasonic spectroscopy. In analogy with visual inspection by white light, he postulated that additional information could be obtained corresponding to the "color" of the waves after interaction with the material. Gericke attempted to obtain "white ultrasound" by shock-exciting a damped ceramic transducer. His results indicated qualitatively that the ultrasonic spectrum of an echo contains information related to the configuration of a void in a solid and to the microstructure (grain size) of a material. A few years later, Whaley and Cook (005) at Oak Ridge National Laboratory built the first immersion system for spectrum analysis. Whaley and Adler (036) extended spectrum analysis to a multitransducer system, thus introducing pitch-catch and through-transmission ultrasonic spectroscopy. In a number of model experi ments (012, 036, 037, 038, 039) Whaley and Adler demonstrated that quantitative information could be obtained from the spectrum of the received ultrasonic signal. Their interference model was the first analytical approach for relating size and orientation of simple discontinuities to the frequency spectrum. About the same time as work in the United States was going on, several groups of investigators in England began developing ultrasonic spectroscopic systems. Brown and Lloyd at City University in London (026, 030, 180, 192, 245) began to utilize spectroscopy for the study of laminated structures and for defect characteriza tion. In addition, they began development of broadband transducers. Note should be made of the two symposia dealing with ultrasonic spectroscopy which were held at City University-one in 1970 (268-272), the next in 1976 (241-250). During the last few years, additional groups of investigators in the United States have become involved with ultrasonic spectroscopy. Much of this research has been stimulated by a program on quantitative nondestructive testing supported by *See Chapter 5, Abstracted Bibliography, for an explanation of the referencing system. 1 2 Chspter1 the Advanced Research Projects Agency (ARPA), the Air Force Materials Labora tory (AFML), and operated through the Rockwell Science Center. Theoretical investigations were funded, as well as basic experimental research and applications oriented studies. At the Rockwell Science Center, Tittmann and Elsley (004, 133, 379, 409) have studied scattering of ultrasonic waves from voids. Their unique experimental system permits accumulation of data on the angular as well as the frequency dependence of scattering. Additional work by Tittmann and others at Rockwell (181) has been directed toward the development of improved ultrasonic standards. Studies of waves diffracted by fluid-filled cavities were carried out at Cornell by Pao and Sachse (087, 091, 149, 176). Ultrasonic spectroscopy has been applied to the evaluation of adhesive bonds by Alers (200, 432, 459, 466) at Rockwell, Rose and Meyer (020, 034, 118) at Drexel, and Chang, Couchman, and Yee (177, 218, 256) at General Dynamics. Not all investigations have centered on experimental work. Several theoreticians have recently developed theories for elastic wave diffraction by voids. These theories provide the basis for relating the frequency dependence of the scattered signal to defect characteristics. In the long-wavelength limit Gubernatis, Domany, and Krumhansl (304, 314, 318) used the Born approximation, Datta (325, 333) employed a matched asymptotic method, and Pao and Varaden (327, 329, 330) as well as Waterman (326, 328) used a scattering matrix technique to investigate the frequency dependent nature of ultrasonic scattering. Achenbach, Gautesen, and McMaken (323, 324) used elastodynamics and ray theory to obtain analytically the diffraction field in the short-wavelength limit. For this same regime, Adler and Lewis (14, 145) applied Keller's theory to study scattering from planar cracks. Inversion techniques developed by Bleistein and Cohen (427, 455) and Mucciardi et a/. (119, 126, 447, 454) provide a means for relating spectral features to flaw characteristics. Adler, Cook, and Simpson at Oak Ridge N a tiona) Laboratory have introduced several applications of ultrasonic spectroscopy, which include wall thickness, phase, and attenuation measurements (005, 044). Investigations are being made of phase spectroscopy by Nabel (073, 232) in Germany, and by Simpson, Adler, and Elsley in the United States. An important contribution to the understanding of ultrasonic spectroscopy was provided by Simpson (002, 013), who used a Fourier-transform model to explain features in the diffracted wave spectra. Correlations of the ultrasonic spectrum with strength-related properties have been made theoretically by Rice and Budiansky (234), and experimentally by Vary (334, 488, 489) and Elsley, Richardson, and Thompson (004). Ultrasonic studies of surface roughness and periodicity by Quentin, Jungman, deBilly, and Cohen-Tenoudji (138, 139, 140) have shown the value of information contained in the spectra. Szabo (211) and Richardson and Tittmann (321, 403) have developed inversion techniques for deducing subsurface gradients from surface wave dispersion measurements. Papadakis at Ford Motor Company has performed thorough investigations of the application of ultrasonic spectroscopy to attenuation measurements (016, 023, 212) and microstructure (021, 031, 186).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.