The Pennsylvania State University The Graduate School ULTRASONIC GUIDED WAVE BONDLINE EVALUATION OF THICK METALLIC STRUCTURES WITH VISCOELASTIC COATINGS AND THE DEMONSTRATION OF A NOVEL MODE SWEEP TECHNIQUE A Dissertation in Acoustics by Jason Bostron (cid:13)c 2013 Jason Bostron Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 The dissertation of Jason Bostron was reviewed and approved∗ by the following: Joseph L. Rose Professor of Acoustics Chair of Committee, Dissertation Advisor Clifford J. Lissenden Professor of Acoustics Bernard R. Tittmann Professor of Acoustics Kevin L. Koudela Professor of Engineering Science and Mechanics Victor W. Sparrow Professor of Acoustics Interim Chair, Graduate Program in Acoustics ∗Signatures are on file in the Graduate School. Abstract Ultrasonic guided waves are becoming more widely used in nondestructive eval- uation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ul- trasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. Bondintegrityisofinteresttoresearchersinnon-destructiveevaluationbecause it is used as an indicator when assessing the health of structures. We consider both a thin and a thick viscoelastic layer bonded to a metallic plate and use a guided wave ultrasonic signal to assess bond integrity in hidden regions. This work applies to relatively low-curvature pressurized pipe and vessels. Analytical and finite element models are developed to describe wave propagation at high frequencies relative to the plate thickness, where the plate can be approximated as a half space. Finite element models are used to visualize wave propagation. Experiments are performed on a 25 mm thick steel plate with both relatively thin (3 mm) and thick (25 mm) coatings of various stiffnesses bonded to the surface. Physically based wave features, such as amplitude ratio, energy ratio, frequency ratio, pulse width, and arrival time are identified which may be used to assess bond integrity in hidden regions. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This “optimal” modecouldgivethehighestsensitivitytodefectsorthegreatestpenetrationpower, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this work, a novel mode iii sweep technique is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity–frequency space and is demonstrated using interface waves to inspect thick bonded structures. After sweeping through nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. iv Table of Contents List of Figures x List of Tables xv List of Symbols xvi Acknowledgments xix Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Guided waves for bond evaluation . . . . . . . . . . . . . . . 2 1.1.2 A novel technique to optimize mode selection . . . . . . . . 3 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Overview of guided wave ultrasound . . . . . . . . . . . . . 4 1.2.2 Foundational theory . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Solutions by matrix methods . . . . . . . . . . . . . . . . . . 6 1.2.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.5 Modeling viscoelastic materials . . . . . . . . . . . . . . . . 10 1.2.6 Bond quality assessment . . . . . . . . . . . . . . . . . . . . 12 1.3 Dissertation scope, layout, and objectives . . . . . . . . . . . . . . . 14 Chapter 2 Description and development of useful tools 19 2.1 Global Matrix Method (GMM) . . . . . . . . . . . . . . . . . . . . 20 2.1.1 About the GMM . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Rayleigh waves . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Stoneley waves . . . . . . . . . . . . . . . . . . . . . . . . . 22 v 2.1.4 Guided waves in a layer on a half space . . . . . . . . . . . . 24 2.2 Semi-Analytical Finite Element Method (SAFEM) . . . . . . . . . . 26 2.2.1 About the SAFEM . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Inclusion of absorbing regions . . . . . . . . . . . . . . . . . 26 2.2.3 Validation of the SAFEMAR . . . . . . . . . . . . . . . . . 29 2.3 Abaqus FEA software . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Using Abaqus to simulate guided wave propagation . . . . . 38 2.3.2 Python scripting in Abaqus . . . . . . . . . . . . . . . . . . 40 2.3.3 Implementation of important concepts . . . . . . . . . . . . 40 2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 3 Thin elastic layer on an elastic half space - Theory/models 46 3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Mode solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Wave propagation simulation . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Finite element model design . . . . . . . . . . . . . . . . . . 52 3.4.2 Wave visualization . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.3 Node displacement waveforms . . . . . . . . . . . . . . . . . 54 3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Chapter 4 Thin viscoelastic layer on an elastic half space - Experiment 60 4.1 Considerations for viscoelastic materials . . . . . . . . . . . . . . . 61 4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Materials and sample fabrication . . . . . . . . . . . . . . . 65 4.2.2 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 Waveform envelope and energy feature . . . . . . . . . . . . 68 4.3.2 Frequency-related features . . . . . . . . . . . . . . . . . . . 69 4.3.3 Arrival time feature and group velocity . . . . . . . . . . . . 72 4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Chapter 5 Thick viscoelastic layer on an elastic half space - Theory/models 76 5.1 Guided interface wave mode solutions . . . . . . . . . . . . . . . . . 77 5.1.1 Stoneley wave solution . . . . . . . . . . . . . . . . . . . . . 77 5.1.2 Leaky Rayleigh-like wave solution . . . . . . . . . . . . . . . 80 5.1.3 SAFE method with absorbing regions . . . . . . . . . . . . . 81 vi 5.2 Wave propagation simulation . . . . . . . . . . . . . . . . . . . . . 84 5.2.1 Finite element model details and wave visualization . . . . . 84 5.2.2 Node displacement waveforms and features . . . . . . . . . . 88 5.2.3 Parametric model studies of attenuation feature . . . . . . . 89 5.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter 6 Thick viscoelastic layer on an elastic half space - Experiment 93 6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.1.1 Materials and sample fabrication . . . . . . . . . . . . . . . 94 6.1.2 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.1 Example data: polycarbonate sample . . . . . . . . . . . . . 96 6.2.2 Attenuation feature . . . . . . . . . . . . . . . . . . . . . . . 97 6.2.3 Hidden defects . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.4 Mapping the defect edge . . . . . . . . . . . . . . . . . . . . 99 6.2.5 Frequency effect . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.6 Cure cycle monitoring . . . . . . . . . . . . . . . . . . . . . 102 6.2.7 Cast coatings . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3 Summary of experimental results . . . . . . . . . . . . . . . . . . . 109 6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Chapter 7 Mode sweep technique for optimal mode selection 111 7.1 Precursors to the mode sweep technique . . . . . . . . . . . . . . . 112 7.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3 PAL Software development . . . . . . . . . . . . . . . . . . . . . . . 120 7.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.5.1 Penetration power . . . . . . . . . . . . . . . . . . . . . . . 123 7.5.2 Energy ratio feature . . . . . . . . . . . . . . . . . . . . . . 128 7.5.3 Frequency shift feature . . . . . . . . . . . . . . . . . . . . . 133 7.6 Suggestions for use of the new technique . . . . . . . . . . . . . . . 136 7.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Chapter 8 Concluding remarks 138 8.1 Dissertation summary . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 vii Appendix A SAFEM formulation 143 Appendix B PAL Program User’s Manual 149 B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 B.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 B.3 Running the program . . . . . . . . . . . . . . . . . . . . . . . . . . 150 B.4 Settings tab container . . . . . . . . . . . . . . . . . . . . . . . . . 152 B.4.1 A/D and pulser settings . . . . . . . . . . . . . . . . . . . . 152 B.4.2 Individual channel pulser settings (ICPS) . . . . . . . . . . . 155 B.4.3 Digital Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 156 B.4.4 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . 157 B.4.5 Graph Settings . . . . . . . . . . . . . . . . . . . . . . . . . 159 B.4.6 Sweep Options . . . . . . . . . . . . . . . . . . . . . . . . . 160 B.4.7 Save Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 B.5 Display tab container . . . . . . . . . . . . . . . . . . . . . . . . . . 163 B.5.1 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 B.5.2 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 B.5.3 Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 B.6 Saving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 B.7 Software structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Appendix C Basic guided wave tutorial in Abaqus 169 C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 C.2 Tutorial part 1: Guided waves in a 2D plate . . . . . . . . . . . . . 169 C.2.1 General notes . . . . . . . . . . . . . . . . . . . . . . . . . . 169 C.2.2 Part Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 C.2.3 Property Module . . . . . . . . . . . . . . . . . . . . . . . . 172 C.2.4 Assembly Module . . . . . . . . . . . . . . . . . . . . . . . . 172 C.2.5 Step Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 C.2.6 Interaction Module . . . . . . . . . . . . . . . . . . . . . . . 173 C.2.7 Load Module . . . . . . . . . . . . . . . . . . . . . . . . . . 173 C.2.8 Mesh Module . . . . . . . . . . . . . . . . . . . . . . . . . . 174 C.2.9 Job Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C.2.10 Visualization Module . . . . . . . . . . . . . . . . . . . . . . 175 C.3 Tutorial part 2: Further exploration . . . . . . . . . . . . . . . . . . 176 C.4 Supporting code and other tips . . . . . . . . . . . . . . . . . . . . 178 C.4.1 Creating amplitudes . . . . . . . . . . . . . . . . . . . . . . 178 viii C.4.2 Example batch files . . . . . . . . . . . . . . . . . . . . . . . 180 C.4.3 Example data extraction file . . . . . . . . . . . . . . . . . . 181 C.4.4 Tips for parametric studies . . . . . . . . . . . . . . . . . . . 183 C.4.5 Dispersion curves for 1 mm Al plate. . . . . . . . . . . . . . 186 Bibliography 188 ix List of Figures 1.1 Normal beam and guided wave ultrasound inspection areas . . . . . 5 1.2 Flow chart for choosing guided wave type for bond inspection based on coating and structure geometry . . . . . . . . . . . . . . . . . . 15 1.3 Flow chart describing the Hybrid Analytical FEM approach for solving guided wave problems . . . . . . . . . . . . . . . . . . . . . 17 2.1 Rayleigh wave structure showing both the in-plane and out of plane displacement relative to depth . . . . . . . . . . . . . . . . . . . . . 22 2.2 Stoneley wave structure for an aluminum-tungsten interface show- ing both the in-plane and out of plane displacement relative to depth 24 2.3 Phase velocity dispersion curves for a soft layer on a hard half space 25 2.4 Normalized stiffness coefficient in the absorbing region (AR) calcu- lated from Equation 2.7 for (a) continuous and (b) discrete ARs. . . 28 2.5 Phase velocity and attenuation calculated with SAFEMAR for a Rayleigh wave in aluminum at 0.5 to 2 MHz . . . . . . . . . . . . . 31 2.6 Phase velocity and attenuation calculated with SAFEMAR for a Rayleigh wave in aluminum at 0.167 to 2 MHz . . . . . . . . . . . . 32 2.7 Rayleigh wave structure calculated with SAFEMAR showing both the in-plane and out of plane displacement . . . . . . . . . . . . . . 32 2.8 Rayleigh wave structure calculated with SAFEMAR showing the displacement relative to normalized depth with the same mesh for several different frequencies . . . . . . . . . . . . . . . . . . . . . . 33 2.9 Phase velocity and attenuation calculated with SAFEMAR for a Stoneley wave at an aluminum-tungsten interface at 0.5 to 2 MHz . 34 2.10 StoneleywavestructurecalculatedwithSAFEMARforanaluminum- tungsten interface showing both the in-plane and out of plane dis- placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.11 Phase velocity dispersion curves calculated with SAFEMAR for a soft layer on a hard half space . . . . . . . . . . . . . . . . . . . . . 35 x
Description: