Ultrahigh productivity photobioreactors for algal biofuel production Kirsty R. Mokebo A thesis submitted for the degree of Doctor of Philosophy Department of Chemistry University of Bath August 2012 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author. RESTRICTIONS This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Acknowledgements Firstly, I would like to thank my supervisor Professor Matthew Davidson for giving me the opportunity to work on this project, for his support, guidance and enthusiasm throughout my PhD. I would also like to thank my various co-supervisors over the course of my PhD, Drs Alexei Lapkin, Pawel Plucinski and Laura Torrente Murciano particularly for their guidance with the engineering aspects of this work. The University of Bath are acknowledged for funding this PhD and edf and Knowledge West for funding the building of the photobioreactor. Many thanks to Paul Frith in the Faculty of Science Engineering workshop for his technical knowledge, and Michael Thomas of the Electrical Engineering department for his attention to detail, for the illuminated section of the photobioreactor. Thank you also to Robert Brain, Fernando Acosta, John Bishop and Richard Bull of the Chemical Engineering department for their help and support with my requests for practical assistance and specific parts for the photobioreactor. Thanks to Phil the glass for his assistance too. I would like to thank Dr Chris Chuck for his enthusiasm and encouragements, and to Dr Konstantin Loponov for his preliminary designs of the photobioreactor. Dr Chris Bannister is gratefully acknowledged for his assistance with the design of experiments work and flow dynamics calculations. Thank you to the students who have worked on this project, Akid, Andrew, Becca, Charlotte, Lu, Matthew and Phatra. Many thanks to the Biology department, particularly Holly Smith-Baedorf, we got there in the end! Thanks also to Professor Rod Scott, Philippe Mozzanegga and Dan Murray. Thanks to Carlo Di Iulio and Dr Matthew Jones for the use of the GCMS, thanks to the Davidson, Jones and Chuck group for the high lab spirit and friendship throughout my PhD! My PhD wouldn’t have been the same without Anna, Becca, Ben, Carlo, Cathy, Chris, Chris, Dan, Daniel, Emma, Holly, Justin, Lisa, Lois, Rhod and Tom – thank you! Thank you to my mum and dad for their encouragements and support, to Joe, Michelle and Shaun and to all at Living Hope Church. i Abstract Algal biodiesel is a biodegradable and sustainable alternative to traditional petroleum fuels. Algal biodiesel is synthesised from algal lipids via transesterification and has many desirable physical properties for fuel use. Current photobioreactors are inefficient. This thesis looks to increase efficiency and reduce energetic running costs. This was undertaken by the design, construction and trialling of an LED photobioreactor. The controlled growth of the algae, specifically Chlorella emersonii, using pulsed monochromatic or bi-chromatic light conditions with comparison to continuous white light to improve light economy is explored in this thesis. The prediction of biodiesel profile from the growth conditions is also investigated for Chlorella emersonii. Chapter 1 is a general introduction to the area of algal biodiesel. This introductory chapter reviews the current literature regarding microalgae growth conditions and control, processing microalgae to produce biodiesel and photobioreactor designs for the controlled growth of algae. The known effects of different light sources and types on algal growth are also reviewed. Chapter 2 concerns the pulsing-LED vertical airlift photobioreactor design, construction and testing, including an overview of the system constructed and the process of design to combat specific issues. Results from the testing of the photobioreactor are reported in this chapter which include analysis of the resultant fatty acid methyl ester (FAME) profile of algae grown under various pulsed mono-chromatic and bi-chromatic light conditions and the comparison to continuous white light. This chapter draws together the hypotheses and stand-alone observations reported in the current literature allowing direct comparisons for different light conditions and conclusions to be reported which include the effect on resultant FAME profile and not just lipid percentage. Chapter 3 explores the effect of environmental factors on the fatty acid methyl ester composition of the algal biodiesel. This chapter describes the effect of carbon dioxide, nitrate, phosphate and iron levels, length of culture and the effect of supplementary carbon sources on Chlorella emersonii growth and resultant FAME composition. The result of synergetic effects of nutrient levels and length of algal cultivation are analysed in addition to the stage of algal growth and its impact on FAME profile. ii Chapter 4 details the procedures used for the growth of algae, the production of the algal biodiesel and the development of techniques used for analysis of the resultant biodiesel. The techniques and conditions employed for the growth of the algae as well as the extraction and transesterification of the algal lipids are explained. iii Contents Page 1 Introduction .................................................................................................................... 1 1.1 Preamble .................................................................................................................. 1 1.2 Biodiesel .................................................................................................................. 1 1.2.1 The requirement for biofuels as a transitional technology ............................... 2 1.2.2 Fatty acid methyl ester (FAME) profiles and fuel properties of biodiesel ...... 3 1.2.3 Issues with first generation biofuels ................................................................. 5 1.2.4 Potential of algal biofuels................................................................................. 7 1.2.5 Problems with algal biofuels .......................................................................... 10 1.2.6 Commercial ventures in algal biofuels ........................................................... 11 1.2.7 Policies and government goals ....................................................................... 11 1.2.8 Economical cost of algal biofuel .................................................................... 12 1.2.9 Energy costs and considerations .................................................................... 14 1.2.10 Transesterification .......................................................................................... 15 1.3 Microalgae ............................................................................................................. 17 1.3.1 Microalgal species .......................................................................................... 17 1.3.2 Nutrients ......................................................................................................... 19 1.3.3 Growth parameters ......................................................................................... 20 1.3.4 Growth rates ................................................................................................... 20 1.3.5 Algae growth conditions ................................................................................ 21 1.3.6 Effect of carbon sources on algal growth ....................................................... 22 1.3.7 Algal growth: the interrelated effects of carbon dioxideand pH ................... 22 1.3.8 Mixotrophic algae growth .............................................................................. 24 1.3.9 Salinity effects on algae growth ..................................................................... 25 1.3.10 Effect of limiting conditions on lipid content of algae .................................. 25 1.3.11 α-tocopherol and carotene .............................................................................. 29 1.4 Downstream processing and extraction of lipids from algae ................................ 30 1.4.1 Separation of algae from growth media ......................................................... 30 1.4.2 Lipid extraction utilising solvents .................................................................. 32 1.4.3 Alternative extraction techniques ................................................................... 33 1.4.4 Fatty acid methyl ester profile analysis .......................................................... 36 1.5 Photobioreactors .................................................................................................... 37 1.5.1 Considerations for photobioreactor design .................................................... 37 1.5.2 Algal reactor types ......................................................................................... 40 1.5.3 Examples of photobioreactors ........................................................................ 42 1.5.4 Mixing ............................................................................................................ 43 1.5.5 Carbon dioxide supply and control ................................................................ 45 1.5.6 Oxygen saturation .......................................................................................... 46 1.5.7 Mass flow control meter................................................................................. 47 1.5.8 Cleaning ......................................................................................................... 47 1.5.9 Light requirement and light emitting diodes .................................................. 47 1.5.10 Photosynthesis ................................................................................................ 49 1.5.11 Effect of light on algae growth and productivity ........................................... 52 1.5.12 Photoinhibition in photosynthesis .................................................................. 55 1.5.13 Light regimen effects ..................................................................................... 56 1.5.14 Effect of pulsed light on algal growth and acclimatisation ............................ 56 1.5.15 Effect of wavelength on algae growth ........................................................... 62 1.5.16 Carbon dioxide capacity and affinity in photosynthesis ................................ 63 1.6 Summary and aims ................................................................................................ 64 iv 1.7 References ............................................................................................................. 66 2 Photobioreactor design, construction and testing......................................................... 81 2.1 Initial design ideas ................................................................................................. 82 2.2 Overview of photobioreactor ................................................................................. 83 2.3 Construction materials ........................................................................................... 83 2.4 Airlift section ......................................................................................................... 86 2.4.1 Sparger ........................................................................................................... 91 2.5 Illuminated section ................................................................................................ 92 2.5.1 Temperature and pH logging ......................................................................... 97 2.5.2 Cooling ........................................................................................................... 97 2.5.3 Light emitting diodes illumination ................................................................. 98 2.6 Mass flow control and fluid dynamics ................................................................ 104 2.7 Photobioreactor preparation for use .................................................................... 105 2.8 Photobioreactor testing ........................................................................................ 106 2.8.1 Effect of flashing light on Chlorella emersonii growth ............................... 106 2.8.2 Preliminary testing ....................................................................................... 107 2.8.3 Photobioreactor and algal growth issues ...................................................... 109 2.9 Alternative airlift vertical reactor for testing of LED illumination; Chlorella emersonii growth dependence on wavelength ............................................................... 117 2.9.1 Effect of lightconcentration on lipid profile and amount ............................ 124 2.10 Summary ............................................................................................................. 126 2.11 References ........................................................................................................... 130 3 Effect of environmental factors on fatty acid methyl esters composition in Chlorella spp. 133 3.1 Lipid extraction ................................................................................................... 133 3.2 NMR spectroscopy initial screening ................................................................... 134 3.3 Fatty acid methyl ester profile determination using GCMS ................................ 136 3.4 Effect of carbon dioxide concentration on algal growth ..................................... 138 3.5 Design of experiments to study the effects of nitrate, phosphates and iron levels and time on lipid profile and algal growth ..................................................................... 139 3.5.1 Growth of inoculation culture for design of experiments ............................ 142 3.5.2 Effect of nutrients and time on oleic acid methyl ester (C18(1)) synthesis . 143 3.5.3 Effect of nutrients and time on C16(4) synthesis ......................................... 148 3.5.4 Effect of nutrients and time on monounsaturated fatty acid methyl ester production .................................................................................................................. 153 3.5.5 Effect of nutrients and time on polyunsaturated fatty acid methyl ester production .................................................................................................................. 154 3.5.6 Effect of nutrients and time on saturated fatty acid methyl ester production157 3.6 Effect of nutrients and time on total lipid ............................................................ 160 3.7 Effect of time on algae growth and fatty acid methyl ester profile ..................... 163 3.8 Effect of carbon sources on algae growth and fatty acid methyl ester profile .... 166 3.9 Microwave extraction .......................................................................................... 170 3.10 Summary ............................................................................................................. 177 3.11 References ........................................................................................................... 180 4 Experimental .............................................................................................................. 183 4.1 General procedures .............................................................................................. 183 4.2 Lipid extraction ................................................................................................... 183 v 4.3 Transesterification of lipids ................................................................................. 183 4.4 Nuclear magnetic resonance analysis .................................................................. 183 4.5 Mass spectrometry ............................................................................................... 185 4.6 Gas chromatography mass spectrometry (GCMS) .............................................. 185 4.7 Microwave technique .......................................................................................... 189 4.8 Acid value ............................................................................................................ 190 4.9 Bold’s Basal growth medium .............................................................................. 190 4.10 Cell counting ....................................................................................................... 190 4.11 Inoculation ........................................................................................................... 191 4.12 Design of experiments – effect of nutrients and time on algal growth ............... 192 4.13 Experimental design for mixotrophic study ........................................................ 194 4.14 Experimental design for toxicity studies ............................................................. 194 4.15 References ........................................................................................................... 196 5 Further work ............................................................................................................... 197 Appendix ............................................................................................................................ 198 vi 1 Introduction .................................................................................................................... 1 1.1 Preamble .................................................................................................................. 1 1.2 Biodiesel .................................................................................................................. 1 1.2.1 The requirement for biofuels as a transitional technology ............................... 2 1.2.2 Fatty acid methyl ester (FAME) profiles and fuel properties of biodiesel ...... 3 1.2.3 Issues with first generation biofuels ................................................................. 5 1.2.4 Potential of algal biofuels................................................................................. 7 1.2.5 Problems with algal biofuels .......................................................................... 10 1.2.6 Commercial ventures in algal biofuels ........................................................... 11 1.2.7 Policies and government goals ....................................................................... 11 1.2.8 Economical cost of algal biofuel .................................................................... 12 1.2.9 Energy costs and considerations .................................................................... 14 1.2.10 Transesterification .......................................................................................... 15 1.3 Microalgae ............................................................................................................. 17 1.3.1 Microalgal species .......................................................................................... 17 1.3.2 Nutrients ......................................................................................................... 19 1.3.3 Growth parameters ......................................................................................... 20 1.3.4 Growth rates ................................................................................................... 20 1.3.5 Algae growth conditions ................................................................................ 21 1.3.6 Effect of carbon sources on algal growth ....................................................... 22 1.3.7 Algal growth: the interrelated effects of carbon dioxideand pH ................... 22 1.3.8 Mixotrophic algae growth .............................................................................. 24 1.3.9 Salinity effects on algae growth ..................................................................... 25 1.3.10 Effect of limiting conditions on lipid content of algae .................................. 25 1.3.11 α-tocopherol and carotene .............................................................................. 29 1.4 Downstream processing and extraction of lipids from algae ................................ 30 1.4.1 Separation of algae from growth media ......................................................... 30 1.4.2 Lipid extraction utilising solvents .................................................................. 32 1.4.3 Alternative extraction techniques ................................................................... 33 1.4.4 Fatty acid methyl ester profile analysis .......................................................... 36 1.5 Photobioreactors .................................................................................................... 37 1.5.1 Considerations for photobioreactor design .................................................... 37 1.5.2 Algal reactor types ......................................................................................... 40 1.5.3 Examples of photobioreactors ........................................................................ 42 1.5.4 Mixing ............................................................................................................ 43 1.5.5 Carbon dioxide supply and control ................................................................ 45 1.5.6 Oxygen saturation .......................................................................................... 46 1.5.7 Mass flow control meter................................................................................. 47 1.5.8 Cleaning ......................................................................................................... 47 1.5.9 Light requirement and light emitting diodes .................................................. 47 1.5.10 Photosynthesis ................................................................................................ 49 1.5.11 Effect of light on algae growth and productivity ........................................... 52 1.5.12 Photoinhibition in photosynthesis .................................................................. 55 1.5.13 Light regimen effects ..................................................................................... 56 1.5.14 Effect of pulsed light on algal growth and acclimatisation ............................ 56 1.5.15 Effect of wavelength on algae growth ........................................................... 62 1.5.16 Carbon dioxide capacity and affinity in photosynthesis ................................ 63 1.6 Summary and aims ................................................................................................ 64 1.7 References ............................................................................................................. 66 3 1 Introduction 1.1 Preamble Environmental change, such as carbon dioxide level increases, and global warming in addition to current difficulties in fuel supply demand a cohesive and twenty-first century solution. The need for alternative fuel sources has been well publicised by media and science. Biodiesel should be at the forefront of the switch over to green energy as it requires little, if any, modification of diesel engines as well as requiring minimal integration into the fuel supply network. Algae are an excellent candidate for biodiesel production due to their high bio-productive rate and the economic potential for valuable product harvesting. Algae have also been proven to sequester carbon dioxide and shown to reduce heavy metal contamination in waste water.1 The triglycerides present in algae can be extracted and transesterified into biodiesel for use as liquid transportation fuel.2 This introduction will review relevant aspects of biodiesel production, algae cultivation and photobioreactor design including the economical, energy and environmental outlooks for algal biofuel. 1.2 Biodiesel Biodiesel is the transesterification product, fatty acid alkyl ester, of triglycerides from land crop oils, animal fats and more recently algal oils. As shown in Figure 1:1 the transesterification reaction requires an alcohol and a catalyst (see section 1.2.10).3 ccaattaallyysstt 33 '' 33 TTrriiggllyycceerriiddee AAllccoohhooll FFaattttyy aacciidd aallkkyyll eesstteerr GGllyycceerrooll ((BBiiooddiieesseell)) Figure 1:1 – Transesterification reaction overview 1 1.2.1 The requirement for biofuels as a transitional technology Two thirds of the whole world’s total energy consumption remains sourced from traditional fossil fuels; hence the urgency due to diminishing fossil fuels to develop other means of sustainable energy production.4 The increase in demand for petroleum, particularly from emerging markets such as Asia, is increasing the requirement to expand renewable fuels, specifically liquid fuels like biodiesel.2 The transportation industries, including aviation and shipping rely heavily on liquid fuel derived from petroleum.5 Biofuels are needed to improve energy security (see section 1.2.7), climate change and rural development.6 Other issues which biofuels can address are increasing global population, mounting waste, depleting resources and increased environmental pollution.7 Biodiesel can have comparable energy content and similar physical properties, such as cetane number and cold pour point, to petroleum diesel thus making it a desirable target for biofuel production. The use of transesterified plant oil as a fuel is credited to E. Duffy and J. Patrick in 1853, whilst R. Diesel showcased the first engine running from vegetable oil in 1900 at the International Exhibition, Paris.8 The three main targets for any biofuel are to have (i) high energy density with regards to mass and volume; (ii) to be producible at yields around the stoichiometric maximum for the chosen biomass starting material; and (iii) to be compatible with the existing fuel distribution infrastructure.9 Mass changeover to electrical and hydrogen powered terrestrial transportation is expected to begin within the next couple of decades; this widespread uptake can then be more fully developed.4-5 Biofuels, particularly biodiesel, can fit this energy gap and help ease predominantly industrialised countries into a future without dependence on fossil fuels. Biofuels are required to have beneficial properties, such as high density liquid energy, fuel security and easily biodegradable products (see section 1.2.4).2, 10 It is sought-after that the biofuel has a lower carbon footprint than that of the fossil fuel it replaces and that the biofuel is suitable for the use it is being employed for. It may also be considered that subsidies may be required for renewable biofuels to be commercially available. It is desirable that the production of high value co-products alongside biofuel will allow biofuel, especially biodiesel to become economically viable. However, when high value products are created on the large scale required for fuel production they may lose their high-value status due to market saturation.11 2
Description: