ACCEPTEDFORPUBLICATIONINTHEASTROPHYSICALJOURNAL PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ULTRAHIGH-ENERGYCOSMICRAYSFROMTHE“ENCAUL”BIRTH1OFMAGNETARS ANTHONYL.PIRO2ANDJUNAA.KOLLMEIER2,3 AcceptedforpublicationinTheAstrophysicalJournal ABSTRACT 6 Rapidly-spinningmagnetarscanpotentiallyformbythe accretioninducedcollapseofa white dwarforby 1 neutronstarmergersiftheequationofstateofnucleardensitymatterissuchthattwolowmassneutronstars 0 cansometimesformamassiveneutronstar ratherthanablackhole. Ineithercase, thenewlybornmagnetar 2 is an attractive site for producingultrahigh-energycosmic rays (particles with individualenergiesexceeding 1018eV;UHECRs). Theshort-periodspinandstrongmagneticfieldareabletoaccelerateparticlesuptothe y appropriateenergies,andthecompositionofmaterialonandaroundthemagnetarmaynaturallyexplainrecent a M inferencesofheavyelementsinUHECRs. Weexplorewhetherthesmallamountofnataldebrissurrounding thesemagnetarsallowstheUHECRstoeasilyescape. We alsoinvestigatetheimpactontheUHECRsofthe uniqueenvironmentaroundthemagnetar,whichconsistsofabubbleofrelativisticparticlesandmagneticfield 0 withinthedebris. RatesandenergeticsofUHECRsareconsistentwithsuchanorigineventhoughtheratesof 1 eventsthatproducerapidly-spinningmagnetarsremainveryuncertain.Thelowejectamassalsohelpslimitthe high-energyneutrinobackgroundassociated with this scenario to be below currentIceCube constraints over ] E mostofthe magnetarparameterspace. A uniquepredictionisthatUHECRs maybe generatedin old stellar H environmentswithoutstrongstarformationincontrasttowhatwouldbeexpectedforotherUHECRscenarios, suchasactivegalacticnucleiorlonggamma-raybursts. . h Subjectheadings:astroparticlephysics—cosmicrays—stars: magnetars p - o r 1. INTRODUCTION ∼1043.5−1044ergMpc−3yr−1 (Katzetal. 2009), which t mustbesatisfiedbythecombinedrateandenergyproduction s The origin of ultrahigh-energy cosmic rays (UHE- a CRs), particles that can have a kinetic energy as large of any model. Most recently, the Auger Observatoryresults [ point to a composition of UHECRs that may be dominated as a thrown baseball, remains one of the outstand- 2 ing questions in astrophysics (e.g, Kotera&Olinto 2011; byheaviernucleiatthehighestenergies(Aabetal.2014a,b). If confirmed, this would pose a problem for any model that v Letessier-Selvon&Stanev2011). Theirmysteryhassparked producesUHECRssimplyasprotons. 5 awiderangeofmodelsfortheaccelerationsitesofUHECRs, At the same time, motivated by different physicalconsid- 2 with varying levels of success in explaining their energetics erations,therehasbeenincreasingfocusonthepossibilityof 6 and spectrum. This includes, but is not limited to, galaxy high-energyeventsthatmayresultinaquickly-spinningmag- 2 clusters(Inoueetal.2007;Koteraetal.2009),activegalactic netar with a small amount of surrounding material. These 0 nuclei(AGNs;Dermeretal.2009;Takami&Horiuchi2011), mainly come in three varieties, the first of which is the ac- . classical gamma-ray bursts (GRBs; Waxman 2004, 2006; 1 cretion induced collapse (AIC) of a white dwarf (WD) to a Dermer 2010), low-luminosity GRBs (Muraseetal. 2006), 0 neutron star (NS). In this case, either through the merger of magneticallydominatedjetsinthemillisecondprotomagnetar 6 twocarbon-oxygenWDs,oraccretionontoanoxygen-neon- 1 model for GRBs (Metzgeretal. 2011), engine-drivensuper- magnesiumWD,theWDelectroncaptures,losesitspressure : novae(Wangetal.2007;Chakrabortietal.2011),AGNflares v (Farrar&Gruzinov2009),andnewly-born,fast-rotatingpul- support and collapses to an NS (Canal&Schatzman 1976; i Nomoto&Kondo1991). Thelargeangularmomentumasso- X sars(Fangetal.2012;Koteraetal.2015). ciated with such an eventmay naturally lead to short-period Observationally, there are many clues about UHECRs to r spinsandastrongmagneticfield(Duncan&Thompson1992; a help constrain these models. The flux suppression at the Price&Rosswog 2006; Zrake&MacFadyen 2013). In the highestenergies(Abbasietal.2008;Abrahametal. 2008)is second case, the merger or grazing collision of two NSs consistentwithUHECRsinteractingwithcosmicmicrowave may in some circumstances(dependingon their masses and background photons or other sources of extragalactic light, the maximum mass allowed by the equation of state of nu- knownastheGZKeffect(Greisen1966;Zatsepin&Kuz’min clear density matter; Hebeleretal. 2013) produce a stable, 1966). This strongly suggests an extragalactic origin, but also limits their source to be in our local universe high-massNSratherthanablackhole(e.g.,O¨zeletal.2010; within ∼ 100Mpc. The energy injected into UHECRs is Giacomazzo&Perna2013;Kiziltanetal.2013). Inthethird case, the massive NS may be present, but only for a lim- ited time due to support by thermal pressure and/or dif- 1Thebirth“encaul”referstotherarecircumstanceinwhichanewborn ferentialrotation(Lehneretal. 2012;Paschalidisetal. 2012; emergesinafullyintactamnioticsac. Birthofthisnatureisconsidered Kaplanetal. 2014). In any case, there is considerable in- asignofgoodfortuneinmanycultures. Here, werefertothenewborn terest in the potential transient signature that these events magnetar similarly surrounded bya small amount ofnatal material and similarlyfortunateasacosmic-rayaccelerator. may make (Piro&Kulkarni 2013; Metzger&Piro 2014; 2Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA Piro&Thompson 2014) as well as the exciting possibility 91101,USA;[email protected] thattheymaybeobservedaselectromagneticcounterpartsto 3School of Natural Sciences, Institute for Advanced Study, Einstein gravitationalwavesources. Drive,Princeton,NJ08540,USA 2 Here we propose that such events may also be ideal sites spinning near its centrifugalbreak-up limits, torques from a for producing UHECRs. The fast spin and high magnetic neutrino-drivenwind(Thompsonetal.2004)orgravitational field of a newly born magnetar provide a natural location wavelosses(Piro&Ott2011) likelyspinitdownduringthe foracceleratingUHECRstothecorrectenergies. Mostcriti- firstmillisecondstospinperiodsofP =2π/Ω ∼2−5ms, i i cally,thelowamountofnatalmaterialsurroundingthemag- andthusweconsiderthisthe“initial”periodforpurposesof netars should, in principle, make it easier for UHECRs to ourcalculations. escape the magnetar and seed the local universe. In this work, we examine this possibility to determine whether this 2.1. EnergyInputbytheMagnetar provides a viable site for UHECR production. In particu- Theinitialrotationalenergyofthemagnetarwithmoment lar, we investigate whether the unique environment around ofinertiaI is themagnetar,whichincludesabubbleofrelativisticparticles andmagneticfieldinflatedbythe magnetar(Metzger&Piro E = 1IΩ2 =4.9×1051I Pi −2erg, (1) 2014; Siegel&Ciolfi 2015a,b), impedes and/or imprints it- rot 2 i 45 2ms selfontheUHECRsinanyway. Furthermore,weinvestigate (cid:18) (cid:19) whether such a scenario will have implications for the rates whereI45 = I/1045gcm2. The spin downof the magnetar andenvironmentswheretheUHECRsmaycomefrom. withmagneticmomentµ=R∗3B∗injectsenergywithatime- Ourmodeldiffersinseveralcriticalrespectsfromprevious dependentrateof studiesthatfocusedonfast-spinningpulsars(e.g.Arons2003; Fangetal.2012). Inparticular,theseworkshavefocusedon L (t)= µ2Ω(t)4 = µ2Ω4i 1+ t −2, (2) a core-collapse scenario as a precursor to the UHECR en- sd c3 c3 t (cid:18) sd(cid:19) gine. As a result, a largeamountof ejecta materialthat sur- wherethespindowntimescaleis roundsthepulsar(thepulsarwindnebula;usuallyassumedto be ∼ 5 −10M⊙ in line with estimates from the Crab neb- Ic3 P 2 ula) in comparison to the “en caul” birth we consider with t = =22.8µ−2I i min. (3) only ∼ 0.1M⊙ of surroundingmaterial. A large amountof sd 2µ2Ω2i 33 45(cid:18)2ms(cid:19) ejectagenericallymakesitmoredifficultforUHECRstoes- Theejectaaroundthemagnetarisinflatedbythisenergyinput cape the core-collapse environment as shown by Fangetal. withatime-dependentvelocityof (2012). Another important difference is that we focus on muchearlier timesafterthe magnetarisborn(∼daysrather dR t 1/2 than∼monthstoyears),whenthenebulaaroundthepulsaris vej(t)= dtej = 2Me−j1 Lsd(t′)dt′+ve2j,i , (4) denserinelectron/positronpairs. Thedensityofchargedpar- (cid:20) Z0 (cid:21) ticlesisthenbetterdescribedinasaturatedregime(Svensson whichcan be simply integratedto find R (t). At late times ej 1987) ratherthan simply givenby the Goldreich-Julianden- thevelocityoftheejectacangethigh sity (Goldreich&Julian 1969). We discuss the impact of thesedifferencesonourmodelbelow. v (t≫t )≈(2E /M )1/2 ej sd rot ej In Section 2, we present a simplified model for following −1 the time-dependent features of the environment around the ≈0.7cI1/2M−1/2 Pi , (5) newlycreatedmagnetar.InSection3,weusethesemodelsto 45 −2 2ms (cid:18) (cid:19) calculateourmainresultsforwhatenergyparticlesmaycome fromthemagnetarandhowtheseparticlespropagatethrough whereM−2 = Mej/10−2M⊙. To simplifyouranalysis, we focusonvaluesofE andM wherev .c. the environmentof the magnetar. In Section 4, we estimate rot ej ej the expectedrates of such eventsin comparisonto measure- 2.2. EvolutionofthePerimagnetarEnvironment ments of UHECRs. We also discuss various constraints on our scenario, including the rate of expected associated elec- InordertoelucidatetheUHECRpropagation,wedividethe tromagnetictransients,galacticandintergalacticpropagation perimagnetarenvironmentinto two primary regions: (1) the issues, andthe high-energyneutrinobackground. Finally,in ejectashelland(2)thenebula(orbubble)ofrelativisticparti- Section5,wesummarizeourresultsanddiscusspotentialfu- clesaroundthemagnetar(seethediagraminMetzger&Piro turework. 2014). In each of these regions, both the particle density and radiation content must be followed since these can in- 2. THEMAGNETARANDSURROUNDINGREGION teract with UHECRs and alter their fate. In this simplified To followthe environmentaroundthe newly bornmagne- picture, we do not explicitly follow the dynamicsof the ter- tar, we construct a toy model that replicates the key phys- mination shock between the magnetar wind and the nebula. ical features. For more detailed discussions and calcula- Nevertheless, this shock is important for converting the ini- tions, with a particular focus on the electromagnetic signa- tialPoynting-fluxdominatedoutflowofthemagnetarintoki- tures, the reader should consult Metzger&Piro (2014) and netic energy, as has been extensively studied in past work Siegel&Ciolfi(2015a,b). (e.g.,Lyubarsky&Kirk2001;Arons2008;Lyubarsky2010; The general picture we are considering is that, whether Granotetal. 2011; Porthetal. 2013). Since the presence of born from an AIC or from an NS merger, the initial state is theterminationshockdoesnotimpacttheshelldynamicsbe- a magnetar with surface dipole field B∗ ∼ 1014 − 1015G yond providing a potential site for particle acceleration, we surrounded by Mej ∼ 0.01M⊙ of ejecta with a velocity mostlyignoreitwhensolvingforthepropertiesofthenebula. of v ∼ 0.1c (Dessartetal. 2009; Metzgeretal. 2009a,b; For the ejecta region, the density simply evolves as the ej,i Leeetal. 2009; Ferna´ndez&Metzger 2013). The specific ejectaexpandsas values can of course change and we will explore the depen- 3M dencies on them. Although the magnetar may be initially ρ (t)= ej . (6) ej 4πR (t)3 ej 3 The composition is thought to be primarily iron-rich ele- of the energy budget of the nebula in the calculations by ments due to the higher electron fraction produced by neu- Metzger&Piro (2014), but this only represents a small cor- trino irradiation from the magnetar (Metzgeretal. 2009b; rectionsinceη .0.1. B Ferna´ndez&Metzger 2013). We estimate the number den- Nextwe consideris the radiation contentin both the neb- sity ofnucleiin the ejecta as n ≈ ρ /56m , where m is ula and surrounding ejecta. These are highly coupled. The ej ej p p theprotonmass. non-thermal radiation in the nebula is dominated by syn- The second region is the relativistic bubble interior to the chrotronandinverse-Comptonemission(Metzgeretal.2014; ejecta. This is inflated by the magnetar spin down luminos- Muraseetal.2015). Thisisthenpartiallyabsorbedandther- ity, whichcanbe partitionedinto a combinationofe± pairs, malizedbybound-freereactionsbytheiron-peakelementsin magneticfield,radiation,and,importantlyforthestudyhere, the ejecta. In the Appendix of Metzger&Piro (2014), we UHECRs. The high density of radiation and magnetic field show that this interplay can be accurately followed in each within the nebula gives rise to copious e± pairs, with the region by simply considering two coupled differentialequa- strength of the pair creation described by the “compactness tions. Thenon-thermalenergyofthenebula,E ,issimply nth parameter” givenbytheenergyinjectionfromspindownminusadiabatic andabsorptivelossesasafunctionoftime 3E σ ℓ= nth Th (7) 4πRe2jmec2 dEnth =Lsd−Labs− Enth . (11) dt t+t i where E is the energy in non-thermal radiation within nth the nebula (which we describe in more detail below) and Whatisabsorbedbytheejectafromthenon-thermalreservoir σ is the Thomson cross section. When ℓ & 1, the num- isconvertedtoheatandthereforetheevolutionofthethermal Th ber density of these pairs can be estimated by balancing the radiationoftheejecta,Eth,evolvesas rate of pair creation and annihilation (Metzgeretal. 2014; dE E Metzger&Piro2014),resultingin th =L −L − th . (12) abs rad dt t+t i 1/2 n±(t)= 4YLsd(t) , (8) Theseequationshaveanumberoftermsthatwenowdescribe πR (t)3σ m c3 indetail. Therateofabsorptionofnon-thermalradiationis (cid:20) ej Th e (cid:21) where σTh = 6.65× 10−25cm is the Thomson cross sec- L = fabsEnth, (13) tion and Y ≈ 0.1 is the pair multiplicity factor for a satu- abs t diff,neb rated cascade (essentially the fraction of the magnetar spin wheref is the fractionof non-thermalradiationabsorbed down that goes into pairs; Svensson 1987). In our case, abs bytheejectaandthediffusiontimeacrossthenebulais ℓ & 1 for the times we consider as we show explicitly be- low. This density is in contrast to other work on UHECRs tdiff,neb =(σThRejn±+1)Rej/c. (14) frommagnetarsinacore-collapsescenario(Fangetal.2012; Lemoineetal. 2015) that use a Goldreich-Julian density in- The term L appearsin both Equations(11) and (12) as it abs stead (Goldreich&Julian 1969). Another difference is that mediatesthetransportofenergybetweenthesetworeservoirs Equation (8) assumes that the e± are fairly sub-relativistic. ofradiation. Therateofradiativeenergylossfromtheejecta Thisis reasonablebecause evenif the pairsare createdwith issimply a high Lorentz factor, the ratio of the Compton cooling E timescaletCtothetimethenebulahasbeenexpandingtis Lrad = th , (15) t diff,ej tC = πmecRe3j ∼ πmecve3jt where t σ E t σ L Th nth Th sd −2 κ M R ∼0.1µ233I4−51/2M−−23/2 1dtay , (9) tdiff,ej = 4eπsRe2ejj +1! cej, (16) (cid:18) (cid:19) andthusthepairscoolrapidlyinthedensenebula. isthephotondiffusiontimethroughtheejectaandκ isthe es Inadditiontoe± pairs,thenebulawillbefilledwithmag- electron scattering opacity of the ejecta. The term L is rad netic field. As mentioned above, the general picture is that importantforestimatingthethermalradiationobservedfrom themagnetaroutflowisPoynting-fluxdominatedinsideofthe the heated ejecta. The timescale t = R /v is the ini- i ej,i ej,i terminationshock,butdissipationneartheshockresultsina tial expansion timescale of the ejecta. It is included to pro- muchsmaller mean field in the rest of the nebula. Since the ducewell-behavedsolutionsatearlytimesandtheresultsare exact conversion factor is not known, especially for the ex- largelyinsensitive to its value. Finally, the last term in each treme case of magnetars we consider here, we quantify this expression accounts for the adiabatic expansion of the rela- uncertainty with a factor η that is the fraction of the mag- tivisticgas,andhencehasthefamiliarscalingofE /tat B (n)th netarspindownthatgoesintothismagneticfield. Thisthen latetimes. gives From the above description, given specific properties for the magnetar and ejecta, one can solve for the evolution in Bneb(t)≈ R6η(Bt)3 tLsd(t′)dt′ 1/2, (10) enveoj,lunti±o,n.EAntnheaxnadmEpltehstooluitnivoensitsigparteestehnetepdoisnsiFbilgeuUreHsE1CaRnds (cid:18) ej Z0 (cid:19) 2 for Pi = 3ms, B∗ = 5×1014G, and Mej = 0.01M⊙. as an estimate of the time dependent mean magnetic field In this case we use f = 1, which generally reproduce the in the nebula. We note that this magnetic field was left out featuresof more detailed treatments (Metzger&Piro 2014). 4 Starting with Figure 1, the thermal light curve L shows rad the characteristic supernova-like shape, which peaks on a ∼ 1day timescale, potentially being the best electromag- netic signature for identifying such events (note the non- thermal X-rays have a similar luminosity and time scale as well, Metzger&Piro 2014). The observed L is well be- rad lowL becauseofthelargeopticaldepthinpairshindering sd thetransferofenergyfromthenebulatotheejecta,ascanbe seen from τ± & τej near the light curve peak. Here we use τ± = σThRejn± and τej = κesMej/4πRe2j. In the bottom panel, we plot nej and n±, which will be important for un- derstandingUHECRpropagationinsubsequentsections. We alsoplotthecompactnessℓinFigure1,demonstratingthatit isgreaterthanunityformostoftheevolution,justifyingour treatmentofthee± pairsinthesaturatedregime. InFigure2,wesummarizemoreimportantquantitiesfrom the evolution of this model. The top panel shows both the temperatureoftheejectaalongwiththeeffectivetemperature ofthethermalopticalsignature.Thesebecomeroughlyequal once τ . 1. The mean magnetic field in the nebula B , ej neb calculated from Equation (10), will be important for under- standing the acceleration of UHECRs as well as potentially coolingthem via synchrotronradiation. In the bottompanel wesummariesthecriticaldensitiesineachregime,alongwith FIG.1.—Exampleevolutionoftheejectaandnebulaaroundanewlyborn, quicklyrotatingmagnetarusingPi=3ms,B∗=5×1014G,andMej= theradiusoftheexpandingejectaRej. 0.01M⊙.ThetoppanelshowstheenergyinputbythespindownLsd(red, dashedline)andthethermal radiation leavingtheejecta Lrad (blue, solid 3. UHECRENERGIESANDPROPAGATION line). Thebottompanelshowstheelectronscatteringopticaldepthsforthe pairsinthenebula(green,dashedline)andtheejecta(blue,solidline),τ± ESTIMATES andτej,respectively,aswellasthecompactnessℓ(red,dot-dashedline).The In Section 2, we presented the basic physical model and horizontal,blackdottedlinesimplyindicateswherethesequantitiesbecome unity. demonstratedthatwecanfollowtheevolutionoftheencaul magnetar in a straightforward fashion. Here, we estimate theenergyoftheindividualUHECRparticlesandshowhow the perimagnetarenvironmentaffectsthe ultimatedestiny of UHECRsproducedfromthischannel. 3.1. MaximumEnergyofUHECRs We first summarize the basic energetics to show that, in- deed,themagnetarsurfacecaneasilyaccelerateCRstoultra- high energies. Relativistic magnetic rotators have voltage dropsacrosstheirmagneticfieldof µΩ(t)2 Φ(t)= . (17) c2 A particle of charge Z that is stripped off the surface of the magnetar(bysomecombinationofstrongelectricfields,bom- bardmentofparticles, andboilingbystellarheat)canbeac- celeratedtoanenergy −2 P E =ZeΦ=3.3×1021Zµ eV. (18) surf 33 2ms (cid:18) (cid:19) This shows that in practice it is reasonable to expect nuclei acceleratedtosufficientenergiestoproduceUHECRs, espe- cially for large charges(Z > 1). The problemis that when thisaccelerationoccurswithinthelightcylinderofthemag- FIG.2.— Further properties oftheejecta andnebula from the modelin netar R = Ω/c (which is much less than R ), then cur- Figure1.ThetoppanelshowsthetemperatureoftheejectaTej(blue,dashed vature rLadCiation losses preventacceleration to seujch high en- line),theeffectivetemperatureoftheejectaTeft(solid,greenline),andthe meanmagneticfieldinthenebulaBnebusingηB =0.1(dot-dashed,purple ergies. For this reason, both Arons (2003) and Fangetal. line). Thebottompanelshowsthedensitypairsinthenebulaandtheejecta, (2012) consider acceleration in the wind at radii ≫ R to LC n±(red,dot-dashedline),thedensityofionsintheejectanej(green,dashed avoidthisproblem. lliinnees),ianntdhethbeorttaodmiuspaonfetlhiesejujescttaacRoeinjc(ibdleunec,esofolirdthliinsep).arTtihcuelcaornmveordgeeln.ceof Due to this difficulty, we instead consider the energyions canbeacceleratedtojustfromconfinementbymagneticfields 5 withinthenebula(Lemoineetal.2015),whichgives E (t)≈ZeB (t)R (t). (19) conf neb ej Themagneticfieldthatacceleratesparticlescanalsolimitthe energyof the UHECRs due to synchrotronlosses. Equating the synchrotron cooling time with the gyration time of the particlesresultsin 3 (Am c2)2 E (t)= p . (20) synch 2(Ze)3/2B (t)1/2 neb Withthisinmind,weconsiderthehighestpossibleenergyfor UHECRsatanygiventimetobetheminimumbetweenE conf andE . synch ThismaximumenergyisshownintheupperpanelofFig- ure3 forUHECRswitheitherprotonorFe composition. At earlytimesthenebulaisdenseenoughinmagneticfieldsthat synchrotron cooling dominates and the energy is ≈ E . sync Then, as the nebula expands and the magnetar spins down, synchrotronlossesdecreaseuntiltheparticleenergyisinstead ≈ E . The maximum energy for UHECRs from a given conf magnetariswherethesetwoenergiesareroughlyequal.Also note that heavier nuclei generally reach higher energies be- causetheirlargerchargepromotesmoreacceleration. Eventhoughparticlesmaybeacceleratedtosuchhighen- FIG.3.—IntheupperpanelwesummarizethemaximumenergytheUHE- CRscanbeacceleratedtoasafunctionoftimefromanewlybornmagnetar, ergies,interactionwiththeenvironmentaroundthemagnetar usingPi =3ms,B∗ =5×1014G,andMej =0.01M⊙forthisexam- maypreventtheUHECRsfromleavingunhindered. Wenow ple.ThesolidcirclesshowwheretheUHECRscanbeginescapingfromthe consider each of these, both in the ejecta and the nebula, in ejecta. Thebottompanelsummariestheevolutionofrelevanttimescalesim- moredetail. portantforunderstandingtheescapeofUHECRsfromtheejectasurrounding themagnetar. Thetimescaletcross = Rej/c(green,solidline)showshow longittakesaUHECRisescapetheejecta. Thismustbeshorterthanthe 3.2. InteractionswiththeEjecta hadroninteractiontimescaleforescapetooccur.Thesetimescalesareshown forbothaproton-composition(blue,dashedline)andiron-composition(red, For the ejecta, we use a hadron interaction model to esti- dottedline)UHECRs.Alsoplottedisthepulsarspindowntimescale(purple, mate thetimescale for sappingthe UHECRs of theirenergy. dot-dashedline),whichshowswhentheenergyoutputofthepulsarbegins Thistimescaleisgivenby decreasing. t (E)=[cn σ (E)ξ(E)]−1, (21) ej ej ej With this picture in mind, we nextestimate the maximum whereσ isthecrosssectionforhadronicinteractions,andξ ej energypossibleforiron-compositionUHECRsasa function istheelasticity.Alsonotethatallthesetermswillhaveenergy dependenciesin detail. The crosssectionforiron-protonin- ofthe initialspin periodPi andthe magneticfield B∗. This is done by considering the highest possible energy for the teractionsis1.25barn,whichapplieswhenZ =1. Sincethe UHECR past the time when they start escaping the ejecta crosssectionshouldscaleasroughlyZ2/3,foriron-ironinter- (past the solid circles from Figure 3). The results are sum- actionsweestimatethecrosssectionas≈11barn. Although marized in the contour plot shown in Figure 4 where we ξcanchangesignificantlydependingonthenumberofnucle- use Mej = 0.01M⊙. For these calculations we assume ons,wetakeittobeoforderunitygiventheuncertaintiesin f = 1, which gives light curve solution that qualitatively the cross sections which are degeneratewith this. The rele- matchMetzger&Piro(2014)andallowustocoverawidepa- vant timescale to compare these to is the crossing timescale rameterspaceofmodels. Inthefuture,amoredetailedtreat- fortheejecta. mentofthethermalizationshouldbeconducted.Thisdemon- strates that to producethe highest possible energyUHECRs t (t)=R (t)/c. (22) cross ej requiresaspinperiodofP ≈ 2−4msandarathermodest i Whent <t ,theUHECRscanescapetheejectawithout (foramagnetar)magneticfieldofB ≈1−4×1014G(note cross ej significantinteraction(andviceversa). thatalthoughweconsiderP .2msunlikelyforthereasons i InFigure3,wepresentanexamplecalculationoftherele- mentionedabove,weincludethisparameterspaceinourplots vanttimescalesforassessingtheinteractionofUHECRswith forcompleteness). The reasonwhythe highestfield magne- the ejecta alongwith maximumpossibleenergyfor the gen- tarsaredisfavoredforproducinghighenergyparticlesisthat eratedUHECRsasafunctionoftime. We alsocomparedif- theyspin downtoo fast. Eventhoughtheyproducehighen- ferentcompositionsof UHECRs, bothprotons(blue, dashed ergyparticles,theseallinteractwiththeejectaatearlytimes lines)andiron(red,dottedlines). Thisdemonstratesthatpro- beforeitcanbecomesufficientlydiffuse. tonssatisfyt <t earlierduringtheevolutionandbegin When we consider more massive ejecta the maximumen- cross ej escapingearlier(everythingtotherightofthebluecirclees- ergies for the UHECRs decrease by slightly (∼ 10% for capes). Nevertheless,comparingwiththeenergytheprotons 0.05M⊙) and the “sweet spot” for most efficiently acceler- would haveat that time, protonsdo not reachas high of en- atingUHECRsshifttoslightlylowermagneticfields. Thisis ergiesastheiron. Thus, if allotherthingsare equal, a large becausealowermagneticfieldspinsdoesthemagnetarmore chargeisfavoredforproducingthehighestenergyUHECRs. slowly so that the time scale for the energy injection better 6 FIG.4.— Contours show the maximum possible energy for iron- FIG.5.—Evolutionofrelevanttimescalesimportantforunderstandingthe compositionUHECRsasafunctionoftheinitialspinperiodPiandmagnetic escape ofUHECRsfrom theejecta surrounding the newly bornmagnetar, fieldB∗ofthemagnetar,usinganejectamassof0.01M⊙.Eachcontouris usingPi = 3ms,B∗ = 5×1014G,andMej = 0.01M⊙ forthisex- labeledinunitsofeV. ample. Thenebulacrossingtimetcross andthespindowntimetsd arethe sameasinFigure3.Thetwoadditionaltimescalesarethatforphotodisinte- matchesthe longer diffusiontime throughthe more massive grationwithinthenebulatnthandwiththeejectatth,whichareestimatedin Equations(24)and(25),respectively. ejecta. With very high ejecta masses, as in the more asso- ciated with core-collapse(e.g.,Fangetal. 2012), theshiftto lowerenergiescaninsomecasesmakeitdifficulttoproduce UHECRsatall. Overallthough,the ejectamassimpactsthe and thus strongly increases as the ejecta expands and cools. energeticslessthanB∗ andPiforourmodel,andthuswefo- Nevertheless,duringthefirst∼1−5daysoftheevolutionwe cusonthesetwoparametersformostoftherestofourstudy. generallyfindthattth ≪tcrossandthustheUHECRswillbe subject to strong photo-hadronicinteractions. This does not 3.3. Photo-hadronicinteractions prevent iron UHECRs, but these estimates imply that lower massnucleiwillalsonecessarilybepresent.Wesavedetailed AfractionoftheX-rayscomingoutofthenebulathermal- calculationsofthecompositionoftheUHECRsasafunction ize with the ejecta. This generates a bath of thermal pho- ofenergyforfuturework. Wedonotethatoncet & t , tons that can lead to photodisintegrationsof the iron nuclei th cross itisstill possiblethatE & 1020eV andthusUHECRsfrom when they attempt to pass through. To estimate when this iron-likenucleiwillsurvive. shouldoccur,welargelyfollowthemethodologypresentedin Anotherpotentiallocationforstrongphoto-hadronicinter- Koteraetal.(2015). actionsiswithinthenebulaitself,whichisfullofnon-thermal For ejecta with temperature T , the photon energy peaks ej X-rays. Herethehighenergyoftheindividualphotonsmake at roughly ǫ ≈ 2.8k T ≈ 2.4T eV, where T = th B ej 4 4 it easier to exceed the Lorentz threshold. Using the total T /104K (see Figure 2). In contrast, the threshold en- ej energy in non-thermal X-rays, E , we thus estimate the ergy of the photodisintegration process for iron-like nuclei nth timescaleforinteractionwiththeseas is ǫ ≈ 18.3A−0.21MeV (Pugetetal. 1976; Muraseetal. A 56 −1 2n0u0cl9e)i,.wThheerreesAu5lt6in=gthAre/s5h6olddeLnootreesnttzhefaacttoomrfiocrmphaosstoodfistihne- tnth ∼ σǫAc43πERnt3h , (25) tegrationis nth ej! γ ≈ ǫA ≈7.7×106A−0.21T−1, (23) whereǫnthistheenergyofthephoton.Thus,athigherphoton thres ǫ 56 4 energiesthistimescaleislongersincethepower-lawdistribu- th tionofphotonsisdecreasing. Thisspectrumcontinuesupto oranenergyofE ≈ 4×1017eVforiron-likenuclei. Thus, roughlythethresholdforpaircreation∼2m c2 ∼MeV. e thisthresholdisalwayseasilymetinourscenario. We summarize the main argumentsof this section in Fig- BesidesexceedingthisLorentzfactor,thethephotodisinte- ure 5, where we plot the relevanttimescales for an example gration must be sufficiently fast in comparison to the cross- model. This demonstratesthat where t < t photodis- th cross ing timescale (Muraseetal. 2014). Using a cross section integrationsintheejecta arerelevantandthisprocessgener- of σA ≈ 8×10−26A56cm2 for a Giant Dipole Resonance ally dominatesoverthe photodisintegrationswithin the neb- (Pugetetal.1976;Muraseetal.2008),thistimescaleis ula. ThislikelyleadstoamixedcompositionofUHECRsup σ acT4 −1 toafewdays.Afterthistimescale,theUHECRscanleavethe t ∼ A th ∼21A−1T−3s, (24) magnetarlessimpactedbytheenvironment. th ǫ 56 5 (cid:18) th (cid:19) 7 4. GLOBALENERGETICS,RATES,AND Wenowshowthatindeedtheorder-of-magnitudeconsistency CONSTRAINTS argumentsaboveagreenicelywithmorecarefulcalculations. To understand how representative this value of f is re- WeshowedinSection3thattheindividualencaulmagnetar cr quiresaslightlymoredetailedmodeloftheUHECRproduc- isapotentialsiteforUHECRgeneration.Wenowinvestigate tion rate. To perform this, we first assume that the spec- theexpectedenergeticsandratesassociatedwiththepopula- trum of UHECRs accelerated at any given time follows a tionofsuchsystemsandtheassociateduncertaintiestherein. dN/dE ∝ 1/E scaling, similar to previous discussions about pulsar magnetospheres (Arons 2003). This assumes 4.1. OrderofMagnitudeEstimates a Goldreich-Julian injection (Goldreich&Julian 1969) and TheenergygenerationrateofUHECRsabove1019.3eVis has mainly been chosen to illustrate the energy constraints estimatedtobeintherange≈1043.5−1044ergMpc−3yr−1 on our model. In general, the spectrum could be different (Waxman 1995; Berezinskyetal. 2006; Katzetal. 2009; depending on the acceleration type (for example, shock ac- Murase&Takami 2009). In detail, such estimates depend celeration,Lemoineetal.2015),andinaddition,otherfactor ontheassumedenergyspectrumandvolumeoverwhichthe suchasthedetailsofthesourcepopulationandthemagnetic UHECRs can be observed, which may even be impacted by field within the nebula may also soften the spectrum (e.g., the (uncertain) composition. Nevertheless, such rough rates Fangetal.2013)Next,weassumethatafractionη . 1of cr are helpful for constraining potential mechanisms. In the themagnetarspindowncanbeusedforUHECRacceleration. followingdiscussionswe use 1043.75ergMpc−3yr−1 as the Energyconservationthenrequires characteristicratetocomparetoforgeneratingUHECRs. Forthemagnetarmodel,themaximumenergyavailableper Econf dN˙ EdE ≈η L , (27) eventisErot,butwedonotexpectthisentireenergyreservoir dE cr sd tobeputintoUHECRs. Assumingafractionf doesmakeit ZEmin cr intoUHECRs,therequiredrate,estimatedfromEquation(1) where Emin is the smallest energy for accelerated particles andthevolumetricestimateabove,issimply andcanbeignoredaslongasEmin ≪ Econf. Equation(27) canbesolvedtofind P 2 R≈1.1×10−8I4−51 2mis fc−r1Mpc−3yr−1. (26) dN˙ ≈ ηcrLsd 1. (28) (cid:18) (cid:19) dE E E conf For AICs, it is helpful to compare to the Type Ia super- ThisdescribestheUHECRsproducedwithinthenebula,but novaratesincebothtypesofeventsareproducedfromWDs. as we’ve discussed previously, they mightnot all escape the The Lick Observatory Supernova Search found a rate of nebula. This is especially true at the highest energies due R = (3.01±0.062)×10−5Mpc−3yr−1 (Lietal. 2011), Ia to synchrotron loses. To capture this physics, we only inte- and thus, R/RIa ≈ 4 × 10−4fc−r1. This can be compared gratedN˙/dE uptoE whenE < E . Thetime- totheAICratesthathavebeenproposedintheliterature,al- synch synch conf dependentenergyoutputisthen though these are known to be very uncertain. Using popu- lationsynthesis,Yungelson&Livio(1998)findAICratesof η L (t), E >E cr sd synch conf 8 × 10−7 − 8 × 10−5yr−1 for the Milky Way, depending Lcr(t)= η L (t) Esynch(t) , E <E (29) onassumptionsaboutthecommon-envelopephaseandmass ( cr sd Econf(t) synch conf transfer, which corresponds to volumetric rate of R ∼ (cid:16) (cid:17) AIC Thisisthentimeintegratedovertheevolutionofthespinning 3×10−9 −6×10−7Mpc−3yr−1. Similar constraints are down magnetar to get the total energy output in UHECRs. alsoobtainedfromobservedabundancesofneutron-richiso- This is summarized in Figure 6, where we plot contours of topes (Hartmannetal. 1985; Fryeretal. 1999). This would thefractionf of E thatgoesinto UHECRs. Thiscalcu- givearelativerateR /R ∼1×10−4−2×10−2,which cr rot AIC Ia lationuses η = 0.1, which is notdissimilar to the fraction isconsistentwithourmodelforvaluesoff ∼0.01−0.1. cr cr ofpulsarpowerfoundtoexperiencethefullpotentialdropby TheotherscenarioformakingUHECRsfromencaulmag- Chen&Beloborodov(2014),andtheseresultscanbesimply netars we are considering is if some NS mergers produce scaled to other values of η because the dependence is just massive NSs rather than BHs. Indeed, there is now evi- linear. Thisshowsthatf cirsgreaterthan≈ 0.01overasig- dence that some NSs could have masses well above 2M⊙ nificantfractionofthepacrrameterspace. (vanKerkwijketal.2011;Romanietal.2012), whichfavors AfurthercomparisonisshowninFigure7. Assumingthat an equation of state that makes such a scenario more likely. BothpopulationsynthesisandjusttheobservedGalacticNS agivenB∗ andPi arerepresentativeofthemajorityofmag- netarsthatproduceUHECRs,weestimatewhatrateofevents binariesfavoraratethatiscomparabletoorgreaterthanthe areneededtoproducetheobservedUHECRrate, inunitsof AIC rate. For example, Kimetal. (2005) estimate a Galac- theTypeIasupernovarate. Asdiscussedabove,typicalAIC tic rate of ∼ (0.1 − 3) × 10−4yr−1 or a volume rate of andneutronstar mergerratesare. 0.01inthese units, thus ∼ 4 × 10−8 − 2 × 10−6Mpc−3yr−1. Again, this rate is thisscenariofavorsthelowerleftquadrantofFigure7. consistent with what is needed for UHECRs for values of f ∼ 0.01, taxing neitherthe NSmergerrate northe avail- 4.3. RateandCounterpartswithintheGZKvolume cr ableenergyreservoiroftheencaulmagnetarpopulation. UHECRs propagating through intergalactic space interact withthecosmicmicrowavebackground(CMB)orevenother 4.2. DetailedEnergyandRateConstraints sourcesofextragalacticbackgroundlight(EBL),whichlimits Theconsistencyargumentsaboveimplyafractionofrota- howfarwecandetectthem.ThisisknownastheGZKeffect tionalenergyf ≈ 0.01goesintoUHECRs. Theseratesare (Greisen1966;Zatsepin&Kuz’min1966). Forbothprotons cr souncertain,however,itisreasonableto askwhethersucha andFe-likenuclei, thetypicalscale is similarand onthe or- valuecanbeunderstoodfromindependentlinesofargument. der of D ∼ 170Mpc (Metzgeretal. 2011). Using the GZK 8 astherateofeventswithintheGZKvolume. Suchadistance scaleisinfactinterestingforotherastrophysicalinterests.For example, this is similar to the horizonexpected for detected NS mergers by ground-based interferometric detectors such asAdvancedLIGO(Abadieetal.2010). Thiswilleithercon- strainorprovideadirectmeasurementofNSmergingevents withintheGZKvolume. Inaddition,theapparentbolometricmagnitudeoftheelec- tromagnetic transient of such an UHECR producing event wouldbe≈15.5(Metzger&Piro2014)at200Mpc. Inprin- ciple, these events could have been detected by wide-field, transient surveys like the Palomar Transient Factory (PTF; Rauetal. 2009) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; Kaiseretal. 2002). Unfortunately, given their particularly short timescales of ∼ 1day and blue color, it is possible they have so far been missed. Also, note that the events best suited for producing UHECRs will have smaller magnetic fields and correspond- inglyfainterelectromagneticcounterparts. In the future, this will change with surveys that have particularly rapid cadences, such as the Zwicky Transient Facility (ZTF; Lawetal. 2009), the All- Sky Automated Survey for Supernovae (ASAS-SN; Shappeeetal.2014),ortheLargeSynopticSurveyTelescope FIG.6.—Thefractionfcr oftherotational energyErot agivenmagne- (LSSTScienceCollaborationetal. 2009, depending on the tar(oroftheentirepopulationofmagnetarsgivenacharacteristicmagnetic fieldandinitial spin)thatcanputintoUHECRswithE > 2×1019eV, finalcadence). Infact, suchaneventmayhavealreadybeen assumingafraction,ηcr =0.1,ofthespindownenergygoesintoUHECR observedinGRB080503(Perleyetal.2009),whichshowed acceleration. a rebrightening in both optical and X-rays. Thus, perhaps another way to constrain the rate of these events is through GRBs (although the X-ray/optical signature is expected to bemoreisotropicthanthebeamedgamma-rays). Associated radio, either from the plerion associated with the magnetar (Piro&Kulkarni 2013) or interaction with the interstellar medium(Nakar&Piran2011) mayalsoprovideconstraints. Either way, it appears that these events may be observable by independent means on multiple different fronts if they areindeedmakingUHECRs(forexample,seeMetzgeretal. 2015; Horeshetal. 2016). Within the next ∼ 3−4yrs we willhaveamuchbetterempiricalhandleontheratesofsuch eventsandtheirroleinUHECRacceleration. 4.4. IntergalacticPropagation UHECRs with largechargescan be significantlydeflected by the intergalactic magnetic field, so it is a good check to considerthiseffectinthecontextofourmodel. Asaparticle withchargeZetravelsoveramagneticfieldwithcorrelation length λ, it typically gets deflected by an angle α ∼ d/r , L where r = E/ZeB is the Larmor radius and B is L IGM IGM theintergalacticmediummagneticfield.Travelingoveradis- tanceofD,thetypicaltotaldeflectionwillbe 1/2 D λ θ ∼ . (31) λ r FIG.7.—AssumingthatagivenB∗andPiarerepresentativeofmostfast- (cid:18) (cid:19) L spinningmagnetarsgenerated,thecontoursshowtherateofeventsneededto Thisdeflectionneedstobelessthan∼1radwithintheGZK explaintherateofUHECRsobservedinunitsoftheTypeIasupernovarate, takentobe3.01×10−5Mpc−3yr−1(Lietal.2011). volume, otherwise the path length of an UHECR will be in- creasedbytoomuch. ThiswoulddecreasetheeffectiveGZK volumetothepointthatitmaycauseproblemswithgettinga sufficientrateofevents. Thislimitsthemagneticfieldtobe requiredratesestimatedinEquation(26),wethenestimate −1/2 D P 2 f −1 D 3 BIGM .8×10−9Z−1E20 GZK RGZK ≈23I4−51(cid:18)2mis(cid:19) (cid:18)0.c0r1(cid:19) (cid:18)170GMZKpc(cid:19) yr−1, (cid:18)17λ0Mpc−(cid:19)1/2 (30) × G, (32) 1Mpc (cid:18) (cid:19) 9 whereE =E/1020eV. 20 Another consideration is that the intergalactic magnetic field should provide enough smoothing such that at least one source within the GZK volume is providing UHECRs at any given time, otherwise there would be large angular anisotropiesobservedintheUHECRrate.Forthistobesatis- fied,thediffusiontime,whichisroughlyτ ∼ θ2D/cshould be longer than R−1 , which we derived in Equation (30) GZK above.Thisyields −1 1/2 P f B &7×10−14Z−1E I1/2 i cr IGM 20 45 2ms 0.01 (cid:18) (cid:19) (cid:18) (cid:19) D −5/2 λ −1/2 × GZK G, (33) 170Mpc 1Mpc (cid:18) (cid:19) (cid:18) (cid:19) asalowerlimitfortheintergalacticmagneticfield. Interest- ingly,theseupperandlowerlimitsshowthatinprinciplemea- suringthepropertiesoftheintergalacticmagneticfieldcould helpconstrainthepropertiesofthemagnetarsgeneratingthe UHECRs, albeit the wide range of the constraints probably makethisdifficultinpractice. 4.5. GalacticPropagation FIG.8.— Contours show the background flux of high-energy neutri- One is finally left wondering, “What if an AIC occurred nos expected from Equation (38) in units of GeVcm−2s−1sr−1. The rate R is assumed to be sufficient to produce UHECRs with a rate intheMilkyWay?”Similartotheestimatesmadeabove,the of 1043.75ergMpc−3yr−1, and this assumes a volume of high-energy propagationtimeacrossthediskoftheGalaxyis neutrinos out to a distance of 4000Mpc. The IceCube upper limit is resolved as function of energy, but is generally in the range of ∼ D 2 λ 10−8GeVcm−2s−1sr−1ormuchhigher. τ ∼58Z2E−2 20 15kpc 0.1kpc (cid:18) (cid:19) (cid:18) (cid:19) TheopticaldepthofUHECRstohadroninteractions,which B 2 weestimatedinSection3.2inthecontextofpreventingUHE- × 3×1I0S−M6G yr. (34) CRsfromescaping,is∼ tej/tcross. Thusweestimatetheef- (cid:18) (cid:19) ficiencyofpionproductionas ForZ = 26,thisimpliesτ ∼ 4×104yrandthusforheavy f ∼min(t /t ,1). (36) π ej cross nucleithediffusiontimeislongerthanthetimescalebetween AICorNSmergereventsintheGalaxy. Soanon-zerofrac- Furthermore, we assume that 0.2 of the energy of a given tion of UHECRs we measure today could have originated UHECR can be convertedto the energy of a pion, and 0.25 fromaneventintheMilkyWay. Thedeflectionangleis ofthepionenergythengoesintotheneutrino(aswasdonein Fangetal. 2016). This givesan overallconversionfactor of θ∼5×10−2ZE2−01 15Dkpc 1/2 fνIn∼te0g.r0a5tinfrgomovaergitvheeneUnHtirEeCURHtEoCaRneeuntreirngoy. spectrum, we (cid:18) (cid:19) can derive the total energy of neutrinos that are generated. λ 1/2 B Note that in this particular case, f can be taken outside of × 0.1kpc 3×1I0S−M6G rad, (35) theenergyintegralsince weareusπinga simplisticmodelfor (cid:18) (cid:19) (cid:18) (cid:19) the hadronic interactions, which may not be true in a more which for Z = 26 this implies deflection angles of ∼ 50◦, detailed treatment. This greatly simplifies the evaluation of whichisobviouslynotinthesmallangleapproximationfrom theintegral,andtotalneutrinoluminositycomesoutto whichthisformulawasderived!Theconclusionisthateither L (t)∼f f (t)η L (t). (37) Z ∼1andthereisverylittlecontributionfromtheGalaxyor ν ν π cr sd thatZ =26andalthoughthereissomecontributionfromthe Note that here we are using the entire luminosity that goes Galaxy,associatingthemwithlocationsintheMilkyWaywill intoUHECRs,whichisrepresentedbythetermη L ,rather cr sd bedifficultduetotheirlargedeflectionsfromtheirorigins. than just the fraction that escape the magnetar environment, which is given in Equation (29). This is because it is this 4.6. ConstraintsfromHigh-EnergyNeutrinos luminosity of UHECRs that is important for generating the high-energy neutrinos. To relate this to the observed high- HadronicinteractionsbetweentheUHECRsandtheejecta energyneutrinoflux,weintegrateL overalltimeforasingle surroundingthe magnetar will lead to charged pion produc- ν eventandoveradistanceD,resultingin tion,whichsubsequentlydecayintohigh-energyneutrinosvia π± →e±+νe(ν¯e)+νµ+ν¯µ. Althoughadetailedstudyof DR ∞ thisprocessisoutsidethescopeofthispaper,wemakeasim- Fν = Lν(t)dt, (38) 4π pleestimateoftheexpectedneutrinobackgroundtocheckfor Z0 consistency with constraints from the IceCube Observatory whereR is thevolumetricrate ofevents. We donotinclude (TheIceCubeCollaboration2011;Aartsenetal.2013). additionalneutrinosproducedbysecondarynucleiandpions, 10 since our ejecta is so much less massive than in supernova- Using a simple model of the nebula and ejecta surrounding relatedscenarios(Muraseetal.2009). the newly born magnetar, we considered both the accelera- Thecalculationofthishigh-energyneutrinobackgroundis tion of UHECRs and their ability to escape their production summarized in Figure 8. At each location in this plot we site, which each imprintfeatureson the emergentUHECRs. assume that B∗ and Pi are representative of all UHECR- We also exploredthe requiredrates for this scenario as well producing magnetars. Furthermore, we set R to be the rate as the propagationof these particlesthoughthe intergalactic neededtomatchtheobservedUHECRrate(assummarizedin medium or even the interstellar medium, especially for the Figure7). FinallyweuseD =4000Mpc,essentiallyassum- casewherethenucleiareheavy. Perhapsmostexcitingly,the ingaconstantrateofUHECRproductionovertheentirehis- volumeoverwhichtheseUHECRscanpropagatetoEarthis toryoftheUniverse. Amoredetailedtreatmentthatincludes similar to the distancesthat these eventscan be detectedvia thetime-dependentcosmicstarformationrateandconnecting electromagneticandgravitationalwavesignaturessothatitis thistotherateofencaulmagnetarbirthsovertimeisoutside likelythisscenariowillbetestedwithinthenext∼3−5yrs. thescopeofthiswork. Lookingtothefuture,akeyissueforUHECRswillbecon- TheIceCubeupperlimitsareresolvedasafunctionofen- clusivelymeasuringwhetherthecompositionisindeedheavy ergyandreachaminimumof∼ 10−8GeVcm−2s−1sr−1 at and how it is changing as a function of particle energy. A a neutrino energy of ∼ 1014eV. Furthermore, going up to heavy composition is difficult to reconcile with AGN and energies of ∼ 1018GeV − 1020GeV, the upper limits are mostGRBscenarios,butaniron-richcompositionisnaturally ∼ 3 × 10−8 − 3 × 10−7GeVcm−2s−1sr−1. Comparing expected for a NS source such as young pulsars (Fangetal. to Figure8, thisis aboveour expectedbackgroundrate over 2012) or the magnetars studied here. A protomagnetar jet mostoftheparameterspace,andnotethatweareintegrating couldalsogiveheavynuclei(Metzgeretal.2011)andinfact over neutrinosof all energiesand thus likely overestimating could reach elements such as zirconium, tellurium, or plat- thepotentialbackground.Thereasonweareabletomeetthe inumatthehighestenergies,themeasurementofwhichwould neutrinoconstraintsisthatthelowamountofejectanaturally bestrongsupportforthismodel. gives t /t ≪ 1 over most of the time when UHECRs Animportantextrinsicdifferencebetweentheencaulmag- ej cross are produced in the greatest amounts. Thus, for the same netar scenario and most other proposed scenarios for UHE- reason we are able to efficiently produce UHECRs, we are CRs is the galaxy environment. AIC and NS mergers are alsoabletonotoverproducehigh-energyneutrinos. Wenote expected to occur in both old and young stellar environ- thattheremayalsobephoto-hadronicinteractionswithinthe ments, and in fact this is well-known from short GRBs nebulathatmayalsoproduceneutrinos(Lemoineetal.2015; (Fong&Berger2013). Thisisverydifferentthanyoungpul- Fangetal. 2016). Since this process is stronger for protons sars or the long GRBs associated with protomagnetar jets thanheavynuclei,andourmainfocushereisontheheavynu- thatwouldbeinyoung,starformingregions. Thusevidence cleiasUHECRs, we save sucha calculationforfuturework thatUHECRsarebeingproducedinoldstellarenvironments where the spectrum of UHECRs and the non-thermalradia- wouldbestrongsupportforthemodelpresentedhere. tioniscomputedinmoredetail. We thank Andrew MacFadyen for important discussions 5. DISCUSSIONANDCONCLUSIONS whenweweredevelopinginitialideasforthiswork.Wethank InthisstudyweconsideredtheproductionofUHECRsby John Beacom for suggesting a comparison with the high- quicklyspinningmagnetarsfollowingtheAICofWDsorthe energyneutrinobackground. We alsothankJonathanArons, mergerofNSs–processesthatsetupthegenericinitialcon- KumikoKotera,BrianMetzger,KohtaMurase,E.SterlPhin- ditionswehavetermed“encaulbirth”asthenewlybornmag- ney,andToddThompsonfortheirhelpfulfeedbackonprevi- netar hasa small shroudof ejecta in its immediate environs. ousdrafts. REFERENCES Aab,A.,Abreu,P.,Aglietta,M.,etal.2014a,Phys.Rev.D,90,122005 —.2013,JCAP,3,010 —.2014b,Phys.Rev.D,90,122006 Farrar,G.R.,&Gruzinov,A.2009,ApJ,693,329 Aartsen,M.G.,Abbasi,R.,Abdou,Y.,etal.2013,ApJ,779,132 Ferna´ndez,R.,&Metzger,B.D.2013,MNRAS,435,502 Abadie,J.,Abbott,B.P.,Abbott,R.,etal.2010,ClassicalandQuantum Fong,W.,&Berger,E.2013,ApJ,776,18 Gravity,27,173001 Fryer,C.,Benz,W.,Herant,M.,&Colgate,S.A.1999,ApJ,516,892 Abbasi,R.U.,Abu-Zayyad,T.,Allen,M.,etal.2008,PhysicalReview Giacomazzo,B.,&Perna,R.2013,ApJ,771,L26 Letters,100,101101 Goldreich,P.,&Julian,W.H.1969,ApJ,157,869 Abraham,J.,Abreu,P.,Aglietta,M.,etal.2008,PhysicalReviewLetters, Granot,J.,Komissarov,S.S.,&Spitkovsky,A.2011,MNRAS,411,1323 101,061101 Greisen,K.1966,PhysicalReviewLetters,16,748 Arons,J.2003,ApJ,589,871 Hartmann,D.,Woosley,S.E.,&ElEid,M.F.1985,ApJ,297,837 Arons,J.2008,inAmericanInstituteofPhysicsConferenceSeries,Vol. Hebeler,K.,Lattimer,J.M.,Pethick,C.J.,&Schwenk,A.2013,ApJ,773, 983,40YearsofPulsars:MillisecondPulsars,MagnetarsandMore,ed. 11 C.Bassa,Z.Wang,A.Cumming,&V.M.Kaspi,200–206 Horesh,A.,Hotokezaka,K.,Piran,T.,Nakar,E.,&Hancock,P.2016, Berezinsky,V.,Gazizov,A.,&Grigorieva,S.2006,Phys.Rev.D,74, ArXive-prints 043005 Inoue,S.,Sigl,G.,Miniati,F.,&Armengaud,E.2007,ArXivAstrophysics Canal,R.,&Schatzman,E.1976,A&A,46,229 e-prints Chakraborti,S.,Ray,A.,Soderberg,A.M.,Loeb,A.,&Chandra,P.2011, Kaiser,N.,Aussel,H.,Burke,B.E.,etal.2002,inSocietyofPhoto-Optical NatureCommunications,2,175 InstrumentationEngineers(SPIE)ConferenceSeries,Vol.4836,Survey Chen,A.Y.,&Beloborodov,A.M.2014,ApJ,795,L22 andOtherTelescopeTechnologiesandDiscoveries,ed.J.A.Tyson& Dermer,C.2010,ArXive-prints S.Wolff,154–164 Dermer,C.D.,Razzaque,S.,Finke,J.D.,&Atoyan,A.2009,NewJournal Kaplan,J.D.,Ott,C.D.,O’Connor,E.P.,etal.2014,ApJ,790,19 ofPhysics,11,065016 Katz,B.,Budnik,R.,&Waxman,E.2009,JCAP,3,20 Dessart,L.,Ott,C.D.,Burrows,A.,Rosswog,S.,&Livne,E.2009,ApJ, Kim,C.,Kalogera,V.,Lorimer,D.R.,Ihm,M.,&Belczynski,K.2005,in 690,1681 AstronomicalSocietyofthePacificConferenceSeries,Vol.328,Binary Duncan,R.C.,&Thompson,C.1992,ApJ,392,L9 RadioPulsars,ed.F.A.Rasio&I.H.Stairs,83 Fang,K.,Kotera,K.,Murase,K.,&Olinto,A.V.2016,JCAP,4,010 Kiziltan,B.,Kottas,A.,DeYoreo,M.,&Thorsett,S.E.2013,ApJ,778,66 Fang,K.,Kotera,K.,&Olinto,A.V.2012,ApJ,750,118 Kotera,K.,Allard,D.,Murase,K.,etal.2009,ApJ,707,370