Mon.Not.R.Astron.Soc.000,000–000(0000) Printed28January2014 (MNLATEXstylefilev2.2) Ultra Luminous X-ray Sources: a deeper insight into their spectral evolution 4 1 1 2 3 Fabio Pintore , Luca Zampieri , Anna Wolter , Tomaso Belloni 1 0 1INAF-OsservatorioAstronomicodiPadova,Vicolodell’Osservatorio5,I-35122Padova,Italy 2 2INAF,OsservatorioAstronomicodiBrera,viaBrera28,20121Milano,Italy 3INAF,OsservatorioAstronomicodiBrera,viaE.Bianchi46,I-23807Merate,Italy n a J 7 28January2014 2 ] ABSTRACT E H WeselectasampleofnearbyUltraluminousX-raysourceswithlongXMM-Newtonob- . servationsandanalysealltheavailableXMM-NewtondatausingbothX-rayspectralfitting h techniquesandhardness-intensitydiagrams.ThesampleincludesIC342X-1,NGC5204X- p 1,NGC5408X-1,HolmbergIXX-1,HolmbergIIX-1,NGC1313X-1,NGC1313X-2and - o NGC253X-1.Wefoundthat,althoughacommonreferencemodelcanbeusedtodescribethe r X-rayspectra,thesourcesshowdifferentspectralevolutions,phenomenologicallydescribed t s intermsofvariationsinthepropertiesofasoftcomponentandahighenergytail.Variationsat a lowenergiesareaccountedfor(mostly)bychangesinthenormalizationofthesoftcomponent [ and/orinthecolumndensitytothesource,whilevariationsinthehighenergytailbychanges 1 intheparametersofanopticallythickcorona.Thisspectralvariabilityisratherwellcharacter- v izedonacolour-colourandhardness-intensitydiagramintermsofsuitablydefinedhardness 5 ratios.Wesuggesttheexistenceofavariabilitypatternonthehardness-intensitydiagramand 1 weinterpretitintermsoftheswitchbetweenanear-Eddingtonandasuper-Eddingtonaccre- 8 tion regime.The transition between the two regimesseems to be driven mostly by changes 6 inthecontributionofthesoftcomponent,whichcanbeexplainedintermsoftheincreasing . 1 importanceofwindemission.Theanalysisiscomplementedbyaninvestigationoftheshort- 0 termtime variabilityofall thesources.Ingeneral,no clearcorrelationbetweenthe spectral 4 andtemporalpropertiesisfound. 1 : Keywords: accretion,accretiondiscs–X-rays:binaries–X-Rays:galaxies–X-rays:indi- v viduals(IC342 X-1,NGC 5204X-1,NGC 5408X-1,HolmbergIX X-1, HolmbergII X-1 i X andNGC253X-1) r a 1 INTRODUCTION 2011)ornear-EddingtonaccretionontomassivestellarBHsformed from low metallicity stars (30-80 M⊙, e.g. Mapellietal. 2009; Zampieri&Roberts2009;Belczynskietal.2010). Ultra Luminous X-ray sources (ULXs) are a peculiar class of extragalactic, point like and off-nuclear X-ray sources with Based on the early, low counting statistics XMM-Newton isotropicluminosityinexcessof1039 ergs−1 (e.g.Feng&Soria spectraBHmassessignificantlyinexcessof100upto∼104M⊙ 2011). Although they were discovered more than 30 years ago wereinferred(e.g.Milleretal.2003,2004).Howevermorerecent and nowadays more than 450 ULXs are known and catalogued high quality XMM-Newton observations have shown that the X- (e.g.Roberts&Warwick2000;Colbert&Ptak2002;Swartzetal. rayspectraofULXsarecharacterisedbypropertiesnotcommonly 2004;Liu&Bregman2005;Waltonetal.2011),theirnatureisstill observed in GalacticBH X-ray binary systems (XRBs) accreting matter of debate and their observational properties are still puz- at sub-Eddington rates (Stobbartetal. 2006; Gonc¸alves&Soria zling.Anumberofobservationalresults,includingtheX-rayvari- 2006). A roll-over at high energy, usually at 3-5 keV, is of- ability and the existence of periodic modulations in the X-ray or ten observed coupled to a soft excess (Stobbartetal. 2006). optical flux of some sources, suggest that they can be accreting Gladstoneetal.(2009)found thatitwasalmost ubiquitousinthe black hole (BH) binary systems. Their extreme luminosities may highest quality ULX spectra and proposed that such curvature is beexplainedintermsofsub-EddingtonaccretionontoIntermedi- a characteristic feature of a new spectral state, the ultraluminous ateMassBHs(IMBHs,100-104M⊙;Colbert&Mushotzky1999), state(Roberts2007). Theymodelled thesespectra intermsof an beamed and/or super-Eddington accretion onto stellar mass BHs optically thick corona coupled to an accretion disc. In particular, (5-20 M⊙; e.g. Kingetal. 2001; Begelman 2002; Feng&Soria they proposed the existence of a spectral sequence in which the 2 FabioPintore,Luca Zampieri,AnnaWolter,TomasoBelloni soft component becomes more and more important as the lumi- very recently been published also by Suttonetal. (2013). Adopt- nosity increases. For the highest luminosity sources, this compo- ingamulticolourdiscplusapowerlaw,theyclassifiedtheULXsin nent was later interpreted as originating from outflow ejections threespectralregimes,definedasbroadeneddisc,hardultralumi- fromthedisc(Middletonetal.2011a).Thisisconsistentwithre- nousandsoftultraluminous.Thefirstischaracterisedbyadisc-like cent theoretical calculationsof thehydrodynamic structureof ac- spectral shapewhiletheother twobythepredominance of either cretion discs at super-Eddington rates (e.g. Poutanenetal. 2007; thepowerlawcomponentathighenergiesorthedisccomponentat Ohsuga&Mineshige2007;Ohsugaetal.2009). lowenergies.Whileinsomerespectstheirinvestigationiscomple- TheincreasingnumberofobservationsofULXsthatbecame mentarytoours(thegoalandsomeoftheresultsaresimilartothose available in the last years also prompted an investigation of their reported here), inothersour approach differsbecause wedid not long-termspectral statevariability.IC 342X-1and X-2werethe usefluxesfromaspectralmodelforcomputinghardness-intensity firsttwoULXsinwhichtransitionsfromalow/hardtoahigh/soft andcolour-colourdiagrams,butadoptedtheXMM-Newtoncounts spectralstatewereobserved(Kubotaetal.2001).However,thebe- indifferentenergybands.Wewillshowthatthismethodallowsus haviour of the soft component is intriguing. In fact, although IC to classify ULXs also in case of low quality data and weak con- 342X-2showsacorrelationbetweenthediscluminosityandtem- straintsontheparametersofthespectralmodels,andthereforecan peraturetypicalofastandardaccretiondisc,IC342X-1showsthe beappliedtoalargersampleofsources. oppositebehaviour(Feng&Kaaret2009).Ananti-correlationwas The plan of the paper is the following. In Section 2 we de- observedalsoinothersources(Kajava&Poutanen2009).Changes scribetheselectionofthesampleofULXs.InSection3wepresent reminiscent of Galactic XRB spectral transitions were also ob- theadoptedX-raydatareductionprocedureandtheresultoftheX- servedinNGC1313X-1andX-2(Feng&Kaaret2006).Asystem- rayspectralandtemporalanalysisofallthesources.InSection4, aticanalysisoftheirX-rayspectralvariabilityintermsofacomp- we tentatively try to interpret the spectral evolution of ULXs on tonisationmodelplusamulticolorblackbody discwasperformed thecolour-colourandhardness-intensitydiagramsand,finally,we byPintore&Zampieri(2012),whocharacterisedthebehaviourof discussourresultsinSection5. thesetwoULXsintermsof variationsintheoptical thickness of theComptonizingcorona(verythickandthickstate).Theresulting pictureisthat ULXsshow rather peculiar spectral changes, often differentfromsourcetosource. 2 SELECTIONOFTHESAMPLE As shown by at least 30 years of studies of Galactic XRBs, We selected a sample of ULXs from the catalogues of inadditiontothespectralshape,shorttermvariabilityisveryim- Liu&Bregman(2005)andWaltonetal.(2011)thatwereobserved portanttounderstandtheiraccretionstates(e.g.Belloni2010).Few byXMM-Newton.Inordertodetectthehighenergycurvatureinthe sources(NGC5408X-1,M82X-1andX42.3+59)showquasipe- EPICspectrum,atleast10000countsareneeded(Gladstoneetal. riodicoscillations(QPOs),theclassificationofwhichremainsstill 2009).Inaddition,ahighnumberoftotalcountsisalsorequested unclear (e.g. Strohmayer&Mushotzky 2003; Mucciarellietal. to perform an analysis of the chemical abundances. Winteretal. 2006; Strohmayeretal. 2007; Strohmayer&Mushotzky 2009; (2006) showed that the Oxygen or Iron K-shell edges can be de- Fengetal. 2010; Middletonetal. 2011b; Dheeraj&Strohmayer tectedwithatleast5000or40000countsintheEPICinstrument, 2012; Caballero-Garciaetal. 2013). In general, the properties of respectively. Theobservedcount ratesof theclosestULXsinthe the short term variabilityof ULXsarestill poorly understood. In EPIC-pndetectorareintherange∼0.1−1.5counts−1andhence fact, sources with similar X-ray spectra show different temporal longexposure timesof∼ 15−100ksareneededtoprovidethe variability.Heiletal.(2009)analysedthePowerSpectralDensities requiredamountoftotalcounts. (PSD)ofasampleof16brightULXsandfoundthat,irrespectively Following these constraints we select nearby ULXs (D 6 5 of their X-rayspectra, therearetwogroups of sources: asmaller Mpc) that have at least one long observation with XMM-Newton group displays a well defined variability at about the same level (∼ 10%), while in the other one the variability is almost absent. (texp >15 ks). This gives us the required ∼10000 counts in theEPICinstrument. Theadditional requirement of atleast three Recently, Middletonetal.(2011,a,b) showedthat alsotheanaly- XMM-Newtondatasetsindifferentepochs(evenifsomeepochsare sisoftheenergydependenceoftheshorttermvariabilitycanbea ofshorterexposures)allowsustostudythespectralvariability.The powerful tooltodiscriminateamong differentspectral models.In finallistincludes:IC342X-1,NGC253X-1,NGC5204X-1,NGC particular, they suggested the possibility that the short-term vari- 5408X-1,HoIXX-1andHoIIX-1,NGC1313X-1andX-2.The abilityisproduced by turbulencesinaclumpy wind, whichfrom sourcesinNGC1313 havebeenpresented inPintore&Zampieri timetotimeencountersourlineofsight. (2012)andwillbeaddedtothediscussionoftheresults.Thissam- Theaimofthepresent workistoinvestigateinasystematic plemightnotbefullyrepresentativeoftheULXpropertiesbutthe way the spectral variability of ULXs on a sample of sources se- adoptedselectioncriteriaallowustosamplearatherlargerangeof lected to have high quality XMM-Newton observations. We com- luminosities(L ∼1−30×1039ergs−1). plement the spectral analysis witha careful investigation of their X shorttermvariability.Weattempttocharacterizethespectralvari- abilityusingalsothehardnessratiosandcolour-colourdiagrams, that have been successfully adopted in the past to study the be- haviourofXRBs.Consideringtherelevanceofthemetallicityfor 3 DATAANALYSISOFSPECTRALANDTIMING someoftheproposedscenariosfortheformationofULXs,wealso PROPERTIES put a certain effort in using the highest counting statistics X-ray 3.1 DataReduction spectra to attempt a measurement of the chemical abundances in theenvironmentofULXs,followingtheapproachofWinteretal. We carried out a complete spectral and temporal analysis on all (2007)andPintore&Zampieri(2012).Asystematicanalysisofthe theavailableXMM-NewtonobservationsoftheULXslistedabove. spectral and temporal variability of a larger sample of ULXshas Weexcludedfromtheanalysisobservationsperformedearlierthan UltraLuminousX-raySources:a deeper insightintotheirspectralevolution 3 Table1.LogoftheobservationsoftheULXsanalysedinthiswork. No. Obs.ID Date Expa Instr.b EPIC-pn Netcounts Off-axisangle (ks) counts−1 IC342X-1;D=3.3Mpcc;NHGal=31.1·1020cm−2d;Ra,Dec(J2000):034555.5,+680454.2 1 0093640901 2001-02-11 4.83 pn 0.37 1761 5.08’ 2 0206890101 2004-02-20 17.06 pn/M1/M2 0.42 6863,3212,3176 2.49’ 3 0206890201 2004-08-17 14.36 pn/M1/M2 0.90 12473,7757,7861 4.27’ 4 0206890401 2005-02-10 5.92 pn/M1/M2 1.11 6593,3718,4409 2.63’ NGC253X-1;D=3.9Mpce;NHGal=1.3·1020cm−2d;Ra,Dec(J2000):004722.56,-252051.0 1 0110900101 2000-12-13 10.97 pn/M1/M2 0.105 1154,802,893 4.57’ 2 0152020101 2003-06-19 61.37 pn/M1/M2 0.271 16625,6978,7201 5.30’ 3 0304851101 2005-02-10 10.93 pn/M1/M2 0.097 1057,727,694 3.13’ 4 0304850901 2006-01-02 8.82 pn/M1/M2 0.141 1241,458,488 3.14’ 5 0304851001 2006-01-06 8.75 pn/M1/M2 0.155 1359,530,549 3.17’ 6 0304851201 2006-01-09 16.00 pn/M1/M2 0.158 2525,994,965 3.19’ 7 0304851301 2006-01-11 4.34 pn/M1/M2 0.162 703,338,373 3.22’ NGC5204X-1;D=4.8Mpcf;NHGal=1.39·1020cm−2d;Ra,Dec(J2000):132938.6,+582505.7 1 0142770101 2003-01-06 15.33 pn/M1/M2 0.624 9560,3121,3211 1.14’ 2 0142770301 2003-04-25 4.02 pn/M1/M2 0.862 3465,1903,1868 1.12’ 3 0150650301 2003-05-01 5.26 pn/M1/M2 1.018 5357,2213,2327 1.30’ 4 0405690101 2006-11-15 10.05 pn/M1/M2 1.228 12600,7752,7752 1.10’ 5 0405690201 2006-11-19 31.25 pn/M1/M2 1.031 32219,11791,11957 1.08’ 6 0405690501 2006-11-25 22.42 pn/M1/M2 0.775 17364,6906,7174 1.13’ NGC5408X-1;D=4.8Mpce;NHGal=5.67·1020cm−2d;Ra,Dec(J2000):140319.6,-412259.6 1 0112290501 2001-07-31 3.68 pn/M1/M2 1.441 5303,2530,2642 1.26’ 2 0112290601 2001-08-08 4.50 pn/M1/M2 1.337 6023,2024,2140 1.27’ 3 0112290701 2001-08-24 7.50(MOS1) M1/M2 1.018(MOS1) 2405,2482 1.23’ 4 0112291201 2003-01-27 2.79 pn/M1/M2 1.228 2354,920,935 0.99’ 5 0302900101 2006-01-13 92.54 pn/M1/M2 1.031 94298,25437,25331 1.09’ 6 0500750101 2008-01-13 46.09 pn/M1/M2 0.775 43753,18471,17782 1.07’ 7 0653380201 2010-07-17 92.68 pn/M1/M2 1.137 105377,26034,33154 1.11’ 8 0653380301 2010-07-19 96.86 pn/M1/M2 1.113 107805,30145,30188 1.12’ 9 0653380401 2011-01-26 87.38 pn/M1/M2 1.061 92710,29307,29126 1.12’ 10 0653380501 2011-01-28 88.51 pn/M1/M2 1.024 90634,27952,27822 1.12’ HoIIX-1;D=4.5Mpce;NHGal=3.42·1020cm−2d;Ra,Dec(J2000):081929.0,+704219.3 1 0112520601 2002-04-10 4.64 pn/M1/M2 3.054 14164,8316,8886 1.13’ 2 0112520701 2002-04-16 3.77 pn/M1/M2 2.751 10377,4796,4994 1.11’ 3 0112520901 2002-09-18 4.33 pn/M1/M2 0.815 3527,1317,1434 1.11’ 4 0200470101 2004-04-15 40.75 pn/M1/M2 3.056 124532,49487,50578 1.14’ 5 0561580401 2010-03-26 23.19 pn/M1/M2 1.238 28709,14098,13993 1.14’ HoIXX-1;D=3.55Mpcg;NHGal=4.06·1020cm−2d;Ra,Dec(J2000):095753.2,+690348.3 1 0112521001 2002-04-10 7.05 pn/M1/M2 1.895 13350,5806,5782 1.11’ 2 0112521101 2002-04-16 7.64 pn/M1/M2 2.173 16610,7041,7338 1.13’ 3 0200980101 2004-09-26 83.17 pn/M1/M2 1.495 124339,46782,47339 1.13’ 4 0657801601 2011-04-17 0.96 pn/M1/M2 0.760 733,2851,2807 7.40’ 5 0657801801 2011-09-26 7.40 pn/M1/M2 2.477 13830,11969,13487 5.29’ 6 0657802001 2011-03-24 3.20 pn/M1/M2 1.369 4381,2882,3672 7.32’ 7 0657802201 2011-11-23 13.10 pn/M1/M2 2.211 28964,16186,15303 5.21’ aGTIofEPIC-pn;bpn=EPIC-pncamera;M1/M2=EPIC-MOS1/MOS2camera;cSahaetal.(2002);dDickey&Lockman(1990);eKarachentsevetal. (2003);f Stobbartetal.(2006);gFreedmanetal.(1994); December2000,becausethecalibrationbeforethisdatemaybein- solar flares. In order to avoid distortions induced by background complete.DatawerereducedusingSASv.11.0.0,extractingspec- particles, EPIC-MOSand EPIC-pnspectra were extracted select- tra and lightcurves from events with PATTERN6 4 for EPIC-pn inggoodtimeintervalswithabackgroundcountrateintheentire (whichallowsforsingleanddoublepixelevents)and PATTERN6 fieldofviewnothigherthan0.7counts−1inthe10−12keVen- 12 for EPIC-MOS (which allows for single, double, triple and ergyrange.Afewobservations ofNGC5408 X-1andHoIIX-1 quadruplepixelevents).Weset‘FLAG=0’inordertoexcludebad wereexcludedfromtheanalysisbecausetheeventlistwasempty. pixels and events coming from the CCD edge. We also excluded The log of observations and relevant information on the sources, fromtheanalysistheobservationsinwhichthesourceswereinthe includingtotalnetcountsinthevariousinstruments,isreportedin CCDgapandanumberofobservationsseverelyaffectedbystrong Table1. 4 FabioPintore,Luca Zampieri,AnnaWolter,TomasoBelloni SpectraandlightcurvesofIC342X-1,NGC253X-1,HoII ofNGC5408X-1weaddanunderlyingplasmacomponent(APEC X-1,HoIXX-1and NGC5408 X-1wereobtained selectingcir- inXSPEC)withatemperatureof∼0.9keVthatleadstoasignifi- cularextractionregionsof30”and65”forsourceandbackground cantimprovementinthefit.Thisemissioncouldbeproducedeither (whenpossible,onthesameCCDwherethesourceislocated),re- bythediffusegasinthehostgalaxyordirectlyfromtheenviron- spectively. NGC 5204 X-1 was often very close to the CCD gap ment around the source (Strohmayeretal. 2007; Middletonetal. andhencetheextractionregionwasdifferentfromobservationto 2011b). observation(rangingfrom24”to31”forthesourceandfrom50” The (unabsorbed) luminosities of the sources of the sample to65”forthebackground). spanfrom∼7·1038ergs−1to∼3·1040ergs−1(Figure2-top), Allthespectrawererebinnedwith25countsperbininorder andthereforesampleawiderangeofobservedULXluminosities. to apply the χ2 statistics. The spectral fitswere performed using Most of the sources exhibit intermediate luminosities, clustering XSPECv. 12.6.0(Arnaud 1996).Toimprove thecounting statis- around ∼ (7−8)·1039 erg s−1, but with significant long-term tics we fittedEPIC-pn and EPIC-MOSspectra simultaneously in variability, which in some cases is higher than a factor of 3 (i.e. the 0.3-10 keV energy range. In all fits, a multiplicativeconstant HolmbergIXX-1,NGC1313X-2andIC342X-1). was introduced for the three instruments to account for possible In all the observations the comptonizing medium (corona) residualdifferencesincalibration.TheEPIC-pnconstantwasfixed is optically thick and cold (Figure 2-bottom). The temperatures to1,whilefortheMOStheywereallowedtovary.Ingeneral,the and optical depths are in the range kT ∼ 1 − 6 keV and cor differenceamongthethreeinstrumentswaslessthan10%. τ ∼ 3−30, significantly lower the former and higher the latter thanthose seeninGalacticXRBs(kT > 50 keV and τ 6 1, cor e.g. McClintock&Remillard 2006)1. This is consistent with the 3.2 Spectralfits findingsofGladstoneetal.(2009),whointerprettheultraluminous A combination of a multicolor disc plus a comptonisation model stateintermsofanopticallythick,coldcoronaphysicallycoupled has been shown to offer a reasonable description of both poor totheinnerregionsofanaccretiondisc.However,thefitofobser- and high quality ULX spectra and to provide a better fit vation#2ofNGC5408X-1showsamorepronounceddegeneracy than simple models as a multicolour blackbody disc (diskbb in intheparametersofthecoronawhichisalsoconsistentwithbeing XSPEC, Mitsudaetal. 1984), powerlaw, a slim disc (diskpbb warm(84keV) and marginallyopticallythin(τ ∼ 0.9). Forthis in XSPEC, Mineshigeetal. 1994) or a diskbb+powerlaw (i.e. reason, thisobservation isnot shown intheplot τ −kTcor (Fig- Stobbartetal.2006;Gladstoneetal.2009;Middletonetal.2011a; ure2-bottom). Pintore&Zampieri2012).Followingthesefindingsandguidedby Atsuchhighopticaldepthsandlowtemperatures,thephysical theideaofdescribingthespectralevolutionofULXswithinacom- conditionsinthecoronaareratherdifferentfromthoseinGalactic monframework,wethenfittedthespectraofoursampleofULXs XRBs.Ifthegasispurehydrogen,thebremsstrahlungluminosity adopting as reference model a multicolor accretion disc (diskbb ofthecoronaisLbrem,cor =2.5·1021·Tc1o/r2·τes·rcorergs−1, in XSPEC) plus a comptonising component (comptt in XSPEC; whereτesistheelectron-scatteringopticaldepthandrcoristhera- Titarchuk1994).Wenotethatforsomesourcesthespectralfitswith diusofthecorona.AssumingthatL isnegligible(<1038 brem,cor thistwo-componentmodeloftendisplayseverallocalminimawith erg s−1), we find rcor . 7×1010 cm for kTcor ≈ 1 keV and verysimilarvaluesoftheχ2,sometimeswithevidenceforbotha τes ≈ 5.Atthesametime,askingthattheeffectiveopticaldepth strong/warmandaweak/cool(orno)disc.InTable2wequotethe τeff = [(τabs +τes)·τabs]1/2 < 1 (τabs is the true emission- valuesoftheparametersandformalstatisticalerrors(at90%con- absorption optical depth) and assuming τabs << τes, we obtain fidencelevel)fortheabsoluteminimafoundwiththismodel,but rcor & 15 cm (again for kTcor ≈ 1 keV, τes ≈ 5). Therefore, westressthat,forsomepoorqualityspectra,theactualuncertainty physicalconditionsareconsistentwiththeexistenceofbothcom- on the spectral parameters caused by the topology of the χ2 sur- pactandmoderatelyextendedopticallythickcoronae. facemaybelarger.Becauseofthelowstatistics,inthemajorityof Wenotethatthesourcesoccupyboththeverythickandthick thecaseswearenotabletoindependentlyvarythetemperatureof regionsoftheτ −kTcorplane(dividedbytheboundaryatτ ∼9, thedisc(Tdisc)andthatoftheseedphotons(T0)andhencewetie as nominally defined in Pintore&Zampieri 2012). However, the themtogether.Althoughthisisnotfullyconsistentfromaphysical tworegionsdonotappeartobecompletelydetachedonthisplane pointofview(thecoronaisoftenopticallythickandthentheinner butrather smoothlyconnected. Somesources arealsoresidingin disc ishidden), leavingthem free to vary independently withina eitheroneortheotherstateatdifferenttimes(seebelow). factor of afew does not leadto significant qualitative changes in Concerningthesoftcomponent,thetemperaturesareconsis- theresults(seealsoPintore&Zampieri2012). tentwiththosefoundinpreviousworks(∼ 0.15−0.30keV,e.g. Two absorption components (tbabs, Wilmsetal. 2000, in Stobbartetal.2006).OnlyinsomeobservationsofNGC253X-1, XSPEC)wereconsideredforallspectralmodels:onefixedatthe we found that temperature of the soft component increases up to Galacticcolumndensityalongthedirectionofthesourceandthe 0.8keV,althoughitshowsequallygoodfitswithbothacoldand second one, free tovary inorder to account for local absorption. a warm disc component (Barnard 2010). We emphasize that the The adopted Galactic N and distances are listed in Table 1, in softcomponentmaycontribute∼ 20−30%ofthetotalemission H theheadersforeachsource.InFigure1weshowtheresultsofthe inthe0.3-10keV energyrangeforthelessluminoussourcesand spectralfitsobtainedatthelowest,mediumandhighestluminosity up to∼ 50% for the most luminous ones. Thissuggests either a levelforeachsource.Theygiveavisualimpressionoftheobserved spectralandintensityvariability.Thesourcesareorderedaccord- ingtotheir positionalong thesequence onthehardness-intensity 1 Wenotethat,fortemperatures ofthecorona& 2keV,thetrendinthe diagramofFigure6-left(seeSection4.2).Ingeneral,thesources kTcor−τplane(Figure2-bottom)isnotverydifferentfromthatexpected show atrendinwhichtherelativeimportance ofthesoftcompo- forconstantspectralindex/Comptonparameterandmaythenreflectinpart nent increases with the luminosity of the source. In Table 2 we somedegeneracy inthedata.However, below≃ 2keV,thebehaviouris reportthebestfitparameters.Forthehighestqualityobservations realbecausekTcoriswellconstrainedwithintheXMM-Newtonbandpass. UltraLuminousX-raySources:a deeper insightintotheirspectralevolution 5 Table2.Bestfittingspectralparametersobtainedwiththeabsorbeddiskbb+compttmodel.Theerrorsareat90%foreachparameterofinterest. No. NHa kTdiscb,c kTcord τe APECf LX[0.3-10keV]g Ldisc[0.3-10keV]h χ2/dof (1021cm2) (keV) (keV) keV (1039ergs−1) (1039ergs−1) IC342X-1 1 6.7+0.5 0.213+0.007 3.2+0.1 6.6+2 5.6+1.2 1.2+0.6 57.17/58 −0.5 −0.007 −1.2 −2 −1.1 −0.4 2 5.5+0.2 0.390+0.003 2.21+0.04 9.0+0.2 5.7+0.5 1.7+0.2 443.53/429 −0.2 −0.003 −0.04 −0.2 −0.5 −0.3 3 6.2+0.1 0.494+0.003 1.73+0.02 9.9+0.1 11.3+0.4 3.8+0.2 753.10/788 −0.1 −0.003 −0.02 −0.1 −1.1 −0.3 4 5.3+0.2 0.348+0.007 1.98+0.02 8.5+0.1 13.3+1.2 1.1+0.3 479.56/485 −0.2 −0.007 −0.02 −0.1 −1.1 −0.2 NGC253X-1 1 0.97+0.01 0.236+0.004 2.8+0.1 5.6+0.4 0.8+0.2 0.3+0.04 93.88/97 −0.01 −0.004 −0.1 −0.3 −0.2 −0.05 2 0.82+0.04 0.794+0.002 1.25+0.03 27+5 2.4+0.1 1.7−0.2 852.44/810 −0.04 −0.002 −0.03 −4 −0.1 −0.5 3 0.64+0.01 0.104+0.007 0.94+0.02 13.8+0.4 0.72+0.19 <0.26 88.57/91 −0.01 −0.007 −0.02 −0.4 −0.14 4 0.20+0.02 0.464+0.009 0.97+0.04 20+3 0.99+0.31 0.33+0.11 75.117/73 −0.02 −0.009 −0.04 −2 −0.11 −0.07 5 0.45+0.02 0.35+0.01 1.62+0.06 9.5+0.6 1.2+0.3 0.21+0.06 88.229/83 −0.02 −0.01 −0.06 −0.6 −0.23 −0.06 6 0.49+0.01 0.715+0.008 1.61+0.08 10+1 1.30+0.3 0.64+0.08 174.57/161 −0.01 −0.008 −0.08 −1 −0.2 −0.07 7 0.40+0.03 0.79+0.002 1.80+0.02 9+3 1.30+0.5 0.68+0.16 44.325/45 −0.03 −0.002 −0.02 −3 −0.44 −0.13 HoIXX-1 1 1.26+0.05 0.240+0.002 2.75+0.03 7.2+0.1 13.8+1 2.0+0.2 685.17/706 −0.05 −0.002 −0.03 −0.1 −0.9 −0.2 2 1.23+0.05 0.219+0.002 2.85+0.03 6.66+0.08 15.8+1 1.3+0.2 749.82/817 −0.05 −0.002 −0.03 −0.08 −0.9 −0.1 3 1.35+0.02 0.245+0.001 2.38+0.01 9.07+0.05 12.1+0.3 2.19+0.06 2182.62/2044 −0.02 −0.001 −0.01 −0.05 −0.3 −0.05 4 0.60+0.1 0.320+0.010 3.03+0.08 6.4+0.2 22+2 2.3+0.5 159.82/195 −0.1 −0.010 −0.07 −0.2 −2 −0.5 5 1.09+0.04 0.258+0.003 1.91+0.01 8.45+0.08 23+1 1.7+0.2 907.47/967 −0.04 −0.003 −0.01 −0.08 −2 −0.1 6 1.60+0.08 0.250+0.002 4.5+0.1 6.4+0.2 16+2 2.9+0.4 340.03/350 −0.08 −0.002 −0.1 −0.2 −1 −0.3 7 1.22+0.04 0.266+0.002 1.86+0.01 8.74+0.07 28+2 2.2+0.2 1122.67/1154 −0.04 −0.002 −0.01 −0.07 −1 −0.2 NGC5204X-1 1 0.04+0.04 0.306+0.002 1.39+0.02 12.7+0.4 5.1+0.3 1.90+1.2 398.45/453 −0.04 −0.002 −0.02 −0.4 −0.3 −0.4 2 0.67+0.06 0.203+0.002 6.20+0.2 3.5+0.2 7.7+1 2.3+0.3 238.65/221 −0.06 −0.002 −0.2 −0.1 −0.9 −0.3 3 0.31+0.05 0.283+0.002 1.55+0.03 8.8+0.3 7.7+0.9 3.1+0.3 301.49/271 −0.05 −0.002 −0.03 −0.3 −0.8 −0.2 4 0.33+0.03 0.216+0.001 1.44+0.01 7.2+0.1 8.7+0.6 2.3+0.2 717.93/722 −0.03 −0.001 −0.01 −0.1 −0.6 −0.2 5 0.47+0.02 0.265+0.001 2.35+0.02 5.72+0.08 8.1+0.4 2.9+0.1 838.98/822 −0.02 −0.001 −0.02 −0.02 −0.4 −0.1 6 0.32+0.03 0.231+0.001 4.31+0.05 4.6+0.09 6.6+0.4 1.8+0.1 642.82/676 −0.03 −0.001 −0.05 −0.05 −0.4 −0.1 NGC5408X-1 1 0.11+0.03 0.180+0.001 2.00+0.04 5.0+0.2 0 10.0+0.2 6.6+0.5 280.79/271 −0.03 −0.001 −0.04 −0.2 −0.5 −0.4 2 0.09+0.03 0.192+0.001 84+2 0.11+0.02 0 9.8+1 6.2+0.5 235.86/273 −0.03 −0.001 −2 −0.01 −0.9 −0.5 3 0.28+0.05 0.177+0.001 1.03+0.03 8.9+0.3 0 11.0+0.1 7.4+0.7 93.49/133 −0.05 −0.001 −0.03 −0.3 −0.1 −0.6 4 0.72+0.07 0.171+0.001 1.56+0.04 6.8+0.3 0 8.2+1.3 4.7−0.6 118.3/127 −0.07 −0.001 −0.04 −0.3 −1.2 +0.6 5 0.62+0.01 0.153+0.002 1.656+0.008 6.04+0.04 0.92+0.06 8.6+0.2 4.5+0.1 968.60/913 −0.01 −0.002 −0.008 −0.04 −0.06 −0.2 −0.2 6 0.61+0.01 0.154+0.003 1.506+0.009 6.77+0.05 0.84+0.04 7.9+0.3 3.7+0.1 868.60/796 −0.01 −0.003 −0.009 −0.05 −0.03 −0.3 −0.1 7 0.59+0.01 0.156+0.002 1.813+0.008 5.88+0.03 0.95+0.03 9.6+0.2 4.3+0.1 1085.20/1030 −0.01 −0.002 −0.008 −0.03 −0.03 −0.2 −0.1 8 0.43+0.01 0.163+0.001 1.882+0.008 5.73+0.03 0.96+0.04 8.9+0.3 3.8+0.1 1158.99/1023 −0.01 −0.001 −0.008 −0.03 −0.04 −0.2 −0.1 9 0.64+0.01 0.154+0.001 1.728+0.007 5.97+0.03 0.902+0.04 9.1+0.2 4.2+0.1 1045.72/981 −0.01 −0.001 −0.007 −0.03 −0.04 −0.3 −0.1 10 0.55+0.01 0.160+0.04 2.047+0.009 5.43+0.03 0.87+0.04 8.5+0.6 3.8+0.1 1055.82/995 −0.01 −0.03 −0.009 −0.03 −0.03 −0.3 −0.1 HoIIX-1 1 0.39+0.03 0.189+0.001 4.69+0.04 3.10+0.04 21+1 3.2+0.3 576.28/629 −0.03 −0.001 −0.04 −0.04 −1 −0.3 2 0.77+0.04 0.200+0.004 2.16+0.03 6.2+0.1 22+1 7.4+0.3 507.21/532 −0.04 −0.004 −0.03 −0.1 −1 −0.3 3 0.75+0.06 0.167+0.001 1.00+0.02 8.4+0.2 5.7+0.5 2.5+0.3 191.13/185 −0.06 −0.001 −0.02 −0.2 −0.7 −0.3 4 0.48+0.01 0.203+0.001 2.63+0.01 4.66+0.02 23+1 5.5+0.1 1326.82/1318 −0.01 −0.001 −0.01 −0.02 −1 −0.2 5 0.57+0.02 0.200+0.001 1.51+0.01 7.17+0.07 8.6+0.2 3.6+0.2 819.61/760 −0.02 −0.001 −0.01 −0.07 −0.3 −0.1 aIntrinsiccolumndensityinexcesstheGalacticone;bInnerdisctemperature;cTheseedphotonstemperatureT0isassumedtobeequaltoTdisc;d Temperatureofthecorona;eOpticaldepthofthecorona;f Temperatureoftheplasmacomponent;gUnabsorbedtotalX-rayluminosity;hUnabsorbeddisc luminosity. 6 FabioPintore,Luca Zampieri,AnnaWolter,TomasoBelloni NGC 253 X−1 IC 342 X−1 V)−1 L ~ 1039 erg s−1 V)−1 L ~ 9*1039 erg s−1 e aver e aver k k s −1 s −1 10−3 m −2 10−4 m −2 s c s c 10−4 n n o o ot ot h h P P 10−5 V (2 10−5 V (2 e e k 2 k 2 0 χ χ 0 −2 −2 0.5 1 2 5 0.5 1 2 5 Energy (keV) Energy (keV) Ho IX X−1 NGC 5204 X−1 s keV)−1−1 0.01 L aver ~ 2*1040 erg s−1 s keV)−1−1 10−3 L aver ~ 7*1039 erg s−1 m −2 10−3 m −25×10−4 c c s s n n oto 10−4 oto2×10−4 h h P P V (2 V (2 10−4 e e k 4 k 2 2 0 χ χ 0 −2 −2 0.5 1 2 5 0.5 1 2 5 Energy (keV) Energy (keV) NGC 5408 X−1 Holmberg II X−1 V)−1 2×10−3 V)−1 L ~ 2*1040 erg s−1 e L ~ 9*1039 erg s−1 e aver s k−1 10−3 aver s k−1 2×10−3 m −2 5×10−4 m −2 10−3 c c5×10−4 ns 2×10−4 ns o o hot 10−4 hot2×10−4 P P V (2 5×10−5 V (2 10−4 e e k k 2 2 χ 0 χ 0 −2 −2 0.5 1 2 5 0.5 1 2 5 Energy (keV) Energy (keV) Figure1.ComparisonofEPIC-pnunfolded (E2f(E))spectra,fittedwiththediskbb+comptt model(Table2).Fordisplaypurposes,thespectraandthe residualswererebinnedataminimumof5σ.Onlythehighest(red),lowest(black)andmediumluminosity(green)spectraforeachsourceareshownfor clarity.Thedashedlinesarethediskbbandcompttcomponents,whilethesolidlineisthesumofthetwo(inNGC5408,theAPECcomponentistakeninto accountforthefitbutnotshownintheplot).Goingfromtop-lefttobottom-right,thesourcesareorderedaccordingtotheirpositionalongthesequenceon thehardness-intensitydiagramofFigure6(seeSection4.2).Thelegendshowstheaverage(0.3-10keV)unabsorbedluminosity.Thereisatrendinwhichthe relativeimportanceofthesoftcomponentincreaseswiththeluminosityofthesource. UltraLuminousX-raySources:a deeper insightintotheirspectralevolution 7 Table3.AbundancesinferredfromtheOxygenK-shellphotoionizationedge(0.538keV). 12+log(O/H)a No.Observation #2 #3 #4 1) 10 IC342X-1 8.75±0.13 8.75±0.15 8.63±0.15 -g s No.Observation #2 er 9 NGC253X-1 8.8±0.1 3 0 1 No.Observation #7 #8 #9 #10 (X IC 342 X-1 L NGC 253 X-1 NGC5408X-1 8.71−+00..711 8.72−+00..1106 8.64−+00..1028 8.63+−00..1074 NGC 5204 X-1 NGC 5408 X-1 No.Observation #3 #7 1 NGC 1313 X-2 NGC 1313 X-1 HoIXX-1 8.73+0.05 8.68+0.11 Holmberg II X-1 −0.04 −0.16 Holmberg IX X-1 No.Observation #5 52000 53000 54000 55000 56000 Time (MJD) HoIIX-1 8.63−+00..1046 a For the solar abundance we assume 12 + log(O/H) = 8.69 30 IC 342 X-1 (Asplundetal.2009). NGC 253 X-1 NGC 5204 X-1 NGC 5408 X-1 20 NGC 1313 X-2 8.69dex;Asplundetal.2009).WeselectedonlyEPIC-pnspectra NGC 1313 X-1 withmorethan5000counts(Winteretal.2007),i.e.observations Holmberg II X-1 Holmberg IX X-1 #2,3,4forIC342X-1,#2forNGC253X-1,#3,7forHolm- bergIXX-1,#1,4,5,6forNGC5204X-1,#7,8,9and10forNGC τ 10 5408X-1and#5forHolmbergIIX-1.ForNGC5204X-1,theX- 9 8 rayspectrumisratherinsensitivetovariationsoftheOabundance 7 sothatnodefiniteconclusioncanbedrawn.InTable3weshowthe 6 estimatedchemicalabundancesandtheiruncertainties.Theabun- 5 dances are consistent with solar with the exception of NGC 253 4 X-1whichismarginallysuper-solar (8.8dex). Themetallicityof Ho II X-1 obtained by Goadetal. (2006) differs from ours pos- 3 siblybecauseofthedifferentreferencevalueadoptedfor[O/H]⊙ 1 (8.93dex,Wilmsetal.2000). kTcor (keV) Finally,noclearevidence ofanironL-shelledgewasfound inanyofthesourcesofoursample.Thisisinlinewiththelackof evidenceoftheironK-shellfeaturesinULXspectracomingfrom Figure2.top:Unabsorbedtotalluminositiesinthe0.3-10keVenergyband anionisedwind(e.g.Waltonetal.2013). as a function oftime; bottom: optical depth τ versus temperature ofthe coronakTcor(diskbb+compttmodel).WeaddedalsoNGC1313X-1and X-2 forcomparison (see Pintore&Zampieri 2012). Different colors and symbolsrefertothesources,aslistedinset. 3.4 Temporalanalysis Wecomplementedthespectralanalysiswithaninvestigationofthe temporalpropertiesoftheULXsofoursample.Foreachsourcewe higherobscurationofthehardcomponentoranincreaseintheim- computedthefractionalrootmeansquare(RMS)variabilityampli- portanceofthesoftcomponent,bothlikelyassociatedtotheonset tude(F ),thatmeasuresthevarianceofasourceoverthePoisso- ofstrongerwinds. var niannoiseinthetimedomainandisusuallynormalizedtotheaver- agecount-rate(Edelsonetal.2002;Vaughanetal.2003).Thefrac- tionalvariabilitycanbeusedalsotostudytheenergydependence 3.3 Chemicalabundances oftheshort-termvariabilityofthesourceanditisapowerfultoolin Wetentatively tried to determine the chemical abundances in the ordertocharacterisethepropertiesofthespectralcomponents(e.g. ULXenvironmentslookingforOxygenandIronedgesintheirX- Middletonetal.2011a).WeevaluatedF frombackgroundsub- var ray spectra. In the spectral fits the tbabs absorption model is re- tractedlightcurvesinseveral energybands−0.3-10 keV, 0.3-2.0 placed with tbvarabs that allows variation in the chemical abun- keVand2.0-10keV−binningtheminintervalsof∆T = 200s. dances(andgraincomposition).Wesetalternativelytheabundance Thisisagoodcompromiseforallthesourcesbecauseitallowsto ofOxygen orIrontozero. Thespectrumwasthenfittedwiththe haveatleast20countsineachtimebinandatleast20bins.InTa- EPIC continuum best fitting model (keeping all parameters, but ble4wereportthefractionalvariabilitymeasurementsforallthe normalizations, fixed) plus an absorption edge, that accounts for observations.Whenthestatisticsarenotsufficientweprovideonly theobservedabsorptionfeature.ForNGC5408X-1,weremoved the3σupperlimit. theAPECcomponentwhichmaysignificantlyaffectthemeasure- UnlikeSuttonetal.(2013)whoselectedonlythehighestqual- ment. The parameters of the edge are then used to compute the ityobservationsforeachsourceoftheirsample,westudythevari- abundance (assuming for the solar Oxygen metallicity the value ability of all the observations. We find that the 0.3-10 keV band 8 FabioPintore,Luca Zampieri,AnnaWolter,TomasoBelloni Table4.FractionalvariabilityoftheULXsanalysedinthiswork. Source Obs.ID 0.3−10keV 0.3−2.0keV 2.0−10keV countss−1 Fvaar countss−1 Fvaar countss−1 Fvaar 0093640901 0.490±0.010 613 0.248±0.009 619 0.252±0.009 2±19 0206890101 1.090±0.010 7±2 0.548±0.009 613 0.550±0.009 8±3 IC342X-1 0206890201 0.561±0.007 6±2 0.294±0.005 2±8 0.276±0.005 8±3 0206890401 1.430±0.020 21±2 0.67±0.01 12±3 0.77±0.02 29±2 0110900101 0.146±0.007 640 0.132±0.006 639 0.066±0.007 695 0152020101 0.408±0.004 29±1 0.416±0.004 25±1 0.137±0.003 43±3 0304851101 0.148±0.006 631 0.121±0.006 640 0.070±0.005 668 NGC253X-1 0304850901 0.180±0.006 12±5 0.137±0.005 623 0.077±0.005 647 0304851001 0.199±0.006 618 0.152±0.005 623 0.082±0.005 645 0304851201 0.205±0.005 618 0.157±0.004 620 0.077±0.003 641 0304851301 0.209±0.009 627 0.157±0.008 629 0.085±0.007 652 0112521001 2.150±0.020 1±3 1.55±0.02 4±2 0.62±0.01 612 0112521101 2.500±0.020 65 1.78±0.02 66 0.72±0.01 610 0200980101 1.709±0.006 2±1 1.185±0.005 65 0.537±0.004 2±3 HoIXX-1 0657801601 5.000±0.100 1±21 2.6±0.1 621 1.48±0.07 621 0657801801 3.680±0.050 1±7 2.56±0.04 612 1.16±0.03 23±3 0657802001 2.370±0.040 69 1.68±0.03 4±3 0.74±0.02 615 0657802201 4.770±0.030 66 3.25±0.03 67 1.56±0.02 610 0142770101 0.667±0.008 5±2 0.557±0.007 5±2 0.121±0.003 624 0142770301 0.920±0.020 613 0.79±0.02 614 0.146±0.008 637 0150650301 1.090±0.020 612 0.95±0.02 614 0.147±0.008 634 NGC5204X-1 0405690101 1.370±0.020 68 1.20±0.02 69 0.176±0.007 626 0405690201 1.118±0.007 4±1 0.975±0.006 5±1 0.154±0.003 614 0405690501 0.839±0.007 67 0.714±0.006 67 0.135±0.003 619 0112290501 1.440±0.030 17±2 1.37±0.02 16±2 0.094±0.007 646 0112290601 1.410±0.020 5±2 1.34±0.02 5±2 0.091±0.006 638 0112291201 − − − − − − 0302900101 1.070±0.004 8.8±0.5 0.995±0.004 8.1±0.5 0.094±0.002 624 NGC5408X-1 0500750101 1.000±0.006 12.9±0.7 0.924±0.006 11.3±0.8 0.102±0.002 625 0653380201 1.200±0.004 7.0±0.5 1.110±0.004 6.9±0.5 0.111±0.002 620 0653380301 1.182±0.004 6.8±0.4 1.091±0.004 6.8±0.5 0.109±0.001 618 0653380401 1.123±0.004 7.7±0.5 1.038±0.004 6.9±0.5 0.105±0.002 621 0653380501 1.084±0.004 9.0±0.5 0.997±0.004 7.9±0.5 0.107±0.002 619 0112520601 3.370±0.030 3±1 2.97±0.03 4±1 0.40±0.01 614 0112520701 3.100±0.100 621 2.6±0.1 625 0.43±0.02 622 HoIIX-1 0112520901 0.880±0.020 2±6 0.81±0.02 2±7 0.090±0.006 640 0200470101 3.390±0.010 2.6±0.9 2.98±0.01 3.8±0.8 0.423±0.005 613 0561580401 1.330±0.010 21.4±0.7 1.201±0.009 21.5±0.8 0.143±0.003 618 aCalculatedfromthebackgroundsubtractedEPIC-pnlightcurves,with200stimebins.Valueswithouterrorbarsindicate3σupperlimits. fractionalisbetweenafewpercentand∼30%,withmarginalevi- elsof short-termvariability.Intheother twocasesthevariability denceforhighervaluesintheharderband.However,thevariability is less than 10%. Therefore, we do not find significant evidence isnotclearlycorrelatedwithanyspecificspectralregime,varying forthiseffect,indicatingthatinsoftultraluminousstatethewind almostrandomlyacrossdifferentobservationsandfromsourceto openinganglemightassumealargerrangeofvalues. source. Suttonetal. (2013) found a possible correlation between Fvar and the spectral shape, showing that a higher variability is FinallywementionthatinthelastobservationofIC342X-1 seenduringthesoftultraluminousstate,i.e.whenthesoftcompo- thevariabilityisdefinitelylargerthantheaverageF (∼ 10%), var nent isdominant. They suggested that such short termvariability and stronger at higher energies (∼10% at 0.3−2.0 keV against isrelatedtoturbulencesat theedgeof theoutflow ejectedbythe ∼ 30%at2.0−10.0keV;Table4).Thisisprobablycausedbya discandwouldthenbelargerwhenourlineofsightintersectsthe significantdropinfluxoccurringduringtheobservation.Asimilar edgeofthewind.Thiswouldimplythathighlevelsofvariability behaviourwasobservedalsointhelastobservation(#5)ofHolm- canbeseenonlyinfavourableepochswhenthewindopeningan- bergIIX-1,duringwhichthesourceswitchesfromahightoalow glecrossesourlineofsight.AccordingtoSuttonetal.(2013),the flux level with a decrement of a factor of 2 (Kajavaetal. 2012). occurrence of this condition is more likely in the soft ultralumi- Ontheotherhand,NGC253X-1showsalsohigherthanaverage nousstate,whenthewindismoreextendedanditsopeningangle F butinthiscasethevariabilityisintrinsicand,notably,notre- var smaller. However, among the three sources of our sample with a latedtoanysignificantfluxchange.Thisfindingmakesthissource strongersoftcomponent,onlyNGC5408X-1showsveryhighlev- differentfromtheotherULXsofoursample(seenextsection). UltraLuminousX-raySources:a deeper insightintotheirspectralevolution 9 3.5 Lookingatsinglesources 0.6 ∆T=200 s The spectral analysis reported above shows that the spectra of 0.5 ULXs can be well described in terms of a disc plus comptonisa- tionmodelinwhichtheComptonisingcomponentisusuallyopti- 0.4 ceanltlyretghiiocnksaonfdthceooτl.−ThkeTsourpcleasnoec(ctuhpicykparnedfevreenrytiathlliycktwstoatdei)f.feICr- Fvar 0.3 cor 342X-1andNGC253X-1populatetypicallytheverythickstate, 0.2 while Holmberg II X-1, Holmberg IX X-1, NGC 5204 X-1 and 0.1 NGC 5408 X-1 stay predominantly in the thick state. Only NGC 1313X-1andX-2appeartocrossconvincinglybothregions,while 0 1 10 HolmbergIXX-1andNGC5204X-1maydoitonlymarginally. Energy (keV) As mentioned above, NGC 5408 X-1 and Holmberg II X-1 showprominentsoftcomponentsintheirspectra.InNGC5408X- Figure 3. NGC 253 X-1: RMS fractional variability spectrum evaluated 1 thesignificance of the soft component isslightlydependent on onbackgroundsubtractedEPIC-pnlightcurvesofobservation0152020101, the total luminosity. At variance with the general trend, the soft sampledwithtimebinsof200s.Afitwithaconstantvalue(Fvar∼28%) component contributes almost 40-50% of the total flux (L ∼ isconsistentwiththespectrum. disc (3 − 4) · 1039 erg s−1) when the source is in a low luminos- ity state and becomes less significant (∼ 25% of the total flux) 2.4 when the luminosity increases (L ∼ 6−7·1039 erg s−1). disc Wealsofoundevidenceforadiscluminosity-temperaturerelation 2.2 of thetype L ∝ T1.8±0.8. Short termvariabilityisgenerally disc disc presentatlowenergiesbutessentiallyunconstrainedathighener- 2 gies because of the low statistics2. The presence of a strong soft V) e cmoamypboeneenxtpalanidnesdignwiifithcainnttshheosrct-etneramriovainriawbhiliictyhitnheNGwCind54c0o8mXpo-1- T (kdisc 1.8 nent becomes very extended, its opening angle narrower and its k 1.6 edgeintersectsourlineofsight,consistentwithwhatproposedby Middletonetal.(2011)bandSuttonetal.(2013). 1.4 InHolmbergIIX-1,wefoundadiscluminosity-temperature relation of the type L ∝ T3.6±1.4. While the correlation of 1.2 disc disc 0.45 0.5 0.55 0.6 0.65 0.7 0.75 Holmberg II X-1 may be reminiscent of a standard disc relation, p we do not interpret it in this way because in the model adopted here the corona is optically thick and the temperature of the soft Figure 4. NGC253 X-1: inner disc temperature versus p-index for the componentreferseithertotheoutervisiblepartofthediscortothe diskpbbmodelfit. wind. bymaterialthatoriginatesfromtheimpactoftheaccretionstream 3.5.1 NGC253X-1 ontothediscitselforbyalow-density,equatorialwind(compare withSuttonetal.2013).Thismaterialmayberesponsiblealsofor ThebehaviourofNGC253X-1appearsslightlydifferentfromthe theshortdecrementsofthecountrateobservedbyBarnard(2010) other ULXs of our sample. It shows a significantly curved spec- (Figure2inhispaper),thatmayappearsimilartothedipsobserved trumanditsshorttermvariabilitymayreach∼20-30%.Asshown insomeXRBs(e.g.White&Swank1982;D´ıazTrigoetal.2006). in Table 4, the RMS fractional variability in the highest quality In this scenario the source would be seen at rather large inclina- observation (which is also the more luminous) is ∼ 30% in the tions. 0.3−10keVenergyband.Thecountingstatisticsofobservations #2 and 4 allows us to study the RMS spectrum of the source, Table5.Best fitting spectral parameters ofNGC253X-1obtained with that was calculated by selecting background subtracted EPIC-pn theabsorbedslimdiscmodel(diskpbbinXspec).Errorbarsareat90%for lightcurvesintheenergyranges0.3-0.5, 0.5-0.7, 0.7-1.0,1.0-1.3, eachparameterofinterest. 1.3-1.6, 1.6-2.1,2.1-4.0, 4.0-10keV (Figure3).Whenfittedwith a constant the spectrum of the fractional variability is consistent withavalueof ∼ 28%. Thesefindingssuggest thattheobserved NGC253X-1 emission may come from asingle component. However, we note No. NHa pb kTdiscc LX[0.3-10keV]d χ2/dof that,althoughnotstatisticallysignificant,inobservation#2there (1021cm2) (keV) (1038ergs−1) mbaanydbaensdom∼e4h0in%toifnvathrieab2i.l0it-y1:0FkveaVribsa∼nd25(s%eeinaltshoeS0.u3t-to2n.0ekteaVl. 12 10..496+−+−0000....00001144 0.05.858+−+−00..0005..00010011 12.5.2241+−+−0000....0000220044 82.37+−+−0011..68 815167..2811//89192 2013).Thisfact maybeconsistent withtheexistenceof anaddi- 34 06.4+−00.02..11 00..675023+−+−0000....00001111 11..2452+−+−0000....00001212 71.00+−+−0011..76 759.08/89/375 tional component affecting the high energy part of the spectrum. 5 1.2+−00..22 0.581+−00..000033 1.98+−00..0022 13+−29 88.97/85 Ifweinterpretitasanabsorptioncomponent,itmaybeproduced 6 1.0+−00..11 0.620+−00..000033 1.66+−00..0011 13.0+−11 174.94/163 7 0.9+−00..22 0.635+−00..0011 1.59+−00..0022 13.0+−22 44.38/47 2 Different values ofthefractional RMS ofNGC5408X-1were found aColumndensity;bexponentoftheradialdependenceofthedisctempera- byCaballero-Garciaetal.2013,probablybecauseofthedifferentchoiceof ture;cdisctemperature;dunabsorbedtotalX-rayluminosityinthe0.3-10 thetimesampling. keVrange; 10 FabioPintore,Luca Zampieri,AnnaWolter,TomasoBelloni NGC 253 X-1 differs from the other sources of our sample instrumentshavedifferentresponsematrices,becauseofthehigher alsobecauseitsX-rayspectrumcanbewelldescribedbya mod- throughput we used only EPIC-pn data and selected four energy ified/slimdiscmodel.Indeed,thissourcewasclassifiedasbroad- bands:0.3-0.7,0.7-2.0,2.0-4.0and4.0-10keV,definedforsimplic- eneddiscbySuttonetal.(2013).Themodified/slimdiscmodelin- ityas1,2,3and4,respectively.Thischoiceprovidesanadequate corporatestheeffectsthatareexpectedtosetinatorslightlyabove samplingofthespectralregionsinwhichthesoftexcess,spectral theEddington limitand wasmodelledthrough adiskpbb compo- pivoting(seeKajava&Poutanen2009;Pintore&Zampieri2012) nent3. Although thefitsaregenerally statisticallyacceptable (Ta- and/orthecomptonizingcomponentareusuallycontributing.Inad- ble5),wefoundoneobservations(#4)inwhichthecolumndensity dition,itguaranteesasimilarcountingstatisticsineverybandand pegged at 0 indicating that the absorption was anomalously low. itallowsustodiscriminateinaclearerwaythedifferencesinthe However,fixingthecolumndensityattheaveragevalueoftheother spectralpropertiesofoursources(seebelow).Ineachenergyrange observations,thediskpbbmodelprovidesstillagooddescriptionof ofinterest,weaddedthecountsofeverygoodchannelofthespec- thespectrum(χ2/dof =80.61/76,kT ∼1.76andp∼0.6). trum and subtracted the total counts of the corresponding back- disc ThevariationoftheinnerdisctemperaturekT withtheparame- ground channels, properly scaled for the extraction areas. Count disc terpofthediskpbbmodelisshowninFigure4.Thereisatendency rates are evaluated dividing the counts by the net EPIC-pn GTI forthep-indextodecreasewithincreasingdisctemperature,sothat per observation andare thenrescaled toadistance of 1Mpc (er- thehigheristhetemperaturethemoreadvectiondominatedisthe rorsonthedistancesarenottakenintoaccount).WeaddtheNGC disc.Atlowluminosity(observation#1,3),thespectrumcanalso 1313 X-1 and X-2 data (Pintore&Zampieri 2012) to the sample bewelldescribedintermsofacanonicaldiskbb+powerlaw (with forcomparison,findingasimilarspectralevolution. kTdisc ∼ 0.3keVandΓ ∼ 2.2,χ2/dof = 92.80/98) ordiskbb Figure5-topshowsacolour-colour diagraminwhichthey- spectral model (with kT = 1.1 keV, χ2/dof = 92.29/94; axisisdefinedastheratiobetweenthecountsintheenergybands4 disc see also Kajava&Poutanen 2009). Hence this source, which is and(2+3)andthex-axisastheratiobetweenthebands1and(2+3). also the faintest of our sample, may be in a state similar to the ThesourcesliealongasequencestartingfromIC342X-1andend- soft/steeppowerlawstateofGalacticXRBsandmayswitchtothe ingwithNGC5408X-1.ApartfromIC342X-1andlettingaside ULXregimeonlyathighluminosity. thedetailsoftheevolutionofsinglesources,wenotethatthescat- terisnotverylarge.Thismaysuggestthatdifferencesinducedby thelikelydiverseBHmassesandinclinationofthesourcesarenot 4 COLOURS sostrongandthattheBHmassesthemselvesarenotverydifferent. Atleasttwogroupsofobservationscanbeidentifiedonthecolour- InthepreviousSectionwehaveshownthatalmostallthespectra colourplot:group1with1/(2+3)∼0.1−0.3andgroup2with oftheULXsofoursamplecanbedescribedbyacombinationofa 1/(2+3)∼0.4−1.1.Ingroup1,therearethelessluminousand softcomponentandacomptonisationmodel.Thespectralparame- most absorbed sources: NGC1313 X-1andX-2, HoIXX-1and tersspandifferentrangesbut,ifinterpretedatfacevalue,indicate NGC253X-1(althoughoneofitsobservationsisalsoconsistent similarphysicalconditions,suchasanopticallythickcoldcorona with belonging to group 2). The observations of NGC 1313 X-2 andacooldisc.However,thelowestcountingstatisticsspectrado areclearlysplitintwosubgroupswhicharereminiscentofthevery notprovidestrongconstraintsonthespectralfitsbecauseofthede- thickandthickstatesidentifiedinpreviousworks(Feng&Kaaret generacyofsomespectralparameters,especiallyifthetemperature 2009; Pintore&Zampieri 2012). A similar trend can also be ob- ofthediscandthatofthesoftphotoninputarefreetovaryinde- servedforNGC1313X-1andHolmbergIXX-1. pendently. Infact,thissituationisrathercommonformostofthe Group2containsthemostluminousandlessabsorbedsources availableXMM-NewtonobservationsofULXsandalsoforsimpler − NGC 5204 X-1, Ho II X-1 and NGC 5408 X-1 − where a models, as the diskbb+powerlaw for example. Hence we tried to strongsoftcomponentisseen.Usingadifferentspectralselection supportthefindingsofthespectralanalysisusingacomplementary andanalysis,Suttonetal.(2013)classifiedULXsinthreespectral approachbasedonthehardnessratios.Thistechniqueisverypow- states/groupsof sources that theycalledbroadened disc,hard ul- erfulforlowcountingstatisticsdataandappearsthenparticularly traluminousandsoftultraluminous.Wesuggestthatthebroadened suitableformanyobservationsofULXs.Inthissectionwewillre- discandhardultraluminoussourcescanbeidentifiedwithgroup1 consideralltheobservationsusingthisapproach,thatinthefuture andcannotbeeasilydistinguishedastheirX-raycoloursaresim- maybeadoptedalsoforanalysinglargersamplesoflowercounting ilar.Ontheotherhandthesoftultraluminousstatecanbeassoci- statisticsdata. atedtogroup2.Therefore,thespectralgroupsfoundviaadetailed The method of the hardness ratios or colour diagrams has spectralanalysiscanbeidentifiedequallywelladoptingamodel- been successfully adopted in the past to study the behaviour of independent colour-basedapproach, makinguseofcolour-colour XRBs and, more in general, of X-ray sources (Maccacaroetal. diagramsincrediblypowerfulalsoforpoorqualitydata.Ingroup 1988). Extensive monitoring of some Galactic BH binaries with 2, NGC 5204 X-1 shows variations inthe 4/(2+3) colour up toa Rossi-XTEledtothediscoveryofacommonevolutionarypathin factorof3while1/(2+3)staysnearlyconstant(∼ 0.5),indicating thehardness-intensitydiagram,thehysteresiscycle,thatalltheBH either that the high energy component issignificantly variable or binary systems accreting at sub-Eddington rates appear to follow thatthesoftbandsvarytogether.Ontheotherhand,the1/(2+3) (see for example Belloni 2010). This cycle describes how the X- colour of NGC 5408 X-1 changes by almost a factor of 2, while rayspectrumchangeswiththesourceintensity. 4/(2+3)remainsnearlyconstant,meaningthatvariabilityismostly Ahardness ratiocanbedefinedasB /B ,inwhichB and i j i inthesoftcomponentorthattheharderenergybandsvarytogether. B arethetotalcountsintwogivenenergybands.Sincedifferent j Theonlysourcethatappearsclearlyseparatedfromtheothers inthecolour-colourdiagramisIC342X-1.Weknowthat,interms 3 ThismodeldependsontheinnerdisctemperaturekTdiscandaparam- ofspectralparameters,IC342X-1showssimilaritieswiththevery eterpthatdescribestheradialprofileofthedisctemperatureasTdisc ∝ thickstateofNGC1313X-2.Ontheotherhand, IC342X-1has r−p,wherep=0.75forastandarddiscandp=0.5foraslimdisc. thelargestintrinsicNH ofthewholesampleandhenceitsposition