DISS. ETH NO. 19134 ULTRA-LOW PRESSURE ULTRAFILTRATION FOR DECENTRALIZED DRINKING WATER TREATMENT A dissertation submitted to ETH Zurich for the degree of Doctor of Sciences presented by MARYNA PETER M.S. Chem. Technol. and Eng. National Technical University of Ukraine “KPI” born 15.12.1981 citizen of Ukraine accepted on the recommendation of Prof. Dr. Willi Gujer Dr. Wouter Pronk Prof. Dr. TorOve Leiknes 2010 Abstract Inadequate access to microbiologically safe drinking water continuously threatens the health and well-being of about a billion people, primarily in developing countries. Effective, low- cost and robust technologies are needed to redress this situation and meet the Millennium Development Goals for drinking water. Although ultrafiltration technology has become affordable for decentralized water treatment in developing countries, its widespread application is limited by membrane fouling and biofouling. Conventionally, regular backflushing, disinfection and chemical cleaning are applied in order to limit fouling, resulting in complex, expensive and maintenance intensive systems not suitable for application in developing countries. The goal of this thesis was to investigate a new approach to ultrafiltration and fouling control in order to develop a low-cost membrane-based decentralized system and reduce energy and chemical demand in membrane systems in general. The stabilization of flux during dead-end ultrafiltration without backflushing, cross-flow or chemical cleaning under ultra-low pressure has not been observed before. This phenomenon allows gravity-driven ultrafiltration of surface water without any maintenance and pre- treatment at stable flux values of 4-10 L·h-1·m-2 for at least 6 months of operation at a hydrostatic pressure of 40-150 mbar, which corresponds to a height difference of about 0.4 - 1.5 m. In this thesis, the phenomenon of flux stabilization is documented and evidence is provided that flux stabilization is related to biological processes leading to structural changes in the fouling layer. The development of cavities, channel networks and heterogeneous structures causes the decrease in resistance of the fouling layer. These processes counteract the increase of resistance of the fouling layer due to deposition, physico-chemical interactions and pore constriction due to irremovable fouling. The concentrations of biopolymers and low molecular weight compounds, the dissolved oxygen concentration and the concentration of colloidal humic acids are the major factors affecting flux stabilization. It is concluded that biofouling, always considered to be the major limitation of membrane processes and associated with reduced performance, actually causes stabilization of flux. The phenomenon of flux stabilization can be implemented in simple low cost gravity-driven ultrafiltration systems for decentralized drinking water treatment. The stable flux value of 4- 10 L·h-1·m-2 is sufficient to cover daily needs of water for drinking and cooking for a family of five people using less than 0.5 m2 of membrane. While no pretreatment, pumps, chemicals or process control is required, the system costs could be kept low, especially when such systems can be produced or assembled locally. Furthermore, possibilities exist to further increase the capacity of the system. It is shown that the flux can be enhanced by intermittent operation as well as manual forward flushing of the membrane. There is a great potential for application, but also a need for further investigation and system development of the ultra-low pressure ultrafiltration technology. Further investigation of the mechanisms of flux stabilization should enable prediction of the impact of feed water quality and operational parameters on the stable flux, and could lead to new strategies to improve the performance. Decentralized systems based on this concept should be further evaluated in field studies in order to assess maintenance requirements, financing schemes, system lifetime and socio-economic aspects. Furthermore, the phenomenon of flux stabilization can be explored in membrane bioreactors for wastewater treatment and re-use as well as in nanofiltration. Zusammenfassung Momentan haben weltweit ungefähr eine Milliarde Menschen kein Zugang zu keimfreien Trinkwasser. Ihre Gesundheit und ihr Wohlergehen sind dadurch gefährdet, wobei besonders Menschen in Entwicklungsländer davon betroffen sind. Einfache, effektive und kostengünstige Technologien werden benötigt um dem entgegenzuwirken und schließlich somit auch die Millenium Development Goals für Trinkwasser zu erreichen. Ultrafiltrationstechnologien in der dezentralen Wasseraufbereitung sind bereits in den Industrieländern zu erschwinglichen Preisen auf dem Markt. Probleme durch das auftretende Fouling und Biofouling der Membranen verhindern jedoch eine breite Anwendung. So müssen gängige Methoden wie Rückspülung, Desinfektion und chemische Reinigung eingesetzt werden, um dieses Fouling zu verringern oder weitestgehend zu vermeiden. Dies führt allerdings zu komplexen, teuren und auch wartungsintensiven Systemen, die so nicht in Entwicklungsländern eingesetzt werden können. Ziel der vorliegenden Dissertation war es, einen neuen Ansatz zu erforschen, wie man mittels Ultrafiltration und einer möglichen Kontrolle des Foulings ein günstiges und einfaches dezentrales Membransystem, welches einen geringeren Energie- und Chemikalenverbrauch hat, entwickeln kann. Die Stabilisierung des Durchflusses während einer Ultrafiltration im Dead-End Betrieb, ohne jegliche Rückspülung oder chemische Reinigung wurde bisher noch nicht entdeckt. Gerade aber dieses Phänomen ermöglicht eine schwerkraftgetriebene Ultrafiltration von Oberflächenwasser ohne große Wartung und Vorbehandlung. So sind Durchflussraten von 4- 10 L.h-1m-2 während mindestens sechse Monaten Betrieb und einem hydrostatischem Druck von 40-150 mbar möglich. Dies würde einer Höhendifferenz von ca. 0.4- 1.5 m entsprechen. Das Phänomen der Stabilisierung des Durchflusses wird in dieser Dissertation beschrieben und es wird gezeigt, dass die Stabilisierung mit biologischen Prozessen zusammenhängt, welche Veränderungen in der Struktur der Foulingschicht bewirken. So bewirkt die Entstehung von Hohlräumen, kanälchenartigen Netzwerken und verschiedenartiger Strukturen eine Abnahme der Widerstandsfähigkeit der Faulschicht. Dem wiederum stehen Prozesse gegenüber, welche eine Zunahme der Widerstandsfähigkeit, durch Sedimentation, physikalisch-chemische Einwirkungen und irreversible Porenverblockung, verursachen. Haupsächlich beeinflussen folgende Faktoren die Durchflussstabilierung: die Konzentration von Bipolymeren und leichten, niedermolekularen Stoffen, sowie die Konzentration von gelöstem Sauerstoff und kolloidaler Huminsäuren. So scheint das Biofouling, welches allgemein als grösste Einrschränkung bei Membranprozessen gilt, hier für die Stabilisierung des Durchflusses verantwortlich zu sein. Dieses Phänomen der Durchflussstabilisierung kann für einfache, kostengünstige, schwerkraftgetrieben Ultrafiltrationssysteme für die dezentrale Trinkwasseraufbereitung verwendet werden. Die dauerhafte Durchflussrate von 4-10 L.h-1m-2 genügt bei der Verwendung von 0.5 m2 Membranfläche, um den Wasserbedarf für Trinken und Kochen einer fünfköpfigen Familie zu decken. Da keine Vorbehandlung, Pumpen, Chemikalien oder Steuerungseinheiten benötigt werden, können die Systemkosten gering gehalten werden und ermöglichen besonders eine Produktion vor Ort. Zudem kann die Kapazität des Systems noch weiter gesteigert werden: bei periodischem Betrieb und bei manueller Spülung der Membrane kann der Durchfluss vergrössert werden. Neben dem hohen Potential für die Anwendung, besteht aber auch noch Bedarf an weiteren Untersuchungen und der Entwicklung eines Systems für die Ultrafiltrationstechnologie unter ultra tiefen Druckverhältnissen. Weitere Untersuchungen zum Mechanismus der Durchflussstabilisierung sind nötig, um z.B. den Einfluss der Rohwasserqualität zu quantifizieren und Möglichkeiten für Optimierung zu finden. Dezentrale Systeme welche auf dem hier geschilderten Ansatz basieren, sollten in Feldstudien weiter bewertet werden um Wartungsaufwand, Finanzierungsmodelle, Lebensdauer des Systems und sozio-ökonomische Aspekte abzuschätzen und zu betrachten. Zudem kann das Phänomen der Durchflussstabilisierung in Membran Bioreaktoren von Abwasserreinigungsanlagen und Brauchwasser-recycling und in der Nanofiltration weiter erforscht werden. Acknowledgements I would like to thank my supervisor Wouter Pronk that he believed in me 6 years ago and gave me a chance to start this work. I appreciated greatly his advice, encouragement and freedom to explore new ideas or look for answers, as well as his support in any situation. I also enjoyed long discussions during our trips abroad or extended coffee breaks, which built a good base for a life-long collaboration and friendship. I would like to thank Frederik Hammes for the supervision of the microbiological part of this work. I enjoyed a lot his knowledge, help and creativity, always positive feedback and ability to find solutions to every problem and in any situation. I would like to thank Willi Gujer and Markus Boller for their helpful ideas and suggestions, critical remarks and an outside insight into my work. Many thanks to TorOve Leiknes for reviewing this thesis, supporting me and introducing me to the top membrane scientists on every membrane conference, and for explaining the art of writing an EU proposal. I would like to thank all my students, interns and ZVs: Jonas Margot, Max Grau, Rostislav Mudryk, Weija Li and Karin Borkmann for their precise and creative work, new ideas and fun during long days in the lab or office. I appreciated a lot your help. The EU project Techneau not only supported this work financially, but also helped me to build a network and get acquainted with scientists and private sector in Europe and South Africa. Many thanks to WP 2.5 partners: Boris Lesjean and Eric Hoa (KompetenzZentrum Wasser Berlin), Laurent Pred’Homme (Opalium) and Chris Swartz (Chris Swartz Engineering) for frequent meetings and discussions during joint development and operation of the pilot plant. Many thanks also to Chris Buckley (Durban University of Technology) and Jean Vergain (ICRC) for the exiting discussions and shearing of their experience. Many thanks to Jacqueline Traber, Marius Vital, Adriano Joss, Hans-Ueli Weilenmann, Urs von Gunten and Chris Zurbrügg for their support in the lab, experimental hall or meeting room on different stages of my work. I am thankful to Eawag Particle Team: Ralf Kägi and Brian Sinnet, to Urs Ziegler, Caroline Aemissegger and Andres Kaech from the Center for Microscopy and Image Analysis of the Zurich University and Stephan Handschin from Electron Microscopy Center of the ETH Zurich for their support in Microscopy. I would like to thank also my former supervisors and colleagues: Igor Astrelin, Natalja Tolstopalova, Tatjana Obushenko and Vladimir Ledovskich from the National Technical University of Ukraine and Walter Peter and Eugen Müller from Clariant for shearing their knowledge and experience as well as giving me confidence and finally a chance to come to Switzerland and Eawag. I appreciated a lot a great working atmosphere at Eng and SWW departments, Wave21 group and profited a lot from collaborations with Umik, W&T and Sandec. Many thanks to everyone who was there to help or to laugh. And, of course, many thanks to all my colleagues who became my friends during last 4 years: Markus Gresch, Silvana Velten, Thomas Hug, Jakob Helbing, Damian Dominguez, Marc Neumann, Maaike Ramseier, David Kaelin, Bastain Etter, Nico Derlon, Jörg Rickermann, Doris Jermann, Bettina Sterkele, Christian Abegglen and David Dürenmatt. I would like to thank my family in Kyiv: Larisa, Anatolij and Pavel Varbanets, and in Itingen: Elsbeth and Walter Peter for their confidence and support. My husband Fabian Peter was the most important reason of this work. It would have not happened without him and it is devoted to him. Table of contents Introduction ................................................................................................................... 1 Chapter 1: Review: Decentralized Systems for Potable Water and the Potential of Membrane Technology ................................................................................................. 9 Chapter 2: Stabilization of flux during ultra-low pressure ultrafiltration...................... 45 Chapter 3: Mechanisms of membrane fouling during ultra-low pressure ultrafiltration ................................................................................................................. 67 Chapter 4: Intermittent operation of ultra-low pressure ultrafiltration for decentralized drinking water treatment ......................................................................... 91 General conclusions and outlook .................................................................................. 107 Appendix A: Operation and maintenance of decentralized drinking water treatment systems based on ultra-low pressure ultrafiltration ....................................................... 121 Appendix B: Low-pressure ultrafiltration and membrane fouling by polysaccharides 139 Curriculum Vitae ........................................................................................................... 153
Description: