ebook img

Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification PDF

0.49 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification

Ultra-highstrainin epitaxialsiliconcarbidenanostructuresutilizingresidualstress amplification Hoang-PhuongPhan,∗,† Tuan-KhoaNguyen,†ToanDinh,†InaGinnosuke,‡AtiehRanjbarKermany,† AfzaalQamar,† JishengHan,†TakahiroNamazu,¶MaedaRyutaro,§DzungVietDao,†andNam-Trung Nguyen† 7 1 QueenslandMicroandNanotechnologyCentre,GriffithUniversity,Queensland,Australia,DepartmentofMechanical 0 Engineering,UniversityofHyogo,Hyogo,Japan,DepartmentofMechanicalEngineering,AichiInstituteofTechnology, 2 Toyota,Japan,andNationalInstituteofAdvancedIndustrialScienceandTechnology(AIST),Tsukuba,Ibaraki,Japan n ReceivedJanuary12,2017;E-mail:hoangphuong.phan@griffithuni.edu.au a J 5 Abstract: Strainengineering hasattractedgreatattention,particularlyforepitaxialfilmsgrownonadifferentsubstrate. Residualstrainsof ] SiChavebeenwidelyemployed toformultra-high frequency and highQfactorresonators. However, todatethehighest residual strainof i c SiCwasreportedtobelimitedtoapproximately0.6%. LargestrainsinducedintoSiCcouldleadtoseveralinterestingphysicalphenomena, s aswellassignificantimprovement ofresonant frequencies. Wereportanunprecedented nanostrain-amplifierstructurewithanunltra-high - l residualstrainupto8%utilizingthenaturalresidualstressbetweenepitaxial3CSiCandSi. Inaddition,theappliedstraincanbetunedby r t changingthedimensionsoftheamplifierstructure.Thepossibilityofintroducingsuchacontrollableandultra-highstrainwillopenthedoorto m investigatingthephysicsofSiCinlargestrainregimes,andthedevelopmentofultrasensitivemechanicalsensors. . Keyword:SiliconCarbide,ResidualStress,Ultra-highStrain,HighFrequency t a m - Strain engineering plays an important role in electronic de- strain, the higher resonant frequency can be achieved. In addi- d vices.1,2Forinstance,incomplementarymetaloxidesemiconduc- tion, largestrainsupto10%couldalsoleadtoseveral significant n tor (CMOS) technology, scaling down the device to sub 100 nm changesinelectrical/opticalproperties,whichhavebeenobserved o c regimeencountersseveralchallengesduetothedegradationofcar- inseveralmaterials.31,32Alargestresscouldalsocauseunintended [ riermobility.3,4ToenhancetheperformanceofsiliconCMOSwith propertiessuchaswaferbowandcracks,makingtherealizationof shrinkingsize,theintroductionofstrainintoSichannelhasbeena ultra-high strainin SiCan challenging issue. Therefore, tomake 1 keyconcept tocompensate thedecreaseincarriermobility.5–7 In extremelyhighstraininSiCpossible,itisimportanttolocallyam- v addition, micro/nano electromechanical systems (MEMS/NEMS) plifystraininaspecificarea,whilekeepingthestraininthewhole 1 have also benefited from strain engineering where the residual filminarelativelysmallregime. 9 7 strainwasapplied betweenepilayers toenhance the resonant fre- We propose here a novel approach to induce extremely high 2 quency(f)andthequality(Q)factorfollowingEuler-Bernoullithe- strainintoSiC by using a nano strain-amplifier. For the proof of 0 ory.8 concept, we demonstrate the feasibility of introducing a strain of . Siliconcarbide, awideband gapmaterial, hasshowed itshigh approximately 8% into a SiC nano-spring structures, which is to 1 potential in MEMS/NEMS applications.9,10 The large band gap the best of our knowledge at least one order of magnitude larger 0 7 makesSiCanexcellentcandidateforhightemperatureelectronics thanthatreportedintheliterature.Thepossibilityofinducingsuch 1 applicationswhereSihaslimitation. ThelargeYoungâA˘Z´smod- a high strain will pave the path for experimental investigation of : ulus of above 300 GPaoffersSiC resonators higher resonant fre- thephysicsofSiCinhighstrainregimesaswellasforthedevel- v quenciesincomparisontoSibasedcounterparts.11,12Otherphysi- opmentofhighlysensitiveSiCsensors. Ourmethodology should i X calpropertiessuchasthepiezoresistiveeffectandthethermoresis- also be applicable for not only SiC but other materials including tiveeffectinSiChavealsobeenemployedtodevelopmechanical grapheneandtransitionmetaldichalcogenides(TMD),wherehigh r a andthermal sensorsforstructural healthmonitoring(SHM).13–20 strainregimesareofsignificantinterest. CubicSiC(3C-SiC)istheonlypolytype,amongover200SiCpoly- Figure 1(a) illustrates the basic concept to induce large strain types,thatcanbegrown(epitaxially)onSisubstrateandthusisthe intoSiCdevices.Thenanostrain-amplifierconsistsofaSiCmicro mostsuitablepolytypeforMEMS/NEMSapplications.9,21Thisal- bridgewhich isreleased fromaSisubstrate, andamodified area lowsthereductionofSiC/Siwafercostaswellasmakesitcompat- whichislocatedatthecentreofthebridge. Inaddition,themod- iblewiththeconventionalmicromachiningprocessthatdeveloped ifiedarea isdesigned to exhibit a smaller stiffness incomparison forSi. TheepitaxialgrowthofSiConSifurtherresultsinalarge totheremainingareasof theSiCbridge. Tosoftenthismodified residualstresswithintheSiCfilmduetothelatticeandthermalmis- area, thefollowingtechniques canbeutilized. First,thewidthof matchesbetweentheSiCfilmandtheSisubstrate.22Thisresidual themiddleareacanbeshrunkdowntonanometerscalesothatthe stresscan be potentially applied to enhance the f×Q of theres- ratioofthestiffnessbetweenthenanowireandmicro-frameissig- onators. Resonatorswithhighfrequenciesuptoseveral GHzand nificantlydiminished. Second,themiddlesectioncanbesoftened f×Qfactorsupto1011havebeendevelopedthroughtheapplica- by modifying itsstructure; as such a nano-spring can offer much tionofresidualstress.22–24 larger elongation than that of a nano rod with the same dimen- Inmostpreviousstudies,themaximumstraininducedintoSiC sion. Furthermore,bychangingmaterialfromsingle-crystallineto rangedfrom0.1%to0.6%.27–30 Itshouldbenotedthatthelarger amorphous,itisalsopossibletotunethestiffnessofaspecificre- 1 (b) Stress relaxation (a) Concept (i) low dimension Shrink σ Stiff areas Soft area σ r r (i) structure modification σr Area of interest Strain ε1 + (iii) material modification (c) Stress gradient Bending moment Strain M M σ Strain ε2 r ε =ε +ε 1 2 Figure1. (a)Conceptofdevicestoinducelargestrainintointerestedarea;(b)(c)Principleofthenanostrain-amplifierbasedonplanarresidualstressand stressgradient(side-viewsketch). gion.25,26 Inthesubsequent experiment,weselectedthestructure a tensile stress in the epitaxial 3C-SiC film. The average tensile modificationapproachtoformthesoftarea,asitcanprovidelarge strain (er) in the SiC film can be quantified using the coefficient elongationwhicheasesthestrainobservationusingscanningelec- reportedbyRohmfeldetal.:27 tronmicroscopy(SEM). w The key factor of our structure is that the low stiffness of the cmT−O1 =(795.9±0.1)−(1125±20)er (1) modified nano-area allows it tofollow the deformation of the se- Consequently,theaveragestraininducedintotheas-depositedSiC riallyconnectedmicrostructures. As3C-SiChasasmallerlattice filmisapproximately 0.16%to0.2%, whichisinthesamerange sizethanSi,theSiCfilmtypicallyundergoesaconsiderabletensile withotherepitaxial3C-SiCfilmreportedpreviously.Once,theSiC stress when being epitaxially grown on the Si substrate. When a bridgeissuspended,theresidualstressisreleasedandSiCtendsto SiCbridgeisreleased,itslacticconstanttendstoreturntoitsorig- returntoitsfree-stressstate.Furthermore,astheSiCmicroframes inal size, which subsequently shrinks the size of the bridge. Be- aremuchharderthanthenano-spring(orothernanostructures)lo- causethisphenomenon ismoredominant intheSiCmicro-areas, catedatthecentre,theshrinkoftheseframesaremuchmoredom- thenano-arewillbestressedfollowingthemotionofthesemicro- inant. Assumingthatthemicroframescompletelyshrinkdownto area,Fig. 1(b). Furthermore,inaepitaxialfilm,largestressestyp- theirstrain-freestate,thestraininducedintothenano-spring(ens) icallydistributenear theinterface between toplayer andthe sub- canbeapproximatedusingthefollowingequation: strate. Theresidualstressgraduallydecreaseswithincreasingfilm L thicknessorevenrelaxforsufficientlythickfilms.Thisvariationof ens= f er (2) theresidualstresswillcauseastressgradientalongthethicknessdi- Lns mension,resultinginabendingmomentoncethefilmissuspended whereLf andLns arethelengthoftheframeandthenano-spring, fromthesubstrate. Therefore,undertheresidualbendingmoment, respectively. themicro-frameswilldeflectvertically,leadingtoanelongationin Additionally,thequalityoftheSiCfilmwascharacterizedusing the softened nano-area, Fig. 1(c). Combining the two phenom- transmissionelectronmicroscopy(TEM).TheTEMimageshown enaofin-planeshrinkingandout-of-planedeflection,anultra-high inFig.2(c)indicatesahighdensityofdefectsnear theSiC/Siin- strainisexpectedtoinduceintotheSiCnanostructures. terface. Mostdefectswerefoundtobethestackingfaultsin[111] TheSiCfilmwaspreparedonaSi(100)waferusinglowpres- crystallographyorientationduetothelatticemismatchbetweenSiC sure chemical vapor deposition (CVD) where silane (SiH4) and andSi. QualityoftheSiCfilmincreasesevidentlywithincreasing propylene (C H ) were employed as the precursors.35 As afore- filmthickness,exhibitinglesscrystaldefectonthetoplayers.This 3 6 mentioned,SiCandSihassignificantlatticeandthermalexpansion observation also indicates a stress gradient through out the film. mismatchof∼20%and∼8%respectively,thegrowntemperature Assuchinourpreviousreport,alargestresswasmeasuredatthe ◦ waskeptat1000 Cutilizingalternatingsupplyepitaxy(ASE)ap- bottomlayersof3C-SiC(100)films,whilethestressdecreasedor proach. X-RayDiffraction(XRD)methodwasutilizedtoinvesti- relaxedatlayersnearthetopsurface.34 Thebendingmomentex- gatethecrystallinityoftheSiCfilm. Figure2(a)showsdiffraction erted on SiC can be estimated from the Young’s modulus of SiC ◦ ◦ peaksat35.6 and90 ,correspondingto3C-SiC(200)and3C-SiC and the deflection of free standing SiC cantilevers. Accordingly, (400)orientations.Inaddition,besidesthesetwopeaks,onlyapeak thedeflection(d )ofasuspendedSiCcantileverisgivenby: ◦ at69.1 wasobserved,correspondingtoSi(400). Thisresultindi- Ml2 catedthatsinglecrystalline(100)3C-SiCwassuccessfullygrown d = (3) 2EI onaSisubstrate. Thethicknessofthefilmswasfoundtobe294 where M is the bending moment; and l, E and I are the length, nmusingNANOMETRICSNanospec/AFT210. Young’smodulus,andmomentofinertiaoftheSiCcantilever. As The Raman scattering measurement was performed using TMRenishaw inVia Raman microscope 514 nm, Fig .2(b). The a result, the bending moment caused by stress gradient is M = peak observed at 794 cm−1 corresponds to the transverse optical 2EId /l2. Figure3showsalargeout-of-planedeflectionofaSiC cantileverduetoresidualstressgradientobservedinaFocusedIon (TO)vibrationof3C-SiC.OurTOpeakwasrelativelysmallerthan ◦ that of free-stress 3C-SiC which was reported to be 795.9 cm−1. Beam(FIB)equipment withatiltangleof 60 . Fromthedeflec- tionof24m m,thedimensionofthecantileverof200m m×5m m Therefore, theleftshift of theTOpeakindicates theexistenceof ×0.3m m,andtheSiCYoung’smodulusof350GPa,thebending 2 (a) (b) (c) 1800 Si(400) LO SiC 1400 ] u. 3C-SiC(200) y [a. ount1000 TO Intensit 3(C4-0S0i)C C600 [1c1k1i] ng faults a st Si 200 30 50 70 90 700 800 900 1000 1100 200 nm 2θ [degree] Raman shift [cm-1] Figure2. PropertiesoftheSiCfilms.(a)X-RayDiffraction;(b)Ramanspectroscopy;(c)Transmissionelectronmicroscopy. momentisestimatedtobe5m N.m m. Consequently,thisrelatively almostflatshape,indicatingauniformstraincontributingalongits largebendingmomentexcretedonthemicroframesinnanostrain- longitudinaldirection. Figure5(b)presentstheSEMimageofthe amplifierwillcausealargeverticaldisplacement,andthusresults nano-spring afterremovingthesupporting wires. Themicrocan- inalargetensilestraininthebridgingnano-spring. tileversoneach sideof thebridgeweredeflectedvertically, lead- Figure4showsthefabricationprocessoftheproposeddevices. ing to a large displacement in the nano-spring. Furthermore, the Fortheproofofconceptweusedaspringstructuresinceitoffers cantileverswere bent downward, indicating that alargecompres- alowerspringconstantincomparisontonanowireswiththesame sivestressdistributedatthebottomlayerwithrespecttothatofthe width and thickness. The use of long SiC springs also allows a toplayers. ThisresultisingoodagreementwithTEMobservation directmeasurementofstrainusingatypicalSEM. mentioned above. Interestingly, because thetwocantilevers were Initially,siliconcarbidemicrostructureswerepatternedusingin- deflected at almost thesame degree, thenano-spring remained in ductivecoupledplasmaetching(HCl+O )withanetchingrateof thelateral plane. Consequently thelengthof thenano-spring can 2 approximately100nm/min(step1).36 TheSiCbridgeswerethen beaccuratelymeasuredfromthetopviewSEMimage,asshownin released from the substrate by under-etching Si using TMAH at Figure5(d). ◦ 90 Cforapproximately1hour(step2). Thewidthofthebridges Figure6plotsthestraininSiCnano-springsagainsttheratiobe- was fixed at 5 m m, while their length was varied from 100 m m tweenthelengthofthenano-springtothatofthesuspendedbridge to500m m. Consequently, SiCnano-springsandsupportingwires (Lns/Lf). A strain of 7.6% in the SiC nano-spring was observed were then formed at the middle of the bridge using focused ion when Lns/Lf) was 0.055, which is to the best of our knowledge beam(Ga+)(step3).37Thelengthofthespringwasapproximately the largest strain reported in SiC so far. Additionally, increasing 27.71m m,andthecross-sectionalareawasapproximately294nm the Lns/Ls results in a decrease in the applied strain, which is in ×300nm.Finally,thesupportingwireswasremovedbyFIB(step solidagreementwithEq.??andEq.??.Moreimportantly,thede- 3),releasingthenano-spring. pendenceofthestrainofthenano-springonLns/Lf indicatesthat Figure 5(a) shows the SEM image of suspended SiC bridges ultra-highstrainiscontrollablebychangingthedevicedimensions. prior toreleasingthenano-spring. Evidently, thebridgeswerein Thiscouldbeappliedtotunetheresonant frequencyinSiCnano resonators. Anotherinterestingpropertyinournano-strainamplifieristhat thestrainwasonlyconcentratedinthelocallyformednano-spring, (1) (2) (3) (4) FIB Remove Supporting-wires Supporting-wires FIB Figure3. Observationoftheout-of-planedeflectioninareleased3C-SiC cantileverduetoresidualstressgradient(fallcolor). Figure4. Fabricationprocessofthenanostrainamplifier. 3 Figure5. ColorizedSEMimagesofSiCnano-springs.(a)SuspendedSiCbridgewithnano-springfabricatedatthecenter(priortoremovingthesupporting wires);(b)SiCnano-springsaftercuttingthesupportingwires;(c)Deflectionofmicroframe(orcantilever)oneachside;(d)Theelongationofthenano-spring observedfromthetopview. whilethemicroframe(i.e. theSiCcantileveroneachsideofthe structure can be applied to locally induce extremely high strain bridge)canbealmostfreelydeformedreleasingtheresidualstress. into 2D materials such as graphene or transition metal dichalco- Itmeansthatthestraincanbeamplifiedatinterestedarea,whilea genide,wheretheVanderWallsadhesionforcebetweenthemand small strain is maintained at other area. Therefore, the proposed thesubstrate(e.g. Si,PDMS,glass)typicallycannotwithstand1% strain.38–41 Inconclusion,thisworkpresentsanovelmechanicalapproachto 8 applyextremelylargestraintoSiCutilizingananostrain-amplifier Measured data andtheresidualstress.Wesuccessfullydemonstratedanextremely high strain up to nearly 8% in a SiC nano-spring structure. The 7 Fit line %] proposedplatformshowsitspotentialforfurtherinvestigationsinto g [ the physics of SiC nano structures in high strain regimes, along n 6 withthedevelopment ofhighfrequency, highQfactor, andultra- ri p sensitiveSiCmechanicalsensors. s o n na 5 L Strain of 4 Lf =100 to 500 nμs = 27.7 μm Acknowledgment m This work was performed in part at the Queensland node of the 3 Australian National Fabrication Facility, a company established 0.05 0.1 0.15 0.2 0.25 0.3 under theNational Collaborative ResearchInfrastructureStrategy Length of nanospring/Length of frame (L /L [-]) toprovidenanoandmicro-fabricationfacilitiesforAustralia’sre- ns f searchers. Figure6. StraininSiCnano-springswithdifferentLns/Lf ratios. Forthe sameLns,increasingthelengthoftheSiCbridgeLf leadstoanincreasein thestrainofthenano-spring. 4 (22) Huang,X.M.H.,Zorman,C.A.,Mehregany,M.,Roukes,M.L.Nano- References electromechanicalsystems: Nanodevicemotionatmicrowavefrequencies. Nature2003,421(6922),496-496. (1) Si,C.,Sun,Z.,Liu,F.Strainengineeringofgraphene:areview.Nanoscale (23) Kermany,A.R.,Brawley,G.,Mishra,N.,Sheridan,E.,Bowen,W.P.,Ia- 2016,8(6),3207-3217. copi,F.MicroresonatorswithQ-factorsoveramillionfromhighlystressed (2) Zhang,Y.,etal.Latticestraininducedremarkableenhancementinpiezo- epitaxialsiliconcarbideonsilicon.Appl.Phys.Lett.2014,104(8),081901. electric performance of ZnO-based flexible nanogenerators. ACS Appl. (24) Wang,Z.,Lee,J.,Feng,P.X.L.SpatialmappingofmultimodeBrown- Mater.Interface2016,8(2),1381-1387. ianmotionsinhigh-frequencysiliconcarbidemicrodiskresonators.Nature (3) Niquet,Y.M.,Delerue,C.,Krzeminski,C.Effectsofstrainonthecarrier Comm.2014,5,5158. mobilityinsiliconnanowires.NanoLett.2012,12(7),3545-3550. (25) Kozeki,T.,Phan,H.P.,Dao,D.V.,Inoue,S.,Namazu,T.Influenceofgal- (4) Bedell, S.W.,Khakifirooz, A., Sadana,D.K.StrainscalingforCMOS. liumionbeamaccelerationvoltageonthebendangleofamorphoussilicon MRSBulletin2014,39(02),131-137. cantilevers.Jpn.J.Appl.Phys.2016,55(6S1),06GL02. (5) Feng,X.L.,He,R.,Yang,P.,Roukes,M.L.Veryhighfrequencysilicon (26) Snead,L.L.,Hay,J.C.Neutronirradiationinducedamorphizationofsili- nanowireelectromechanicalresonators.NanoLett.2007,7(7),1953-1959. concarbide.J.NuclearMater.1999,273(2),213-220. (6) Zalalutdinov,M.K.,Robinson,J.T.,Junkermeier,C.E.,Culbertson,J.C., (27) Rohmfeld,S.,Hundhausen,M.,Ley,L.,Zorman,C.A.,Mehregany,M. Reinecke,T.L.,Stine,R.,Snow,E.S.Engineeringgraphenemechanical Quantitative evaluationofbiaxialstraininepitaxial3C-SiClayersonSi systems.NanoLett.2012,12(8),4212-4218. (100)substratesbyRamanspectroscopy. J.Appl.Phys.2002, 91, 1113- (7) Witkamp,B.,Poot,M.,vanderZant,H.S.Bending-modevibrationofa 1117. suspendednanotuberesonator.NanoLett.2006,6(12),2904-2908. (28) Capano,M.A.,Kim,B.C.,Smith, A.R.,Kvam, E.P.,Tsoi,S.,Ram- (8) Karabalin,R.B.,Villanueva,L.G.,Matheny,M.H.,Sader,J.E.,Roukes, das, A.K.ResidualstrainsincubicsiliconcarbidemeasuredbyRaman M.L.Stress-inducedvariationsinthestiffnessofmicro-andnanocantilever spectroscopycorrelatedwithx-raydiffractionandtransmissionelectronmi- beams.Phys.Re.Lett.2012,108(23),236101. croscopy.J.Appl.Phys.2006,100(8),083514. (9) Phan, H.-P.; Dao, D. V.; Nakamura, K.; Dimitrijev, S.; Nguyen, N.-T. (29) Anzalone, R., Alberti, A., La Via, F. Evaluation of 3C-SiC/Siresidual Piezoresistiveeffectinsiliconcarbideforhightemperaturesensors: are- stressandcurvaturesalongdifferentwaferdirection.Mater.Lett.2014,118, view.J.Microelectromech.Syst.2015,24(6),1663–1677. 130-133. (10) Senesky,D.G.;Jamshidi,B.;Cheng,K.B.;Pisano,A.P.HarshEnviron- (30) Colston, G., Rhead, S. D., Shah, V. A., Newell, O. J., Dolbnya, I. P., mentSiliconCarbideSensorsforHealthandPerformanceMonitoringof Leadley,D.R.,Myronov, M.Mappingthestrainandtiltofasuspended AerospaceSystems:aReview.IEEESensorsJ.,2009,9(11),1472–1478. 3C-SiCmembranethroughmicroX-raydiffraction.Mater.Design2016, (11) Matsuda,Y.,Kim,N.,King,S.W.,Bielefeld,J.,Stebbins,J.F.,Dauskardt, 103,244-248. R.H.TunablePlasticityinAmorphousSiliconCarbideFilms.ACSAppl. (31) Falvo,M.R.,Clary,G.J.,Taylor,R.M.,Chi,V.,Brooks,F.P.,Washburn, Mater.Interfaces2013,5(16),7950-7955. S., Superfine,R.Bendingandbucklingofcarbonnanotubesunderlarge strain.Nature1997,389(6651),582-584. (12) Brueckner,K.,etal.MicroâA˘RˇandnanoâA˘Rˇelectromechanicalresonators (32) Fei,R.,Yang,L.Strain-engineeringtheanisotropicelectricalconductance basedonSiCandgroupIIIâA˘Rˇnitridesforsensorapplications.Phys.Status offew-layerblackphosphorus.NanoLett.2014,14(5),2884-2889. Solidia2011,208(2),357-376. (33) Tong,L.,Mehregany,M.,Matus,L.G.Mechanicalpropertiesof3Csilicon (13) A.Qamar,H.-P.Phan,D.V.Dao,P.Tanner,T.Dinh,L.Wang,S.Dim- carbide.Appl.Phys.Lett.1992,60(24),2992-2994. itrijev,“TheDependenceofOffsetVoltageinp-type3C-SiCvanderPauw (34) Kermany, A.R., Iacopi, F. Controlling the intrinsic bending of hetero- DeviceonAppliedStrain,”ElectronDeviceLetters2015,36(7),708-710. epitaxialsilicon carbidemicro-cantilevers. J.Appl. Phys.2015, 118(15), (14) Gao,F.;Zheng,J.;Wang,M.;Wei,G.;Yang,W.Piezoresistancebehaviors 155304. ofp-type6H-SiCnanowires.Chem.Comm.2011,47(43),11993-11995. (35) Phan,H.-P.;Qamar,A.;Dao,D.V.;Dinh,T.;Wang,L.;Han,J.;Tanner, (15) D.V.Dao,H.-P.Phan,A.Qamar,T.Dinh,RSCAdv.2016,6(26),21302- P.;Dimitrijev,S.;Nguyen,N.-T.Orientationdependenceofthepseudo-Hall 21307. effectinp-type3C-SiCfour-terminaldevicesundermechanicalstress.RSC (16) Bi,J.;Wei,G.;Wang,L.;Gao,F.;Zheng,J.;Tang,B.;Yang,W.Highly Adv.2015,5,56377-56381. sensitivepiezoresistancebehaviorsofn-type3C-SiCnanowires.J.Mater. (36) Phan,H.P.,Dinh,T.,Kozeki,T.,Qamar,A.,Namazu,T.,Dimitrijev,S., Chem.C2013,1(30),4514-4517. Nguyen,N.-T.,Dao,D.V.Piezoresistiveeffectinp-type3C-SiCathigh (17) Zhang,N.,Lin,C.M.,Senesky,D.G.,Pisano,A.P.Temperaturesensor temperaturescharacterizedusingJouleheating.ScientificReports.2016,6, basedon4H-siliconcarbidepndiodeoperationalfrom20◦Cto600◦C.Appl. 28499. Phys.Lett.2014,104(7),073504. (37) Phan, H.P., Dinh, T., Kozeki, T., Nguyen, T.K., Qamar,A., Namazu, (18) Dinh,T.;Phan,H.-P.;Kozeki,T.;Qamar,A.;Namazu,T.;Nguyen,N.- Nguyen, N.-T., Dao, D.V.Nanostrain-amplifier: Makingultra-sensitive T.;Dao,D.V.Thermoresistivepropertiesofp-type3C-SiCnanoscalethin piezoresistanceinnanowirespossiblewithouttheneedofquantumandsur- filmsforhigh-temperatureMEMSthermal-basedsensors.RSCAdv.2015, facechargeeffects.Appl.Phys.Lett.2016,109(12),123502. 5,106083-106086. (38) Perez-Garza,H.H., Kievit, E.W.,Schneider,G.F.,Staufer,U.Highly (19) Rao,S.,Pangallo,G.,Pezzimenti,F.,DellaCorte,F.G.High-Performance strainedgraphenesamplesofvaryingthicknessandcomparisonoftheirbe- TemperatureSensorBasedon4H-SiCSchottkyDiodes.ElectronDevice haviour.Nanotechnology2014,25(46),465708. Lett.2016,36(7),720-722. (39) Rostami,H.,Roldan,R.,Cappelluti,E.,Asgari,R.,Guinea,F.Theoryof (20) Dinh,T.;Dao,D.V.;Phan,H.-P.;Wang,L.;Qamar,A.;Nguyen,N.-T.; straininsingle-layertransitionmetaldichalcogenides.Phys.Rev.B2015, Tanner,P.;Rybachuk,M.Chargetransportandactivationenergyofamor- 92(19),195402. phoussiliconcarbidethinfilmonquartzatelevatedtemperature.Appl.Phys. (40) Tao,J.,etal..MechanicalandElectricalAnisotropyofFew-LayerBlack Exp.2015,8(6),061303,2015. Phosphorus.ACSnano2015,9(11),11362-11370. (21) Phan, H.P., Dinh, T., Kozeki, T., Nguyen, T.K., Qamar,A., Namazu, (41) Plechinger,G.,Castellanos-Gomez,A.,Buscema,M.,vanderZant,H.S., T.,Nguyen,N.-T.,Dao,D.V.ThePiezoresistiveEffectinTopâA˘S¸Down Steele,G.A.,Kuc,A.,Heine,T.Schuller,C.,Korn,T.(2015).Controlof Fabricatedp-Type 3C-SiCNanowires. IEEEElectronDeviceLett.2016, biaxialstraininsingle-layermolybdeniteusinglocalthermalexpansionof 37(8),1029-1032. thesubstrate.2DMaterials2016,2(1),015006. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.