ebook img

Ultra- and extremely high energy neutrino astronomy PDF

0.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultra- and extremely high energy neutrino astronomy

INCONTRISULLAFISICA DELLEALTEENERGIE TORINO, APRIL 14-16,2004 Ultra- and Extremely High Energy Neutrino Astronomy 5 IgorSokalski1)a) 0 0 1.IstitutoNazionalediFisicaNucleare/SezionediBari,ViaAmendola173,I-70126Bari,Italy 2 n Abstract—Scientificmotivationsforultra-andextremelyhighenergyneutrinoastronomyarecon- a sidered. Sources and expected fluxes of EHE/UHE neutrinos are briefly discussed. Operating and J planned experiments on astrophysical neutrino detection are reviewed focusing on deep underwa- 5 ter/iceCherenkovneutrinotelescopes. 1 v 1 Introduction 4 0 0 From cosmic ray studies, there is a clear evidence that energies of primary cosmic rays extend up to enormous 1 energiesof more than 1020eV with highestenergy cosmic rays detected by Fly’s Eye (HiRes) collaboration[1, 0 2], Yakutsk air shower array [3] and the AGASA experiment[4]. At the same time, the highest energy cosmic 5 rays represent still a terra incognita with respect to the processes powering them. The key question of modern 0 astrophysics- namely,Whatis the natureofthe cosmic highenergy world? - hasto be consideredas unsolved. / x Thereisnoprobeexceptforneutrinowhichcouldhelpustoanswerthisquestion.Electricallychargedprotonsand e heaviernuclei,whosearrivaldirectionisscrambledbygalacticandintergalacticmagneticfields,areabletopoint - p backtothesourcesoftheiraccelerationonlyaboveapproximately1–10EeV1).γ-rayskeeptheinitialdirection e buttheUniverseisnottransparentforthematenergiesaboveTeVrangesincetheyannihilateintoelectron-positron h pairsinanencounterwitha2.7Kcosmicmicrowavebackgroundphotonsorwithinfra-redradiation.Forexample, : v γ-quantumof 1PeV energycan notreach us evenfromthe Galaxy center(10 kpc). Neutronsare too short-live i X particlesandtheyarenotintime tocrossevenourGalaxybeforedecayingif theirenergyisbelowseveralEeV. Thus, neutrino remainsthe only i) weak interacting; ii) stable; and iii) neutral probe which can reach the Earth r a (whereweareabletoobserveit)fromthecosmologicaldistanceskeepingoriginaldirectionandpointingbackto thesourceofitsorigin,meetingthusthebasicrequirementsofastronomy. MeV-range neutrino astronomy have been existing for forty years with two neutrino sources identified so far, namely the Sun and Supernova SN-1987A, which at the moment remain the only two experimentally proved extraterrestrialneutrinosources. Developmentofultra-andextremelyhighenergy2) neutrinoastronomyisunder way, being still in its infancy. It started in 1960 with academician Markov’s suggestion to use a natural basins (lakesor seas) todeploytherea largevolumeneutrinotelescopes[5]. Thelargeinstrumentedvolumeis needed due to the two basic reasons: firstly, expected fluxes of UHE/EHE neutrinos are very low and, secondly, cross NC(CC) section of neutralcurrent(NC) and chargedcurrent(CC) neutrinointeractionsν N −→ ν (l)X (by which l l neutrinosaresupposedtobe detected)issmalldespiteits increasewith theneutrinoenergy. Todetectneutrinos associated with highest energy cosmic rays one needs a kilometer scale detectors. After the first experimental stepsatthemiddleofthe1970th(theDUMANDproject[6])anddetectionofthefirst’underwater’atmospheric neutrinoatthemiddleofthe1990th(theBAIKALexperiment[7])experimentalgroupsandcollaborationsmoved tothe nextstage: creationof detectorswith effectiveareasof0.1 km2 andhigherwith anultimate goalto build neutrinotelescopeswitheffectivevolumesofonecubickilometer. a)OnleavefromInstituteforNuclearResearchoftheRussianAcademyofSciences,Moscow,Russia 1)Letusremindtheenergyunitsrelevanttothediscussedtopic: 1GeV= 109eV,1TeV= 1012eV,1PeV= 1015eV,1EeV= 1018eV, 1ZeV=1021eV,correspondingly. 2)Ultrahighenergyrange(UHE)isEν =30TeV–30PeV;extremelyhighenergyrange(EHE)isEν >30PeV,respectively. Thistalkreviewsthephysicalgoalsandexperimentalstatusforultra-andextremelyhighenergyneutrinoastron- omyfocusing,firstofall,onoperatingandplanneddeepunderwater/iceCherenkovneutrinotelescopes. 2 Detection Principles and Scientific Goals Underwater/iceneutrinotelescopes(UNTs)representa3-Darraysofphotomultipliersdeployeddeepinthelake, oceanorinthepolariceatthedepthof1to4kilometerstoprovidewithashieldagainstthesunandmoonlight backgroundandbackgroundofatmosphericmuons. DetectionprincipleisbasedonregistrationoftheCherenkov photonsemittedbychargedleptons(includingthoseemittedbysecondariesproducedalongtheirwayinthewater or ice and by their decay products)which are generated in CC neutrinointeractions ν N −C→C lX (see Fig. 1). l AlsohadronicshowersproducedinNCneutrinointeractionsν N −N→C ν X insideUNTsensitivevolumecanbe l l Figure1:NeutrinodetectioninanUNT(schematicview) detectedbyradiatedCherenkovphotons.PMThittimesandpositionsprovidewithapossibilitytoreconstructthe trackorshowervertexwhileachargecollectedonPMTanodesallowstoreconstructtheenergy. Figure2: TwoeventtopologiesinanUNT(schematicview). Thus,therecanbetwomaineventtopologiesinUNTs(Fig.2): • trackeventincaseofmuonofanyenergyortau-leptonwithenergyE &2PeV(approximatelyabovethis τ energytau-leptonisabletopropagateremarkabledistancebeforedecaythankstotheLorentzfactor); • shower event in case of electron, tau-lepton with energy E .2PeV and NC interactions of all flavor τ neutrinos. 2 However,realeventsmay containbothtopologies. TrackofUHE/EHEmuonortau-leptoniscomplementedby showersproducedbysecondarieswhicharegeneratedinthemuoninteractions:bremsstrahlung,directe+e−-pair production,photonuclearinteractionsandknock-onelectronproduction.Withsomeprobabilitytheseshowerscan takethemajorfractionofµ/τ energyandevenalltheenergy(firstofallduetobremsstrahlung).Thus,acombined topologytrack+showertakesplace. Aswellas,atau-leptontrackwithasubsequentdecaycreatesuchcombined topology. CC muon neutrino (or tau neutrino if E is in multi-PeV range or higher) interaction within UNT ντ sensitivevolumewithanhadronicshowerintheneutrinointeractionvertexandsubsequentchargedleptontrack alsoproducesacombinedtopologywhichisevenmorecomplexincaseoftau-leptonifitdecaysinsidesensitive volumeprovidingthus with at least two showers: in neutrinointeractionpointand at the decay point(so called ’doublebang’[8]). On the other hand, at energiesbelow PeV range two showersat the tau neutrinointeraction vertexandatthetau-leptondecaypointaresoclosetoeachotherthatcannotbeseparatedatreconstruction(also tau-leptontrackcannotbedistinguished)andthus,suchaneventcanbeconsideredasapureshowerone. Themaingoalof UHE/EHEneutrinoastronomyis todeterminetheoriginofhighenergycosmicrays. Forthis itisneededtodetectnaturalfluxofthehighenergyneutrinosmeasuringneutrinoenergy,directionalinformation andintensity.ExpectedsourcesofUHE/EHEneutrinosareasfollows(moredetailedreviewcanbefound,e.g.,in [9]): • steadysourceslike,e.g.,ActiveGalacticNuclei(AGN),SupernovaRemnants(SNR)ormicroquasars; • transientsourceslikeGammaRayBursts(GBR); • decayofsuperheavyparticlesortopologicaldefects. Detection of UHE/EHE neutrinos and identification of their sources would allow to clarify the origination of UHE/EHE cosmic rays and to understand the processes by which the nature fills the Universe with the highest energyparticles. Fitted value of par[2]=Sigma 1 a m g 0.9 si 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 log E (GeV) 10 m gen Figure3: EnergyresolutionoftheANTARES12-stringdetector(seeSec.4.5)whichisplannedtobedeployed by2007(takenfrom[10]):sigmaofthedistributionoflog (Erec/Et)versusEt. 10 µ µ µ Accuracy of energy measurements in UNTs is not too high. Energy reconstruction is based on the increase of emitted Cherenkovlightdue to muon(τ) catastrophicenergylosses above≈1TeV. Also, amountof Cherenkov photonsproducedbybothhadronicandelectromagneticshowerismoreorlessproportionaltotheshowerenergy. But due to stochastic nature of energy losses and due to the fact that an UNT represent a non-dense detector with PMTs spaced by typically 10-100m, UNTs can not be a good calorimeter: for instance, dispersion of the log (Erec/Et)distribution(whereEt isthetruemuonenergyandErecisthereconstructedenergy,respectively) 10 µ µ µ µ isaroundσ ≈0.5atE ∼5TeVandσ ≈0.3forE &100TeVwhichmeansthatthemuonenergyresolutionis µ µ 3 atthelevelof2-3only(seeFig.3). Besides,anadditionalun-avoidederroratneutrinoenergymeasurementcomes fromthefactthatfractionofenergythatistakenbychargedleptonatneutrinoCCinteractionhasadistributionand ifneutrinointeractionoccursfarapartUNTsensitivevolumeand,hence,showerenergycannotbereconstructed, reconstructedchargedleptonenergyisnotagoodestimatorfortheneutrinoenergy. mmeeddiiaann ooff eerrrroorr s) ee angle m , m gr rec true e n (d 1 angle m rec,(cid:10) n true o uti ol s e ar r ul g 0.5 n a n a di e m 0 2 4 6 8 log (E /GeV) 10 n Figure 4: Angular resolution of the 12-string ANTARES detector versus E (taken from [10]): median of the ν distribution of the angle in space between the reconstructed muon track and the true muon track (solid) or the parentneutrinotrack(dashed).BelowE ≈10TeVthereconstructionerrorisdominatedbyν−µkinematics,at ν higherenergiesaccuracyislimitedonlybyPMTTTSandlightscattering. AngularresolutionfortrackeventsatUHE/EHErangeis,typically,at∼0.1◦–1.0◦level(Fig.4)anditissufficient forsearchofpoint-likeneutrinosources. The first main backgroundfor neutrinoevents comesfrom down-goingatmospheric muonsand it is suppressed by puttingUNT as deeperas possible to providewith a shield of water or ice (each 1 km of water suppressthe atmosphericmuonbackgroundbyapproximatelyoneorderofmagnitude)andbyselectingofup-goingeventsas neutrinocandidates.Thesecondbackgroundisduetoatmosphericneutrinos.Thefluxofastrophysicalneutrinosis expectedtobehavelikeE−2.0whereastheatmosphericneutrinospectrumfallslikeE−3.7,yieldingabettersignal- ν νatm to-backgroundratioathigherenergies. Thus,atmosphericneutrinobackgroundcanbesuppressedbysettingthe off-lineenergythresholdatthelevelE ∼10-100TeV. thr Except for deep underwater or ice neutrino detection other techniques are also discussed and used (for more detailedreviewsee[11]): • detectionofcoherentCherenkovradiowavesemittedbyelectromagneticshowers[12]; • acousticpulsesgeneratedinmatterheatedbyUHE/EHEcascadesduetoionizationenergylosses[13]; • detectionofneutrinointeractionsbyhorizontalairshowers(bothwithtraditionalEarth-basedlargeextensive airshowerarrays[14]andwithsatellitespace-baseddetectors[15]). Such kind of experiments have a high energy thresholds (at EeV energy range) and are aimed to detection of highestenergyneutrinos.TargetmassesforneutrinointeractionareatthelevelofGiga-tonsandhigherproviding withopportunitytodetectweakneutrinofluxes. 3 Predicted Fluxes and Bounds AllthemodelsforgenerationofUHE/EHEparticlescanbedividedroughlybytwomainclasses. Bottom-up models consider initially low energy particles which are accelerated up to UHE/EHE, typically, by shockwavespropagatinginaccretiondisksaroundblackholesoralongtheextendedjetsemittedperpendicularly 4 to the disk. Neutrino are supposed to be produced in decays of mesons which are generated by interaction of acceleratedparticles with surroundingmatter or photonfields. Such models predictE−2.0 behaviorof neutrino ν spectrum. Bynormalizationoftheneutrinofluxtotheknowncosmicrayfluxonecanobtainanupperboundof dN/dE ∼5×10−8E−2GeV−1cm−2s−1sr−1(Waxman-Bahcalllimit[16])totheneutrinofluxintegratedover ν ν allpossiblesourcesordiffuseneutrinoflux(Fig.5). Moredetailedconsiderationwhichinvolves,inparticular,the source transparency,leads to boundsat the level between the Waxman-Bahcalllimit and dN/dE ∼ 10−6E−2 ν ν GeV−1 cm−2 s−1 sr−1 ([17],’MPRobscured’and’MPRtransparent’inFig.5). Thelastfluxvaluemoreorless correspondstothebestexperimentallimitssetbythemomentondiffuseneutrinoflux. Figure5: Waxman-Bahcall([16],linemarked’WB’)andMannheim-Protheroe-Rachen([17],linesmarked’MPR obscured’and’MPRtransparent’)limitsondiffuseneutrinoflux. Atmosphericneutrinofluxisshownattheleft, aswell(thestripcorrespondstodifferentzenithangles). Insocalledtop-downscenariosparticlesarenotacceleratedbut,instead,arebornwithhighenergiesindecaysof super-massiveparticleswhichgenerateUHE/EHEnucleons,γ-raysandneutrinos. Differentpredictionsforneutrinofluxesgeneratedindifferentsources(see,e.g.,[18])leadtoexpectedfluxatthe Earthatthelevelof∼100eventyr−1km−2aboveE >10TeV. ν 4 Underwater/ice Neutrino Projects TheneutrinotelescopewordmapisshowninFig.6. 4.1 DUMAND The first project for deep underwater Cherenkov neutrino detection, DUMAND (Deep Underwater Muon and NeutrinoDetector [6]) existedfromabout1976through1995. The goalwas the constructionof the detector,to beplacedat4800mdepthinthePacificOceanoffKeaholePointontheBigIslandofHawaii. Manypreliminary studieswere carried out, fromtechnologyto ocean optics. A prototypeverticalstring of instrumentssuspended froma special ship was employedto demonstrate the technology,and measure the cosmic ray muon flux in the deepocean. TheDUMANDhardwarewasdonatedtotheNESTORProjectinGreece(Sec.4.4),andmayyetbe employed there. Although the DUMAND project was canceled in 1995, it stimulated a lot the developmentof underwatertechniqueforneutrinodetection. 4.2 Baikal TheBaikalneutrinodetectoris locatedata depthof 1100m in SiberianLakeBaikal. Theexperimentstartedin early80th,thefirststationarysingle-stringdetectorsequippedwith12-36PMTswereputinoperationin1984-86. In1993theBaikalcollaborationwasthefirsttodeploypioneering3-Dunderwaterarrayconsistingof3strings(as 5 Figure6:Theneutrinotelescopeworldmap m m 30 pe 7 pe 70(71)ns 87(84)ns 4 pe ~5m 45(47)ns 15 pe 9 pe 30(32)ns 43(42)ns 2 pe 22(17)ns o ~15 7 pe 5 pe 0 ns 0 ns Figure7:ThefirsttwoatmosphericneutrinosdetectedunderwaterintheBaikalexperimentin1994.ThehitPMTs aremarkedinblack. Numbersgivethemeasuredamplitudes(inphotoelectrons)andmeasured(expected)times withrespecttothefirsthitchannel. 6 Figure8: TheBaikalneutrinotelescopeNT-200(left)anditsplannedupgradeNT-200+(right) necessaryforfullspatialreconstruction). In1996thefirstatmosphericneutrinosdetectedunderwater(seeFig.7) werereported[7]. Since19988-stringNT-200detectorequippedwith19215“PMTsistakingdata(Fig.8). Anupgrade(NT-200+) isunderconstructionanditisplannedtobecompletedby2005. NT-200+willconsistofNT-200surroundedby 3 additionalstrings placed 100m apartand it is optimizedfor diffuse neutrinoflux detection. The currentlimit ondiffuseneutrinofluxsetbytheBaikalexperimentisdN/dE ∼ 1.3×10−6E−2 GeV−1 cm−2 s−1 sr−1 for ν ν energyrange 10TeV≤ E ≤10PeV (assuming E−2 neutrinospectra). Besides, limits on magnetic monopole ν ν flux, Q-ball flux, results on search of neutralinosin the core of the Earth, measurementson atmospheric muons andneutrinoswerereported[19]. 4.3 AMANDA/IceCube The first antarctic detector AMANDA-B10 was put into operation at the beginning of 1997. It consists of 302 PMTsdeployedatadepth1500-2000m. AMANDA(AntarcticMuonandNeutrinoDetectorArray)collaboration uses 3km thick ice layer at the geographicalSouth Pole. Holesare drilled with hotwater and then stringswith PMTsarefrozenintotheice.InJanuary2000deploymentofadditional9stringswascompletedandsincethattime AMANDA-IIdetectorisinoperationwith677PMTsat19strings(seeFig.9).TheuniquefeatureofAMANDAis thatitcontinuouslyworksincoincidencewithsurfaceairshowerexperimentSPASE[20]whichallowtocalibrate theangularresolution.GivenaE−2benchmarkneutrinospectralshape,limitsdN/dE ∼1.5×10−6E−2GeV−1 ν ν ν cm−2 s−1 sr−1 and dN/dE ∼ 0.86×10−6E−2 GeV−1 cm−2 s−1 sr−1 are seton diffuseneutrinoflux in the ν ν ranges 1PeV≤ E ≤3EeV and 50TeV≤ E ≤5PeV, respectively [21]. Estimated sensitivity to the point- ν ν likeneutrinosourcesisatthelevelofexpectedneutrinofluxesfromAGNsMrk421andMrk501[22],aswellas frommicroquasarSS433foraspecificmodel[23]. Alsoresultsonatmosphericmuonsandneutrinos,WIMPand magneticmonopolessearch, searchforsupernovaebursts, primarycosmic raycompositionhavebeenpublished bytheAMANDAcollaboration[24]. As a nextstep of developmentof the neutrinoobservatoryat the South Pole creationof neutrinotelescope with instrumentedvolumeof1km3 (IceCube)isforeseen[25]. Itwillconsistof4800PMTsdeployedon80vertical strings(eachof60PMTs)atthedepthfrom1400mto2400m.Thedistancebetweenstringsis125m,thedistance betweenPMTsalongthestrings16m.ExistingdetectorAMANDA-IIwillbeintegratedtoIceCube.Fig.10gives aschematicviewofIceCubeanditspositionwithrespecttoAMANDA-IIandtheairshowerarray. Deployment operationsattheSouthPolewillbegininlate2004anddetectorwillbecompletedby2010. With45,000atmo- spheric neutrinosrecordedper year the ultimate sensitivity to an extraterrestrialE−2 neutrinoflux after 3 years ν ofdatatakingisdN/dE ∼ 3(10)×10−9E−2 GeV−1 cm−2 s−1 sr−1 (thefirstnumberreferstothe90%limit ν ν 7 Depth 1000 m 200 m 120 m 1150 m Optical Module 1500 m HV divider (cid:0)(cid:1)(cid:0)(cid:1) main cable (cid:0)(cid:1)(cid:0)(cid:1) pressure housing PMT silicon gel 2000 m light diffuser ball 2350 m Inner 10 strings: zoomed in on one AMANDA-II AMANDA-B10 optical module (OM) Figure9: The AMANDA detector. The scheme is illustrated by Eiffeltower at the left. Each dotrepresentsan opticalmodulewithPMT. Figure10:SchematicviewonthefutureIceCubedetector 8 andthesecondonetothe5σ sensitivity). ThisislowercomparedtoWaxman-BahcalandMannheim-Protheroe- Rachen upper bounds[16, 17] and to the most popular predictions on diffuse neutrino flux which are based on differentmodels[18]. 4.4 NESTOR NESTOR(NeutrinoExtendedSubmarineTelescopewith OceanographicResearch)[26] willbe deployedin the MediterraneanSea,nearPylos(Greece)at4kmdepth. Itisplannedtobe’towerbaseddetector’(Fig.11). Each Figure11:SchematicviewoftheNESTORdetector tower consists of 12 hexagonal floors spaced by 30m with 6 pairs of up-down looking 15“ PMTs each. The diameteroftheflooris32m. TheeffectiveareaofthetowerwithrespecttoTeV-rangemuonsisabout0.02km2. The NESTOR collaborationhas passed througha long phase of site evaluationand technologytests. An 28km electro-opticalcablewasputontheseafloortoconnectthedetectorandshorestationin2000anditwasrepairedin 2002.InMarch,2003a’prototypefloor’equippedwith12PMTswasdeployed.Over5millionsofmuontriggers wererecordedduringitsoperation. 4.5 ANTARES The ANTARES project [27] (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) was formedin1996.In1996-99anintenseR&Dprogramwasperformed.Thedeploymentandrecoverytechnologies, electronicsandmechanicalstructuresweredevelopedandtestedwithmorethan30deploymentsofautonomous strings.Theenvironmentalpropertiesatthedetectorsitewereinvestigated.ANTARESR&Dprogramculminated with deployment and 8 month operation of a 350m length ’demonstrator string’ (November 1999 - July 2000) instrumented with 7 PMTs at a depth of 1100m, 40 km off the coast of Marseille. The string was controlled andreadoutvia37km-longelectro-opticalcableconnectedtotheshorestation. ∼5·104seven-foldcoincidences fromatmosphericmuonswererecorded. Theangulardistributionofatmosphericmuonswasreproducedandthe fractionofmulti-muoneventswasfoundtobeinagreementwithexpectation. After extensive R&D programthe collaborationmovedinto construction of a 12-string detector in the Mediter- raneanSeaat2400mdepth,∼40kmoff-shoreofLaSeynesurMer,nearToulon(42◦50′N,6◦10′E).Eachstring will be instrumented with 75 PMTs housed in glass spheres (see Fig. 12). PMTs are grouped in triplets at 25 levelsseparatedby14.5m. 3PMTsineachtripletareorientedat45◦tothenadir.Stringsareseparatedfromeach 9 Figure12:SchematicviewoftheANTARES12-stringdetector otherby∼70m. AllthestringsareconnectedtoaJunctionBox(JB)bymeansofelectro-opticallinkcables. The JB is connected to the shore station by a 50km length 48-fiber electro-opticalcable. Undersea connectionsare performedwith a mannedsubmarine. The deploymentof the detectoris plannedfor 2005-2007. The important milestonesthathavebeenachievedbythecollaborationare: • theelectro-opticalcableconnectingdetectorandshorestationwasdeployedinOctober2001; • theindustrialproductionof900OMsstartedinApril2002; • sinceDecember2002theJBisincommunicationwiththeshorestation; • in December 2002 and February 2003 the ’prototypeinstrumentation string’ and the ’prototype detection string’(equippedwith15OMs)weresuccessfullydeployed(recoveredinMayandJuly,2003,respectively); • inMarch2003bothstringswereconnectedtoJBwiththeNautilemannedsubmarineanddatatakingstarted. Thesensitivityofthedetectortodiffuseneutrinofluxesachievedbyrejectingthebackgroundwithanenergycutof E =50GeVallowstoreachWaxman-Bahcalllimitin3years. TheANTARESsensitivityforpoint-likesource cut searches (90% C.L.) assuming E−2 differentialν flux is in the range 4÷50·10−16cm−2s−1 (dependingon the sourcedeclination)after1year,whichgivesarealhopetodetectasignalfromthemostpromisingsources. ThedeploymentoftheANTARESneutrinotelescopecanbeconsideredasasteptowardthecreationofa1km3 detectorintheMediterraneanSea. 4.6 NEMO NEMO [28] (NEutrino subMarine Observatory) is an R&D project of the Italian National Institute for Nuclear Physics(INFN)for1km3neutrinounderwatertelescopetobedeployedinMediterraneanSeanearCapoPassero, Sicily,atthedepthof3500mwheretransparencyandotherwaterparametersareoptimal.Atthefirststage(1998- 2000)theNEMOcollaborationperformedanintensivesearchprogram(morethan20seacampaigns)todetermine theoptimalsiteforthefuturedetector.AlsoR&Dprogramonmaterials,PMTsandmechanicalcomponentsofthe detectorwereperformed. Atthesecondstagewhichstartedin2002,theadvancedR&Dandprototypingisdone. The laboratorywhich is connectedwith test site of-shoreCatania by28km electro-opticalcable is used for this purpose.TheoverallnumberofPMTsinNEMOdetectormaylaybetween7000and10000. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.