ebook img

Ullmann's Chemical Engineering and Plant Design – Vol. 1 Mathematics and Physics in Chem. Eng. - Fundamentals – Vol. 2 Plant and Process Design – Wiley-VCH PDF

1423 Pages·2016·44.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ullmann's Chemical Engineering and Plant Design – Vol. 1 Mathematics and Physics in Chem. Eng. - Fundamentals – Vol. 2 Plant and Process Design – Wiley-VCH

ULLMANN’S Chemical Engineering and Plant Design Volume 1 Mathematics and Physics in Chemical Engineering Fundamentals of Chemical Engineering AllbookspublishedbyWiley-VCHarecarefully LibraryofCongressCardNo.:Appliedfor. produced.Nevertheless,authors,editorsandpublisher donotwarranttheinformationcontainedinthesebooks, BritishLibraryCataloguing-in-PublicationData:A includingthisbook,tobefreeoferrors.Readersare cataloguerecordforthisbookisavailablefromthe advisedtokeepinmindthatstatements,data, BritishLibrary. illustrations,proceduraldetailsorotheritemsmay inadvertentlybeinaccurate. Bibliographic information published by The Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de ISBN 978-3-527-31111-8 (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA, Weinheim Printedonacid-freepaper. Allrightsreserved(includingthoseoftranslationinother languages).Nopartofthisbookmaybereproducedin anyform–byphotoprinting,microfilm,oranyother means–nortransmittedortranslatedintomachine languagewithoutwrittenpermissionfromthepublishers. Registerednames,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. Composition:SteingraeberSatztechnikGmbH, Dossenheim Printing:StraussGmbH,Mörlenbach Bookbinding:Litges&DopfBuchbindereiGmbH, Heppenheim CoverDesign:GuntherSchulz,Fußgo¨nheim PrintedintheFederalRepublicofGermany. V Preface Sincetheunabridged40-volumeUllmann’sEncyclopediaisinaccessibletomanyreaders–particu- larlyindividuals,smallercompaniesorinstitutes–alltheinformationonchemicalengineeringand plantdesignhasbeencondensedintothisconvenienttwo-volumeset. BasedontheverylatestprinteditionofUllmann’s,thisreadyreferenceistheone-stopresourcefor theplantdesignengineeringcommunity.Startingwiththequantitativetreatmentandfundamentals ofchemicalengineering,itcombinesallaspectsofprocessdevelopmentandreactortechnology,as wellasdetailingtheirpracticalapplicationsinsectionsdevotedtoplantdesign,scale-upandplant safety.Eachofthedetailedandcarefullyeditedarticlesiswrittenbyrelevantexpertsfromindustry oracademia.Akeywordandanauthorindexcompletethecontentsofthishandbook. Throughout,readersbenefitfromtherigorousandcross-indexednatureoftheparentreference,and willfindbothbroadintroductoryinformationaswellasin-depthdetailsofsignificancetoindustrial andacademicenvironments. ThePublisher Contents VII Contents Volume1 NondestructiveTesting................ 785 On-LineMonitoringofChemical SymbolsandUnits.................... IX Reactions........................ 821 ConversionFactors................... XI Abbreviations........................ XII Volume2 CountryCodes....................... XVII PeriodicTableofElements............XVIII PlantandProcessDesign ProcessDevelopment................. 873 MathematicsandPhysicsin ChemicalEngineering SeparationProcesses,Introduction...... 915 Solid–LiquidSeparation,Introduction.. 923 MathematicsinChemicalEngineering.. 3 Solid–SolidSeparation,Introduction... 931 MathematicalModeling............... 165 Mixing,Introduction.................. 939 TransportPhenomena................. 271 SolidsTechnology,Introduction........ 941 FluidMechanics...................... 371 ReactorTypesandTheirIndustrial Applications...................... 953 DesignofExperiments................ 423 ChemicalPlantDesignandConstruction 987 ComputationalFluidDynamics........ 463 ModelReactorsandTheirDesign PinchTechnology..................... 1075 Equations........................ 487 PilotPlants........................... 1083 Scale-UpinChemicalEngineering..... 1093 BiochemicalEngineering.............. 1117 Fundamentals EnergyManagementinChemical ofChemicalEngineering Industry.......................... 1187 PlantandProcessSafety............... 1205 EstimationofPhysicalProperties....... 537 EnvironmentalManagementinthe ConstructionMaterialsinChemical ChemicalIndustry................ 1331 Industry.......................... 605 Corrosion............................ 653 AbrasionandErosion................. 735 AuthorIndex....................... 1359 MechanicalPropertiesandTestingof MetallicMaterials................ 761 SubjectIndex....................... 1363 Mathematics and Physics in Chemical Engineering MathematicsinChemicalEngineering 3 Mathematics in Chemical Engineering BruceA.Finlayson,DepartmentofChemicalEngineering,UniversityofWashington,Seattle,Washington 98195,UnitedStates(Chaps.1–9,11,12) LorenzT.Biegler,CarnegieMellonUniversity,Pittsburgh,Pennsylvania15231,UnitedStates(Chap.10) IgnacioE.Grossmann,CarnegieMellonUniversity,Pittsburgh,Pennsylvania15231,UnitedStates(Chap.10) ArthurW.Westerberg,CarnegieMellonUniversity,Pittsburgh,Pennsylvania15231,UnitedStates(Chap.10) 1. SolutionofEquations . . . . . . . . 6 7. OrdinaryDifferentialEquationsas 1.1. LinearAlgebraicEquations . . . . 6 BoundaryValueProblems . . . . . 76 1.2. NonlinearAlgebraicEquations . . 12 7.1. SolutionbyQuadrature . . . . . . . 76 1.3. LinearDifferenceEquations . . . . 14 7.2. ShootingMethods . . . . . . . . . . . 77 1.4. Eigenvalues . . . . . . . . . . . . . . . 15 7.3. FiniteDifferenceMethod . . . . . . 79 2. ApproximationandIntegration . . 16 7.4. OrthogonalCollocation . . . . . . . 82 2.1. Introduction . . . . . . . . . . . . . . 16 7.5. Orthogonal Collocation on Finite 2.2. GlobalPolynomialApproximation 16 Elements . . . . . . . . . . . . . . . . . 87 2.3. PiecewiseApproximation . . . . . . 18 7.6. GalerkinFiniteElementMethod . 88 2.4. Quadrature . . . . . . . . . . . . . . . 21 7.7. CubicB-Splines . . . . . . . . . . . . 90 2.5. LinearLeastSquares . . . . . . . . . 24 7.8. AdaptiveMeshStrategies . . . . . . 91 2.6. NonlinearLeastSquares . . . . . . 26 7.9. Comparison . . . . . . . . . . . . . . . 92 2.7. FourierTransforms 7.10. SingularProblemsandInfiniteDo- ofDiscreteData . . . . . . . . . . . . 27 mains . . . . . . . . . . . . . . . . . . . 93 2.8. Two-DimensionalInterpolation 8. PartialDifferentialEquations . . . 94 andQuadrature . . . . . . . . . . . . 29 8.1. ClassificationofEquations . . . . . 94 3. ComplexVariables . . . . . . . . . . 30 8.2. HyperbolicEquations . . . . . . . . 96 3.1. IntroductiontotheComplexPlane 30 8.3. ParabolicEquations 3.2. ElementaryFunctions . . . . . . . . 31 inOneDimension . . . . . . . . . . . 98 3.3. Analytic Functions of a Complex 8.4. EllipticEquations . . . . . . . . . . . 104 Variable . . . . . . . . . . . . . . . . . 33 8.5. ParabolicEquationsinTwo 3.4. IntegrationintheComplexPlane 34 orThreeDimensions . . . . . . . . . 108 3.5. OtherResults . . . . . . . . . . . . . . 37 9. IntegralEquations . . . . . . . . . . 109 4. IntegralTransforms . . . . . . . . . 37 9.1. Classification . . . . . . . . . . . . . . 109 4.1. FourierTransforms . . . . . . . . . . 37 9.2. Numerical Methods for Volterra 4.2. LaplaceTransforms . . . . . . . . . 42 EquationsoftheSecondKind . . . 111 4.3. SolutionofPartialDifferential 9.3. NumericalMethodsforFredholm, EquationsbyUsingTransforms . . 48 Urysohn,andHammersteinEqua- 5. VectorAnalysis . . . . . . . . . . . . 51 tionsoftheSecondKind . . . . . . 113 6. OrdinaryDifferentialEquationsas 9.4. NumericalMethodsforEigenvalue InitialValueProblems . . . . . . . . 61 Problems . . . . . . . . . . . . . . . . . 115 6.1. SolutionbyQuadrature . . . . . . . 62 9.5. Green’sFunctions . . . . . . . . . . . 115 6.2. ExplicitMethods . . . . . . . . . . . 63 9.6. Boundary Integral Equations and 6.3. ImplicitMethods . . . . . . . . . . . 67 BoundaryElementMethod . . . . . 117 6.4. Stiffness . . . . . . . . . . . . . . . . . 68 10. Optimization . . . . . . . . . . . . . . 118 6.5. Differential–AlgebraicSystems . 69 10.1. Introduction . . . . . . . . . . . . . . 118 6.6. ComputerSoftware . . . . . . . . . 71 10.2. ConditionsforOptimality . . . . . 119 6.7. Stability, Bifurcations, Limit Cy- 10.3. StrategiesofOptimization . . . . . 123 cles . . . . . . . . . . . . . . . . . . . . . 72 10.4. SuccessiveQuadratic 6.8. SensitivityAnalysis . . . . . . . . . . 74 Programming(SQP) . . . . . . . . . 127 6.9. Eigenvalues and Roots by Initial 10.5. LinearProgramming . . . . . . . . . 130 ValueTechniques . . . . . . . . . . . 75 10.5.1. BasicProperties . . . . . . . . . . . . . 131 4 MathematicsinChemicalEngineering 10.5.2. SimplexAlgorithm . . . . . . . . . . . 132 11.4. Factorial Design of Experiments 10.6. Mixed-IntegerProgramming . . . 133 andAnalysisofVariance . . . . . . 150 12. MultivariableCalculusAppliedto 10.7. SolutionofDynamicOptimization Problems . . . . . . . . . . . . . . . . . 136 Thermodynamics . . . . . . . . . . . 153 12.1. StateFunctions . . . . . . . . . . . . . 153 11. ProbabilityandStatistics . . . . . . 142 12.2. ApplicationstoThermodynamics 154 11.1. Concepts . . . . . . . . . . . . . . . . . 143 12.3. PartialDerivativesofAllThermo- 11.2. SamplingandStatisticalDecisions 146 dynamicFunctions . . . . . . . . . . 155 11.3. ErrorAnalysisinExperiments . . 150 13. References . . . . . . . . . . . . . . . . 156 Symbols h setofm equalityconstraintsforanopti- mizationproblem Variables H the inverse of matrix Q. Also the scalar a scalar constant in quadratic approxima- Hamiltonian function for a dynamic op- tionforF,theobjectivefunction timizationproblem A m×n matrix of constant coefficients for I identitymatrix equality constraints in linear program- k iterationmatrix mingmodel L scalarLagrangefunction b vector of constants premultiplying the r m numberofequalityconstraintsforanop- independent variables u in the quadratic timizationproblem approximationforF,theobjectivefunc- n numberoftotalvariablesinanoptimiza- tion. Also vector of m right-hand-sides tionproblem forequalityconstraintsinlinearprogram- N (n-m)×m matrix corresponding to the mingproblem non-basis variables in a linear program- B approximationofthen×nHessianmatrix mingproblem fortheLagrangefunctionforthesucces- p number of inequality constraints for an sive quadratic programming algorithm. optimizationproblem.Alsovectorofpa- Also m×m non-singular matrix corre- rameters(donotvarywithtime)fordy- spondingtothebasisvariablesinalinear namicoptimizationproblem programming problem. Also coefficient Pe Pecletnumber matrixforbinaryvariablesyinthesetof Q anr×rmatrixofconstantsusedindefin- equality constraints for a mixed integer ingthequadratictermforaquadraticap- programmingproblem proximationforF,theobjectivefunction Bi Biotnumber r number of independent variables for an c vectorofnconstantcostcoefficientsfor optimizationproblem(r=n-m) all variables z in linear programming Re thespaceofrealnumbers problem R matrixdefinedinthequadraticprogram- Co Courantnumber mingalgorithm.Alsothevectorofresid- d searchdirectioninthespaceofallnvari- ual equations in the finite element ap- ablesz(bothdependentandindependent proach to solving dynamic optimization variables) problems D diffusionconstant Ren realnumbervectorspaceofdimensionn Da Damko¨hlernumber s changeintheindependentvariablesu(a f nonlinearscalarcontributiontoobjective vector with r elements in it). Also sen- function which is a function only of the sitivityofthefunctionsf withrespectto continuousvariables,y,foramixedinte- theparameterpforadynamicoptimiza- gerprogrammingproblem tionproblem F scalarobjectivefunctionforanoptimiza- Sh Sherwoodnumber tionproblem u vector of r independent variables for an g setofpinequalityconstraintsforanop- optimizationproblem.Foratime-varying timizationproblem MathematicsinChemicalEngineering 5 problem, the independent time-varying optimizationproblem,theLagrangemul- controlvariables tiplierforthestatevariableconstraints. W r×rweightingmatrixusedincomputing µ vectorofpKuhn–Tuckermultipliers Frobeniusnorm ν vectorofLagrangemultipliers(varywith x vector of m dependent variables for an time) for the algebraic equality con- optimizationproblem(thestatevariables straintsforadynamicoptimizationprob- foradynamicoptimizationproblem) lem y variables used in linear programming τ rescaledtimesoitliesinrange[0,1] problem.Alsobinaryvariablesinthefor- Y vector of polynomial approximation mulationofamixedintegerprogramming function for the control variables for fi- problem nite element method for dynamic opti- Y n×m matrix whose columns are vectors mizationproblem thatspantherangespaceofthelinearized constraints (see section on successive Specialsymbols quadraticprogrammingalgorithm) z vectorofallnvariables–boththem de- | subjectto pendentvariablesxandtherindependent : mapping. For example, h : Rn→Rm, variablesu–foranoptimizationproblem statesthatfunctionshmaprealnumbers z¯ interior point for linear programming into m real numbers. There are m func- problem tionshwrittenintermsofnvariables Z n×(n-m)matrixwhosecolumnsarevec- ∈ memberof tors that span the null space of the → mapsinto linearized constraints (see section on successivequadraticprogrammingalgo- Subscripts rithm) A g are the active constraints (i.e., pre- A ciselyequaltozero)amongtheinequality Greeksymbols constraints α scalar for setting the step size in a B basis variables in a linear programming line search algorithm for the successive problem quadratic programming algorithm. Also f valueatthefinaltimeforadynamicop- avectorofcoefficientstoformaconvex timizationproblem combinationofextremepointsforalinear i i-thelementofavectorofvariables programmingproblem.Alsoscalarvari- N non-basis variables in a linear program- ableusedastheobjectiveforthemixedin- mingproblem teger programming problem in equation NE number of elements in a finite element 76.Alsolengthofanelementinthefinite model elementapproachtosolvingdynamicop- OA outerapproximation timizationproblems o valueattheinitialtimeforadynamicop- γ changeingradientoftheobjectivefunc- timizationproblem tioninmovingfrompointktopointk+1. γ isavectorwithr elementsinit δ Kroneckerdelta Superscript ∆ samplingrate k iterationindex ε smallscalar L lowerbound φ vector of polynomial approximation T transposeofavectorormatrix functionsforthestatevariablesforfinite U upperbound element method for dynamic optimiza- ˆ basepointforaTaylorseriesexpansion tionproblem,alsoThielemodulus κ conditionnumber λ vector of m Lagrange multipliers for an optimizationproblem.Alsoforadynamic 6 MathematicsinChemicalEngineering 1. SolutionofEquations 1.1. LinearAlgebraicEquations Mathematical models of chemical engineering Considerthen×nlinearsystem systemscantakemanyforms:theycanbesets ofalgebraicequations,differentialequations,or a11x1 +a12x2 +...+ a1nxn=f1 integralequations.Massandenergybalancesof chemical processes typically lead to large sets a21x1 +a22x2 +...+a2nxn = f2 ofalgebraicequations: ... a11x1+a12x2= b1 an1x1 +an2x2 +...+annxn = fn a21x1+a22x2=b2 Inthisequationa ,...,a areknownparam- 11 nn Massbalancesofstirredtankreactorsmaylead eters, f ,...,f are known, and the unknowns 1 n toordinarydifferentialequations: arex ,...,x .Thevaluesofallunknownsthat 1 n satisfyeveryequationmustbefound.Thissetof dy = f [y(t)] equationscanberepresentedasfollows: dt Radiative heat transfer may lead to integral (cid:2)n equations: aijxj = fj or Ax=f j=1 (cid:1)1 The most efficient method for solving a set y(x)=g(x)+λ K(x,s)f (s)ds of linear algebraic equations is to perform a 0 lower–upper(LU)decompositionofthecorre- Evenwhenthemodelisadifferentialequation sponding matrix A. This decomposition is es- orintegralequation,themostbasicstepintheal- sentially a Gaussian elimination, arranged for gorithmisthesolutionofsetsofalgebraicequa- maximumefficiency. tions.Thesolutionofsetsofalgebraicequations TheLUdecompositionisdonebycalculating isthefocusofChapter1. inturn A single linear equation is easy to solve for eitherxory: fori= 1,ndo y=ax+b forj = 1,ndo Iftheequationisnonlinear, a(ij1) = aij f(x)= 0 itmaybemoredifficulttofindthex satisfying enddo thisequation.Theseproblemsarecompounded when there are more unknowns, leading to si- enddo multaneous equations. If the unknowns appear fork= 2,ndo inalinearfashion,thenanimportantconsidera- tionisthestructureofthematrixrepresentingthe fori =k +1,ndo equations; special methods are presented here for special structures. They are useful because forj =k +1,ndo they increase the speed of solution. If the un- klmenmuoswtisnbmseaupucpsheemdaro(irnie.ea.d,nifomfincalukinlete.aaIrtefgrauastehisvisoento,eftchhtehnpeiqrousbeos-- a(ijk)=ai(jk−1) − a(kak−(i−,k1k−1,−k)1−1)1ak(k−−1,1j) lution and try to improve the guess). An im- enddo portant question then is whether such an iter- ative scheme converges. Other important types enddo ofequationsarelineardifferenceequationsand eigenvalueproblems,whicharealsodiscussed. enddo

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.