University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-23-2017 UAS Collision Warning and Passive Sensor Fusion Algorithms for Multiple Acoustic Transient Emitter Localization Wenbo Dou [email protected] Follow this and additional works at:https://opencommons.uconn.edu/dissertations Recommended Citation Dou, Wenbo, "UAS Collision Warning and Passive Sensor Fusion Algorithms for Multiple Acoustic Transient Emitter Localization" (2017).Doctoral Dissertations. 1425. https://opencommons.uconn.edu/dissertations/1425 UAS Collision Warning and Passive Sensor Fusion Algorithms for Multiple Acoustic Transient Emitter Localization WenboDou,Ph.D. UniversityofConnecticut,2017 ABSTRACT This dissertation considers two important topics in the area of estimation, target track- ing and sensor fusion. The first topic is closest point of approach (CPA) prediction for unmanned aircraftsystems (UAS) collisionwarning and thesecond topic ispassive sensor fusionformultipleacoustictransientemitterlocalization. To operate within a controlled airspace, UAS must have the capability to sense and avoid collisions with non-cooperative aircraft. This dissertation presents an inexpensive system design and develops an algorithm for estimating the CPA between the ownship and the intruder and a collision warning scheme using only bistatic range and range rate measurementsfromamultistaticradar. Since it is vital for soldiers to be able to accurately localize sources of hostile fire in the battlefield for situational awareness and threat assessment, this dissertation develops bothcentralizedanddistributedpassivesensorfusionalgorithmstoaccuratelyestimatethe number of acoustic transient emitters and their locations using bearing and time of arrival measurements. UAS Collision Warning and Passive Sensor Fusion Algorithms for Multiple Acoustic Transient Emitter Localization WenboDou B.E.,NanyangTechnologicalUniversity,Singapore,2011 ADissertation SubmittedinPartialFulfillmentofthe RequirementsfortheDegreeof DoctorofPhilosophy atthe UniversityofConnecticut 2017 Copyrightby WenboDou 2017 ii APPROVAL PAGE DoctorofPhilosophyDissertation UAS Collision Warning and Passive Sensor Fusion Algorithms for Multiple Acoustic Transient Emitter Localization Presentedby WenboDou,B.E.EE. MajorAdvisor YaakovBar-Shalom AssociateAdvisor PeterK.Willett AssociateAdvisor KrishnaR.Pattipati UniversityofConnecticut 2017 iii ACKNOWLEDGMENTS First of all, I want to thank Professor Yaakov Bar-Shalom for providing me such a priceless opportunity to pursue my Ph.D. degree under the supervision of (without “one of”) the greatest researcher in the target tracking field. I feel honored to be his 38-th Ph.D.student. HiscontinuousguidanceandsupportmakemyPh.D.journeyenjoyableand unforgettable. I remember that when he offered me the Ph.D. opportunity, I did not even know random variables. Now I have mastered some of the state-of-the-art technologies to tackle practical challenging tracking problems. Not only do I benefit from his expertise in research, his serious attitude and his organized and systematic manner of conducting researchaswellasinotheractivitiesisalsoavaluableassetformyfuture. Next,IwouldliketothankProfessorPeterWillett,oneofmyassociateadvisors,forhis kind helpduring the lastfew years. He has contributedto a lotof helpful commentsto im- provemypapers. IenjoyedhiscommentsalotbecauseIcannotonlylearntheappropriate way of writing technical articles but always also learn new English from a native speaker. Heisagreatspeakertolistentointheclassroom,inatechnicalseminar(Youcanverifythis bywatchingacoupleofhislecturesonYouTube)orinacasualmeeting. Ihadagreattime in his advanced signal processing class where I officially learned particle filtering for the firsttime. HeprovidedmetheopportunitytoserveasthestudentassociateeditorforIEEE AerospaceandElectronicSystemsMagazine,whichenrichesmyprofessionalexperience. I am also grateful to Professor Krishna Pattipati, my other associate advisor. I took three, the most from any professor, courses from him during my graduate study. I enjoyed iv histeachinginclassandfullymasteredtheknowledgethroughhishomeworkquestionsand computer assignments. His neural network and data mining classes offer me the chance to learn the field of machine learning right in this artificial intelligence era. His linear programmingclassprovidesmewithabetterunderstandingofassignmentproblems,which isthefoundationofthedataassociationproblempresentedinthisdissertation. Heprovides me a chance to work on research problems using machine learning techniques, which help alotinmyjobsearch. It is my great honor to work with the above three UCONN ECE System rockstar pro- fessors for my research. My sincere thanks also go to Professor Robert Lynch, Professor PeterLuh,ProfessorShengliZhouand Professor ShalabhGuptafromDepartmentofECE and Professor Elizabeth Schifano from Department of Statistics for their time and help in teachingmetheknowledgerequiredtocompletemydissertation. I also want to extend my thanks to Lance Kaplan and Jemin George for hosting me at the US Army Research Lab in the summer of 2014. They have been offering continuous guidance and feedback to my work on the multiple transient emitter localization problem fromthebeginning. I would like to thank my best friend Zhiheng Xu and his wife Bing Yan, who not only helppassmyResumetomyadvisorandbutalsomakemyadaptiontolifeinUnitedStates sosimple. I want to thank my current and past labmates Qin Lu, Kaipei Yang, Radu Visina, Katherine Domrese, Xin Zhang, Shuo Zhang, Richard Osborne, Xiufeng Song, Ramona Georgescu, Sora Choi, Ting Yuan, Kevin Romeo and Djedjiga Belfadel; fellow students Yaowen Yu, Weiji Han, Yujia Li, Danxu Zhang, Ashwin Billava, Adam Markman and Pujitha Mannaru; colleagues Xiao Xiao, Marcus Baum, Karl Granstrom and Balakumar Balasingamforhelpingandworkingwithme. v IwouldliketothankmygrandfathersGuangshunDouandChuanpuJiang,myparents Chunshan Dou and Longhua Jiang, my girlfriend Xiaoyan Tang and all the other family membersfortheirloveandsupport. Last but not least, I want to thank the financial support by ARO Grant W991NF-10-1- 0369. vi Contents Ch.1. Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 UAScollisionwarning . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multipleacoustictransientemitterlocalization . . . . . . . . . . . 3 1.1.3 Listofpublicationstodate . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Literaturereview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Relatedcollisionwarningalgorithms . . . . . . . . . . . . . . . . . 6 1.2.2 Relateddataassociationalgorithms . . . . . . . . . . . . . . . . . 7 1.3 ContributionandMethodology . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 UAScollisionwarning . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Multipleacoustictransientemitterlocalization . . . . . . . . . . . 12 Ch.2. Bistatic Measurement Fusion from Multistatic Configurations for Air CollisionWarning 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 ParameterObservability . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 ConfidenceRegionintheGeneralCase . . . . . . . . . . . . . . . 24 2.2.3 ConfidenceRegionWhenIntruderandOwnshipatSameAltitude . 26 2.3 ScenariosandObservabilityAnalysis . . . . . . . . . . . . . . . . . . . . . 27 2.4 TheMaximumLikelihoodEstimator . . . . . . . . . . . . . . . . . . . . . 33 2.5 CollisionWarningApproaches . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Collision Warning via Hypothesis Testing Based on a Generalized LikelihoodFunction . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.2 CollisionWarningBasedonaBayesianApproach . . . . . . . . . . 40 2.6 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.1 EfficiencyofMLEstimatoroftheTargetParameter . . . . . . . . . 43 vii 2.6.2 EfficiencyoftheCPATimeEstimate . . . . . . . . . . . . . . . . . 45 2.6.3 CollisionWarningBasedontheGeneralizedLikelihoodFunction . 48 2.6.4 CollisionWarningBasedontheBayesianApproach . . . . . . . . . 55 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Ch.3. Evaluation of Fusion Algorithms for Passive Localization of Multiple TransientEmitters 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 ProblemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 TheS-Dassignmentalgorithm . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.2 TheoptimizationviaLagrangianrelaxation . . . . . . . . . . . . . 70 3.3.3 Thesequentialm-best2-Dassignmentalgorithm . . . . . . . . . . 72 3.4 Uniform-GaussianMixture(UGM)Formulation . . . . . . . . . . . . . . . 72 3.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4.2 TheExpectation-MaximizationAlgorithm . . . . . . . . . . . . . . 77 3.4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.4 UseoftheInformationCriterionforCardinalitySelection . . . . . . 83 3.5 PoissonPointProcess(PPP)Model . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5.3 UseoftheInformationCriterionforCardinalitySelection . . . . . . 91 3.6 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.6.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.6.2 Performancemetrics . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.6.3 Assignmentalgorithms . . . . . . . . . . . . . . . . . . . . . . . . 95 3.6.4 EM-basedalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.6.5 AssignmentalgorithmsandEM-basedalgorithms . . . . . . . . . . 109 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Ch.4. DistributedFusionAlgorithmforPassiveLocalizationofMultipleTran- sientEmitters 115 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.4 ChapterOrganization . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.1 GraphModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 viii
Description: