ebook img

Tyre Friction Potential Estimation by Aligning Torque and Lateral Force Information PDF

137 Pages·2010·4.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tyre Friction Potential Estimation by Aligning Torque and Lateral Force Information

AALTO UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY Faculty of Engineering and Architecture Department of Engineering Design and Production Mika Matilainen Tyre Friction Potential Estimation by Aligning Torque and Lateral Force Information Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Technology. Espoo, November 24, 2010 Supervisor Professor Matti Juhala Thesis Instructor Ari Tuononen Doctor of Science (Tech.) AALTO UNIVERSITY ABSTRACT OF THE MASTER’S THESIS SCHOOL OF SCIENCE AND TECHNOLOGY PO Box 11000, FI-00076 AALTO http://www.aalto.fi Author: Mika Matilainen Title: Tyre Friction Potential Estimation by Aligning Torque and Lateral Force Information Faculty: Faculty of Engineering and Architecture Department: Department of Engineering Design and Production Professorship: Vehicle Engineering Code: Kon-16 Supervisor: Professor Matti Juhala Instructor(s): Ari Tuononen Doctor of Science (Tech.) Abstract: The modern active systems and the advanced driver assistance systems have certainly re- duced the amount of accidents. However these systems are still lacking one major informa- tion, which is the friction between the tyre-road interface. The performance of these systems could be enhanced substantially if this information was known. Rather simple methods can be used to determine the friction coefficient at the current operating point of the tyre. The challenge arises from the friction potential, which is the maximum friction coefficient that the tyre-road interface can produce. The objective of this master's thesis is to study the feasibility of estimating the friction potential by using the information of lateral force and the self align- ing torque of the tyre. The well-known bicycle model of the vehicle is used to determine the lateral force of the front axle, which is divided to left - and right side in accordance with the normal load distribution of the wheels. The normal loads of the wheels are calculated from the angle sensors, which are assembled in the transverse control arms of the vehicle. The same sensors are also ex- ploited to determine the inclination angles of the steering axes. The heart of the estimation method is the brush tyre model. It receives the self aligning torque, lateral - and normal force of the tyre as inputs and outputs the friction potential. The proving ground tests are done with a typical small family estate car (VW Golf Variant Mk5). Two distinguishing proving grounds are chosen for illustrating the operation of the estimation method on high - and low friction level surfaces. Tests also in μ-split conditions and in situation where the vehicle is travelling from high friction level surface to low friction level surface are implemented. Results from both the high - and low friction level surface illustrate that the estimation method is able to detect the friction states of the front tyres in steady state cornering ma- noeuvres. Remarkable and interesting results are found from the μ-split and surface transi- tion tests were the estimation method distinguishes the difference between the high- and low friction level surfaces. The presented friction estimation method has potential. However lots of work and further studies have to be conducted before this method can assist the modern active safety systems and the upcoming ADAS systems. Date: 24.11.2010 Language: English Number of pages: 137 Keywords: Friction estimation, self aligning torque, brush tyre model, bicycle model 2 AALTO-YLIOPISTO DIPLOMITYÖN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU PL 11000, 00076 Aalto http://www.aalto.fi Tekijä: Mika Matilainen Työn nimi: Renkaan kitkapotentiaalin arvioiminen palauttavan momentin ja sivuttaisvoiman avulla Tiedekunta Insinööritieteiden ja arkkitehtuurin tiedekunta Laitos: Koneenrakennustekniikan laitos Professuuri: Auto- ja työkonetekniikka Koodi: Kon-16 Työn valvoja: Professori Matti Juhala Työn ohjaaja(t): Tekniikan tohtori Ari Tuononen Tiivistelmä: Nykyaikaiset aktiiviset turvajärjestelmät ovat vähentäneet liikenneonnettomuuksien määrää merkittävästi. Näiltä järjestelmiltä puuttuu kuitenkin tieto rengas–tie-rajapinnan kitkapotenti- aalista. Tämän tiedon avulla kyseisten järjestelmien suorituskykyä pystyttäisiin parantamaan huomattavasti. Renkaan hetkellisen toimintapisteen kitkakerroin voidaan määrittää suhteelli- sen yksinkertaisilla menetelmillä. Kitkapotentiaalin eli rengas–tie-rajapinnan maksimikitka- kertoimen määrittäminen on huomattavasti haasteellisempaa. Tämän diplomityön tavoite on tutkia renkaan sivuttaisvoiman ja palauttavan momentin käyttökelpoisuutta kitkapotentiaalin arvioimiseen. Etuakselin sivuttaisvoima määritetään yleisesti käytetystä kaksipyörämallista. Tämä sivut- taisvoima jaetaan vasemmalle ja oikealle renkaalle pyöränkuormien suhteessa. Pyörän- kuormat lasketaan alatukivarsiin asennettujen kulma-anturien tietojen perusteella. Samoja antureita käytetään myös kääntöakselin pitkittäis- ja poikittaiskulmien määrittämiseen. Kitka- potentiaalin arvioimismenetelmä hyödyntää renkaan harjamallia. Se ottaa syötteenä renkaan palauttavan momentin, sivuttaisvoiman sekä pystykuorman ja antaa ulostulona arvion kitka- potentiaalista. Käytännön testit suoritettiin pienellä farmariautolla (VW Golf Variant Mk5). Kaksi erilaista ajorataa valittiin käytännön testejä varten, jotta kyseisen menetelmän toimintaa voitiin tutkia sekä korkea - että matala kitkaisella tienpinnalla. Testejä suoritettiin myös kitkajakautuneella tienpinnalla, jossa ulkokaarteen renkaat olivat liukkaalla päällysteellä ja sisäkaarteen renkaat pitävällä päällysteellä. Tämän lisäksi tehtiin testejä, jossa ajoneuvolla ajettiin pitävämmältä päällysteeltä liukkaalle päällysteelle. Tulokset vakiotilan kaartotesteistä osoittavat, että menetelmä pystyy arvioimaan renkaiden kitka-arvot sekä korkea - että matala kitkaisilla tienpinnoilla. Mielenkiintoisia tuloksia saatiin myös kitkajakautuneen tienpinnan - ja päällysteeltä toiselle ajetuista testeistä. Näistä tulok- sista nähtiin selkeästi, että menetelmä kykenee erottelemaan korkean kitkan omaavan tien- pinnan matalammasta sekä antamaan uskottavia arvoja kitkapotentiaaleille. Tässä työssä esitellyllä kitkapotentiaalin arviointimenetelmällä on ehdottomasti mahdollisuuksia auttaa aktiivisia turvajärjestelmiä toimimaan vieläkin tehokkaammin tulevaisuudessa. Paljon työtä ja monia lisätutkimuksia on kuitenkin vielä tehtävä ennen kuin tähän tavoitteeseen päästään. Päivämäärä: 24.11.2010 Kieli: Englanti Sivumäärä: 137 Avainsanat: Kitkan arvioiminen, renkaan palauttava momentti, renkaan harjamalli, ajoneu- von kaksipyörämalli 3 Acknowledgements Acknowledgements This master’s thesis was done in Aalto University School of Science and Tech- nology. First of all I want to give my appreciations to Henry Ford Foundation for providing me a scholarship to carry out this interesting study. Special thanks are reserved for Professor Matti Juhala, researcher Ari Tuononen and senior laboratory manager Panu Sainio. These appreciations aren’t only for encouraging and supporting me throughout my master’s thesis, but also for giv- ing me interesting working possibilities at the Laboratory of Automotive Engineer- ing. My compliments go also to senior laboratory technicians Pekka Martelius and Keijo Kallio, who helped me with the sensor calibrations and mounting of the sensor equipment to the research vehicle. Thanks also to Professor Petri Kuos- manen for reading my almost finished master’s thesis with a short notice and giving valuable comments about it. Thanks to all fellow master’s thesis workers at the open-plan office for keeping the atmosphere relaxed and pleasant. Finally but certainly not for least I want to thank my parents, who have been sup- porting me throughout my studies. Espoo November 24, 2010 Mika Matilainen 4 Table of Contents Table of Contents ABSTRACT OF THE MASTER’S THESIS .......................................................... 2 DIPLOMITYÖN TIIVISTELMÄ ............................................................................. 3 Acknowledgements ............................................................................................. 4 Table of Contents ................................................................................................ 5 Symbols and Definitions ...................................................................................... 9 Abbreviations .....................................................................................................12 1 Introduction .................................................................................................13 1.1 Motivation and Background ..................................................................13 1.2 Problem Statement ..............................................................................17 1.3 Outline .................................................................................................19 1.4 Main Results ........................................................................................20 2 The Rubber-Road Interface: Phenomena Involved in Friction .....................21 2.1 Introduction ..........................................................................................21 2.2 Characteristics of Rubber .....................................................................21 2.2.1 Visco-elastic Behaviour .................................................................21 2.2.2 Influence of Stress Frequency .......................................................24 2.2.3 Influence of Temperature ..............................................................25 2.3 Characteristics of Road Surfaces .........................................................26 2.3.1 Texture..........................................................................................26 2.3.2 Influence of Surface Conditions ....................................................29 2.4 Friction Mechanisms ............................................................................31 2.4.1 Adhesion .......................................................................................31 2.4.2 Hysteresis .....................................................................................32 2.5 Conclusions of this Chapter .................................................................33 5 Table of Contents 3 Background and Theory of Friction Estimation ............................................34 3.1 Introduction ..........................................................................................34 3.2 Friction Coefficient ...............................................................................34 3.2.1 Definition .......................................................................................34 3.2.2 Terminology ..................................................................................37 3.3 Classification of Friction Estimation Methods .......................................39 3.3.1 Direct Methods ..............................................................................39 3.3.2 Indirect Methods ...........................................................................40 3.4 Previous Studies ..................................................................................41 3.5 Conclusions of this Chapter .................................................................42 4 Research Vehicle and Sensor Equipment ...................................................44 4.1 Introduction ..........................................................................................44 4.2 Front Suspension Geometry ................................................................45 4.2.1 Overview .......................................................................................45 4.2.2 Steering Axis .................................................................................47 4.2.3 Caster Angle .................................................................................47 4.2.4 Kingpin Inclination Angle ...............................................................51 4.2.5 Camber Angle ...............................................................................52 4.3 Steering System ...................................................................................54 4.3.1 Overview .......................................................................................54 4.3.2 Forces and Torques ......................................................................55 4.3.3 Evaluation of the Force Lever Arm ................................................57 4.4 Sensor Equipment................................................................................59 4.4.1 Overview .......................................................................................59 4.4.2 Piezoelectric Force Sensor ...........................................................60 4.4.3 Hall Effect Angle Sensor ...............................................................67 4.4.4 Two-Axis Optical Velocity and Slip Angle Sensor ..........................71 4.5 Conclusions of this Chapter .................................................................72 6 Table of Contents 5 Proving Grounds and Experimental Tests ...................................................74 5.1 Introduction ..........................................................................................74 5.2 Proving Ground of Nokian Tyres ..........................................................74 5.2.1 Overview .......................................................................................74 5.2.2 Experimental Tests .......................................................................75 5.3 Test Driving Track of Uudenmaan Ajoharjoitteluradat ..........................77 5.3.1 Overview .......................................................................................77 5.3.2 Experimental Tests .......................................................................78 5.4 Conclusions of this Chapter .................................................................80 6 Friction Estimation Method ..........................................................................81 6.1 Introduction ..........................................................................................81 6.2 The Bicycle Model ................................................................................81 6.2.1 Definition and Assumptions ...........................................................81 6.2.2 Equations of Motion ......................................................................82 6.2.3 Lateral Tyre Forces and Slip Angles .............................................83 6.3 The Brush Tyre Model ..........................................................................86 6.3.1 Definition and Assumptions ...........................................................86 6.3.2 Determination of Normal Load Distribution and Contact Length ....88 6.3.3 Complete Adhesion .......................................................................90 6.3.4 Adhesion and Sliding ....................................................................91 6.3.5 Complete sliding ...........................................................................93 6.4 Friction Estimation in Pure Lateral Slip Situation ..................................94 6.4.1 Principle ........................................................................................94 6.4.2 Requirements and Limitations .......................................................97 6.4.3 Proof of Concept ......................................................................... 101 6.4.4 Implementation ........................................................................... 102 6.5 Conclusions of this Chapter ............................................................... 103 7 Table of Contents 7 Proving Ground Results and Discussion ................................................... 105 7.1 Introduction ........................................................................................ 105 7.2 Steady-State Cornering ...................................................................... 105 7.2.1 High Friction Level Road Surface ................................................ 105 7.2.2 Low Friction Level Road Surface................................................. 109 7.2.3 -split Road Surface ................................................................... 113 7.3 Ramp Steer from High - to Low Friction Level Road Surface ............. 117 7.4 Conclusion of this Chapter ................................................................. 121 8 Conclusions and Recommendations ......................................................... 123 Bibliography ..................................................................................................... 126 Appendix A1: Vehicle and tyre parameters ....................................................... 130 Appendix A2: Contact pressure distribution and contact patch length .............. 131 8 Symbols and Definitions Symbols and Definitions ANGLES MEANING Slip angle of the front or the rear tyre Slip angle of the vehicle centre of gravity Caster angle Kingpin inclination angle Camber angle Angle of the transverse control arm Steering angle DIMENSIONS MEANING Length of the transverse control arm Wheel base Distance of the centre of gravity from the front axle Distance of the centre of gravity from the rear axle Height of centre of gravity above the ground Track width (or time) Dynamic rolling radius Caster offset Kinematic caster trail (the distance on the ground between the centre point of the contact patch and the steering axis) Kinematic pneumatic trail (pneumatic trail on the ground) Caster trail Pneumatic trail Total trail Longitudinal force lever arm in braking situation Longitudinal force lever arm in tractive - or rolling resistance situations Scrub radius Half of the tyre’s contact length Diameter 9 Symbols and Definitions VELOCITIES AND M EANING ACCELERATIONS Velocity of the centre of gravity Lateral velocity of the centre of gravity Longitudinal velocity of the centre of gravity Velocity of the front or the rear tyre Angular velocity around the -axis (Yaw rate) Angular acceleration around the -axis Angular velocity of the wheel Longitudinal acceleration Lateral acceleration acceleration due to gravity FORCES AND MEANING TORQUES Total aligning torque around the steering axis Torque arising from the caster angle Torque arising from the pneumatic trail Torque arising from the kingpin inclination angle Longitudinal force Lateral force Vertical force Tractive friction force between the tyre and the road surface Braking friction force between the tyre and the road surface Rolling resistance force Force of the left or the right hand side tie rod Normal load distribution of the tyre Lateral force distribution of the tyre 10

Description:
The normal loads of the wheels are calculated from the angle sensors, It receives the self aligning torque, lateral - and normal force Remarkable and interesting results are found from the μ-split and surface transi- assembled a strain gauge in the lower ball joint of the transverse control arm
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.