ebook img

Types of topological surface states in nodal noncentrosymmetric superconductors PDF

3.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Types of topological surface states in nodal noncentrosymmetric superconductors

Typesoftopologicalsurfacestatesinnodalnoncentrosymmetricsuperconductors Andreas P. Schnyder,1,∗ P. M. R. Brydon,2,† and Carsten Timm2,‡ 1Max-Planck-Institutfu¨rFestko¨rperforschung, Heisenbergstrasse1, D-70569Stuttgart, Germany 2Institutfu¨rTheoretischePhysik, TechnischeUniversita¨tDresden, D-01062Dresden, Germany (Dated:January13,2012) Nodalnoncentrosymmetricsuperconductorshavetopologicallynontrivialpropertiesmanifestedbyprotected zero-energysurfacestates. Specifically,itwasrecentlyfoundthatzero-energysurfaceflatbandsoftopological originappearattheirsurface. Weshowthatthepresenceofcertaininversion-typelatticesymmetriescangive rise to additional topological features of the gap nodes, resulting in surface states forming one-dimensional arcsconnectingtheprojectionsoftwonodalrings. Inaddition, wedemonstratethatMajoranasurfacestates 2 canappearattime-reversal-invariantmomentaofthesurfaceBrillouinzone,evenwhenthesystemisnotfully 1 gappedinthebulk. Withinacontinuumtheorywederivethetopologicalinvariantsthatprotectthesedifferent 0 typesofzero-energysurfacestates.Weindependentlyderivegeneralconditionsfortheexistenceofzero-energy 2 surface bound states using the complementary quasiclassical scattering theory, explicitly taking into account n the effects of spin-orbit splitting of the bands. We compute surface bound-state spectra for various crystal a point-groupsymmetriesandorbital-angular-momentumpairingstates. Finally, weexaminethesignaturesof J thearcsurfacestatesandofthezero-energysurfaceflatbandsintunneling-conductancespectraanddicusshow 2 topologicalphasetransitionsinnoncentrosymmetricsuperconductorscouldbeobservedinexperiments. 1 PACSnumbers:74.50.+r,74.20.Rp,74.25.F-,03.65.vf ] n o I. INTRODUCTION is linked to the topological characteristics of the nodal gap c - structure via a bulk-boundary correspondence. In fact, the r stabilityofboththedispersionlesszero-energysurfacestates p Systems with strong spin-orbit coupling (SOC) have re- u cently attracted a great deal of attention. Prime examples and the line nodes of the bulk gap is ensured by the con- s servation of the same integer topological invariant, namely aretopologicalinsulators,wherestrongspin-orbitinteractions at. give rise to a non-trivial band topology, leading to topolog- theone-dimensionalwindingnumber. Apartfromthesetwo- dimensional surface flat bands, certain NCSs also support m ically protected zero-energy surface states.1–3 Another class zero-energyboundarystatesthatformone-dimensionalopen of compounds for which SOC plays an important role are - arcsinthesurfaceBZ,connectingtheprojectionoftwonodal d superconductors without inversion symmetry.4,5 In these re- rings.10,20,25–29 Moreover, it has recently been reported that n markablematerials,Rashba-typeantisymmetricspin-orbitin- o Majorana surface states can occur at time-reversal-invariant teractionsliftthespindegeneracyoftheelectronicbandsand c momentaofthesurfaceBZ,9,14 evenifthesuperconductoris generate complex spin textures in the electron Bloch func- [ notfullygappedinthebulk. tions. In the superconducting state, the antisymmetric SOC 2 gives rise to the admixture of even-parity spin-singlet and Topological surface states are generic features of NCSs v odd-parity spin-triplet pairing components and, importantly, whose spin-triplet pairing component is at least as strong 7 allowsanon-trivialtopologyoftheBogoliubov-quasiparticle as the spin-singlet one. It is therefore quite reasonable 0 wavefunctions.6–9 Akin to topological insulators, this non- to expect that these zero-energy boundary states occur in 2 1 trivialwavefunctiontopologyresultsinvarioustypesofpro- the superconducting state of the heavy fermion compounds . tected zero-energy states at the edge or surface of noncen- CePt3Si,30 CeRhSi3,31 and CeIrSi3,32 as well as in Y2C3,33 1 1 trosymmetric superconductors (NCSs).8–14 For instance, a Li2PdxPt3−xB,34–36 and Mo3Al2C.37,38 All of these noncen- 1 fully gapped NCS with nontrivial topology supports linearly trosymmetric materials show strong spin-orbit interactions, 1 dispersinghelicalMajoranamodesatitsboundary.8,9,15–20 In withthespin-orbitbandsplittingfarexceedingthesupercon- : three-dimensional systems, the stability of these Majorana ductingenergyscale.5 Forthestudyofsurfacephenomenain v surfacestatesisprotectedbyaninteger(Z)topologicalinvari- NCSsitisthusimportanttoexplicitlyaccountforthestrong i X ant, i.e., the three-dimensional winding number,9,15 whereas SOC,13,29,39–41 a subtlety that has been overlooked in many r intwo-dimensionalsystemsabinary(Z2)topologicalnumber previousworks.10,20,25–28 a guaranteestherobustnessoftheedgemodes.8,17,21–23 The main aim of this paper is to provide a comprehensive Remarkably,topologicallyprotectedzero-energyboundary classificationofthetopologicalfeaturesofthree-dimensional modes also occur in NCSs with line nodes.9–14 In particu- nodal NCSs. In particular, we demonstrate that the presence lar,ithasrecentlybeenshownthatdispersionlesszero-energy of certain inversion-type symmetries gives rise to additional states (i.e., flat bands) of topological origin generically ap- topologicalfeaturesofthegaplinenodes. Thesefeaturesare pearatthesurfaceofthree-dimensionalnodalNCSs.9,10These characterized by a two-dimensional Z topological invariant 2 zero-energy flat bands are confined to regions of the two- and manifest themselves on the surface as one-dimensional dimensional surface Brillouin zone (BZ) that are bounded arcsofzero-energystates,terminatingattheprojectionofthe by the projections of the nodal lines of the bulk gap.24 The nodallinesontothesurfaceBZ.Wealsoexaminetheappear- topologicalprotectionofthesedispersionlessboundarystates anceofMajoranasurfacestatesattime-reversal-invariantmo- 2 menta of the surface BZ and show that the topological prop- kandspinσ. Thenormal-statedispersionoftheelectronsin erties of these linearly dispersing modes are described by a thespinbasisisgivenby one-dimensional Z invariant. Using a continuum model of 2 NCSs, we derive expressions for the Z2 invariants and the h(k)=εkσ0+gk·σ, (1b) windingnumberthatprotecttheMajoranamodes,thearcsur- whereε = (cid:126)2k2/(2m) µ, g denotestheSOCpotential, facestates,andthesurfaceflatbands,respectively. σ = (σk,σ ,σ )T arethe−threePkaulimatrices,andσ stands Weillustratethesetopologicalfeaturesbyinvestigatingthe x y z 0 for the 2 2 unit matrix. In the so-called helicity basis the surface-bound-state spectrum and the tunneling conductance normal-sta×te Hamiltonian (1b) takes diagonal form, h˜(k) = ofNCSsusingquasiclassicalscatteringtheory. Allowingfor diag(ξ+,ξ−),whereξ± = ε g isthedispersionofthe non-negligible SOC, we consider three different experimen- k k k k±| k| positive-helicityandnegative-helicitybands,respectively. tallyrelevantcrystalpoint-groupsymmetriesandexplorethe Due to the lack of inversion symmetry, the superconduct- effects of pairing with higher orbital angular momenta [e.g., ing gap generally contains an admixture of even-parity spin- (d +f)-wave pairing]. We find that higher-orbital-an- x2−y2 singletandodd-parityspin-tripletpairingstates, gular-momentumpairingleadstoadditionaltopologicallysta- blelinenodesinthebulkgap. Correspondingly,thereappear ∆(k)=(ψ σ +d σ)(iσ ), (1c) k 0 k y extrasurfaceflatbandsassociatedwiththeseadditionalnodal · lines. We show that the surface flat bands and the arc states where ψ and d represent the spin-singlet and spin-triplet k k leave unique signatures in the tunneling-conductance spec- components,respectively. Itiswellknownthatintheabsence tra. Finally, we investigate topological phase transitions in ofinterbandpairing,thesuperconductingtransitiontempera- NCSs,i.e.,zero-temperaturequantumphasetransitionswhere ture is maximized when the spin-triplet pairing vector d is k the momentum-space topology of the quasiparticle spectrum alignedwiththepolarizationvectorg oftheSOC.42 Hence, k changesabruptlyasafunctionofthesinglet-to-tripletratioin we parametrize the singlet and triplet components of the su- thepairingamplitude. Wearguethatanomaliesinthedensity perconductinggapfunctionas ofstatesandthetunnelingconductanceprovideexperimental r fingerprintsofthesezero-temperaturephasetransitions. ψ =∆ f(k)= ∆ f(k), (2a) k s r+1 0 The remainder of this paper is organized as follows. Sec- 1 tion II discusses the model Hamiltonian and its symmetries. d =∆ f(k)l = ∆ f(k)l , (2b) InSec.IIIwederivethetopologicalinvariantscharacterizing k t k r+1 0 k topologicalpropertiesofboththenodallinesandthesurface where l = g /λ, with λ the SOC strength. Here, r = states and give a detailed discussion of the topological crite- k k ∆ /∆ denotestheratiobetweenthesingletandtripletpair- ria forthe existenceof zero-energy surfacestates. By useof s t ing components. The pairing amplitudes ∆ and ∆ are as- quasiclassicalscatteringtheory, wederiveinSec.IVgeneral s t sumed to be positive and constant, i.e., r 0. We have conditionsfortheoccurrenceofsurfaceboundstatesinterms ≥ included in Eq. (2) a structure factor f(k), which allows us of sign changes of the superconducting gap functions across toinvestigatetheeffectsofhigher-orbital-angular-momentum theFermisurface. Weshowthattheseconditionsareinper- pairing. Inthefollowing,weconsiderthethreecases fectagreementwiththetopologicalcriteriagiveninSec.III. Inaddition,wepresentinSec.IVsurface-boundstatespectra  1 for(s+p)-wave,  forthreedifferentcrystalpoint-groupsymmetriesandforvar- f(k)= (k2 k2)/k2 for(d +f)-wave, (3) ioussurfaceorientations. InSec.VAwecomputethetunnel- 2kxk−/ky2 F for(dx2−+y2p)-wave, ingconductancebetweenanormalmetalandanNCS,identify x y F xy thesignaturesofthezero-energysurfaceflatbandsandthearc wherek istheFermivectorintheabsenceofspin-orbitin- F surfacestatesinthetunnelingspectra,anddiscusstopological teractions. With Eq. (2), it follows that the gaps on the two phase transitions. Our conclusions and outlook are given in helicitybandsaregivenby∆± =f(k)∆ (r l )/(r+1). Sec.VI. The specific form of the SkOC vector g0 (±and| kh|ence of l k k and d ) is constrained by time-reversal symmetry and the k crystallographicpoint-groupsymmetriesofthesuperconduc- II. MODELHAMILTONIANANDSYMMETRIES tor. Time-reversal symmetry requires g to be real and an k oddfunctionofk. AnelementRofthecrystallographicpoint We consider a three-dimensional single-band BCS su- group oftheNCScanberepresentedaseitheraproper(for perconductor with noncentrosymmetric crystal structure and detRG=+1)oranimproper(fordetR= 1)rotation.Thus, Rashba-type SOC. On a phenomenological level, such a theBogoliubov-deGennesHamiltonian(1−)transformsunder superconductor is described by the Bogoliubov-de Gennes anoperationRof as Hamiltonian = 1(cid:80) Ψ† (k)Ψ ,with G H 2 k kH k U (R−1k)U† =+ (k) (4) (cid:18) h(k) ∆(k) (cid:19) R˜H R˜ H (k)= (1a) H ∆†(k) hT( k) withR˜ = det(R)R,U = diag(u ,u∗),andu thespinor − − R˜ R˜ R˜ R˜ and Ψk = (ck↑,ck↓,c†−k↑,c†−k↓)T, where c†kσ (ckσ) denotes representation of R˜, i.e., uR˜ = exp[−i(θ/2)nˆ·σ]. Here, nˆ the electron creation (annihilation) operator with momentum denotes the unit vector along the rotation axis of R˜ and θ is 3 the angle of rotation. It follows from Eq. (1) that the lattice wheretheoff-diagonalblockisgivenby symmetries(4)imposetheconstraint D =(B σ +A l σ)( iσ ) (10c) k k 0 k k 2 g =det(R)Rg . (5) · − k R−1k with the short-hand notation A = λ+i∆ f(k) and B = k t k on g . To determine the form of g , we employ a small- k k ε +i∆ f(k). Wewillseeinthenextsectionthatthetopo- k s momentum expansion. Using Eq. (5) we find that for the logical invariants characterizing the topology properties of tetragonal point group = C (relevant for CePt Si, 4v 3 (k)canbeconvenientlydefinedintermsoftheoff-diagonal G CeRhSi , and CeIrSi ) the lowest-order symmetry-allowed H 3 3 block D , Eq. (10), or its flat-band version. It is found that termis43 k a crystallographic point-group operation R acts on D as k gk =λ(kyxˆ−kxyˆ). (6a) uR˜DDeRp−en1kdiunTR˜g=onDthke,wpohienrteagsroTuRpSimanpdlietsheDskpe=ci−ficDf−Tokrm. of For the cubic point group = O (represented by g ,theHamiltonian (k)mayinGadditiontoEq.(7)alsosat- Li2PdxPt3−xBandMo3Al2C)thGevectorgktakestheform iskfyanother“time-revHersal”-likesymmetrythatactsonlyona g =λ(cid:104)k (cid:0)1+g (cid:2)k2+k2(cid:3)(cid:1)xˆ+k (cid:0)1+g (cid:2)k2+k2(cid:3)(cid:1)yˆ two-dimensional plane within the three-dimensional BZ, i.e. k x 2 y z y 2 x z asymmetrythatactsonDkas +kz(cid:0)1+g2(cid:2)kx2+ky2(cid:3)(cid:1)ˆz(cid:105) (6b) −D−Tki,k0 =Dki,k0, (11a) with the second-order SOC g2. Finally, for the tetrahedral with ki = (ki1,ki2) the coordinates within the plane pexopinatngsiroonupofGg=kyTidel(drselevantforY2C3)thesmall-momentum Edikn0a(tueˆ)pe=rpe{nkd|ickul=ar tko0uˆEk+0.kiH1veˆre+, uˆki2=wˆ}vˆa×ndwˆk0anthdevˆcoaonrd- wˆ are taken to be orthogonal unit vectors. It follows from (cid:104) (cid:105) gk =λ kx(ky2−kz2)xˆ+ky(kz2−kx2)yˆ+kz(kx2−ky2)ˆz . (6c) Eq.(10c)thatacombinationofthesymmetries(7)and(11a) imposestheconstraint Before deriving the relevant topological invariants for Hamiltonian (1), we first discuss in some detail the dis- gki,−k0 =gki,+k0 (11b) crete symmetries responsible for the nontrivial topological on g = λl . For example, in the case of the tetragonal characteristics of (k). According to the classification of k k H point-group C with g given by Eq. (6a), symmetry (11) Refs. 15, 44, and 45, (k) belongs to symmetry class DIII 4v k H issatisfiedfortheone-parameterfamilyofplanesE (zˆ). It since it satisfies two independent antiunitary discrete sym- kz is important to note that even though Eq. (11b) has the form metries: Particle-hole symmetry (PHS) = U , with C U =σ σ ,46 and time-reversal symmCetry (TKRS) = ofaninversion-typesymmetry,itisdifferentfromthemirror C 1 0 ⊗ T symmetriesimposedbythecrystallographicpointgroup,see U , with U = σ iσ , where denotes the complex T T 0 2 K ⊗ K Eq. (5). We will explain below that the presence of symme- conjugationoperator. TRSactsontheBogoliubov-deGennes try(11)cangiverisetotopologicallystablearcsurfacestates. Hamiltonian (k)as H U T( k)U† =+ (k), (7) TH − T H III. TOPOLOGICALINVARIANTSINNODAL andPHSas NONCENTROSYMMETRICSUPERCONDUCTORS U T( k)U† = (k). (8) CH − C −H To characterize the topological properties of nodal NCSs Combining TRS and PHS, one obtains a third discrete sym- in three dimensions, we introduce an integer topological in- metry,theso-calledchiralsymmetry,whichactsas variant and two Z topological numbers. For this purpose it 2 U† (k)U = (k) (9) is convenient to work in the off-diagonal basis (10) and to SH S −H adiabaticallydeform ˜(k)intoaflat-bandHamiltonian. The H with the unitary matrix US = iUTUC = −σ1 ⊗ σ2. As off-diagonal block Dk, which is in general non-Hermitian, we will explain in Sec. III, it is the chiral symmetry (9) that can through a singular-value decomposition be written as leads to the protection of the zero-energy surface flat bands. D = U†Σ V , where U and V are unitary matrices and k k k k k k Since (k)anticommuteswiththeunitarymatrixU ,itcan S Σ isadiagonalmatrixwiththepositiveeigenenergies bebrouHghtintoblockoff-diagonalform.Thisisachievedbya k unitarytransformationthatdiagonalizesU ,e.g.,WU W† = (cid:113) S S Λ = (ξ+)2+(∆+)2, (12a) diag(σ0, σ0),with 1,k k k − (cid:113) 1 (cid:18)+σ σ (cid:19) Λ = (ξ−)2+(∆−)2 (12b) W = 0 − 2 . (10a) 2,k k k √2 +iσ2 +iσ0 of ˜(k) and thus of (k) on its diagonal, i.e., Σ = ThetransformedHamiltonianreads H H k diag(Λ ,Λ ). Assuming that Λ ,Λ = 0, we adia- 1,k 2,k 1,k 2,k H˜(k)=WH(k)W† =(cid:18)D0k† D0k(cid:19), (10b) beiagtiecnavlalyludesef+or1manthde−sp1e,cwtrhuimchoafmH˜o(ukn)tsintotorefl(cid:54)paltacbianngdΣskwibthy 4 the unit matrix. Hence, the off-diagonal component of the wherethepath crossestheFermisurfaceatk0. Itfollows flat-bandHamiltonianisgivenby9 thatthewindingLnumberW canbesimplifiedtoF(cf.Ref.11) L q(k)=U†V = 1 (cid:20)(cid:110)Λ+B Λ−A l (cid:111)σ W = 1 (cid:88) (cid:88) sgn(cid:0)∂ ξν (cid:1)sgn(cid:0)∆ν (cid:1),(17) k k 2Λ1,kΛ2,k k k − k k | k| 0 L −2ν=± k0∈Sν kl k|k=k0F k0F (cid:110) (cid:111) l (cid:21) F L + Λ+kAk |lk|−Λ−kBk lkk ·σ , (13) wherethesetofpointsSLν isgivenbytheintersectionofthe | | path with the Fermi surface for helicity ν. Thus Eq. (17) whereΛ± =Λ Λ .AsaresultofTRS,the2 2unitary showLs that for a weak-pairing NCS W is completely deter- matrixq(kk) U1,k(2±)sa2t,iksfiesiσ qT( k)=q(k)iσ×. minedbythephasestructureofthesupeLrconductinggaps∆+ ∈ 2 − 2 k and ∆− in the vicinity of the positive-helicity and negative- k helicity Fermi surfaces, respectively. Moreover, it follows A. Windingnumber from Eq. (17) that nodal lines necessarily carry nontrivial topologicalchargeW =0,irrespectiveoftheparticularform L (cid:54) In a three-dimensional nodal superconductor, q(k) is de- ofthebandstructureorthecrystalpoint-groupsymmetries. finedonlyforvaluesofkforwhichΛ ,Λ = 0, i.e., for 1,k 2,k (cid:54) allkintheBZexceptforthoseonthenodallines. Hence,the three-dimensional winding number ν,15 which characterizes B. Two-dimensionalZ2topologicalinvariant fullygappedsystems,isill-definedfornodalNCSs.However, wecanusetheone-dimensionalwindingnumberWL,which The two-dimensional Z2 topological invariant introduced is defined in terms of a one-dimensional momentum-space inthissubsectionisdefinedonlyforNCSssatisfyingsymme- loop (or line) integral, to characterize the topology of nodal try (11). We therefore consider a Hamiltonian (k) of the NCSs.Tothatend,weconsiderq(k)alongaone-dimensional form (1) that is invariant under symmetry (11) fHor the plane loop(orline)inreciprocalspaceR3whichdoesnotcrossgap- E (uˆ).Furthermore,weassumethatthenodallinesof (k) lessregions. Thatis,westudythemappingS1 U(2)given dok0not cross E (uˆ). Hence, (k) restricted to the Hplane by q(k) U(2). Since the first homotopy g→roup of U(2) E (uˆ)canberke0gardedasdescrHibingatwo-dimensionalfully is π1[U(2∈)] = Z,47 there is an infinite number of homotopy gakp0ped superconductor invariant under both TRS [i.e., sym- classes of mappings from S1 to U(2), which can be labeled metry(11)]andPHS[i.e.,thecombinationofchiralsymmetry bytheone-dimensionalwindingnumber andsymmetry(11)]. Suchatwo-dimensionalsystembelongs WL = 21πi(cid:73) dklTr(cid:2)q†(k)∂klq(k)(cid:3). (14) tdoesscyrmibmedetbryytchlaesZs2DtIoIIpoalnodgiictsaltoinpvoalroigaincta8l,9,c1h7,a21r–a2c3teristicsare L Theintegralistobeevaluatedalongthepath parametrized N2D = (cid:89) Pf[iσ2qˆ(π,ki2,k0)] by kl. We observe that WL is quantized for aLny closed loop Ek0 ki2=0,π Pf[iσ2qˆ(0,ki2,k0)] that does not intersect with nodal lines. If encircles a lLine node, WL determines the topological charLge and hence e−12(cid:82)0πdki1Tr[qˆ†(k)∂ki1qˆ(k)], (18) thetopologicalstabilityofthenodalline. UsingEq.(13)we × find where qˆ(k) represents a lattice regularization of q(k)48 and 1 (cid:73) N2D = 1 (+1) indicates a topologically nontrivial (triv- W = dk ∂ [lndetq(k)] Ek0 − L 2πi l kl ial) character. In Eq. (18), we have assumed that the coordi- L = 1 (cid:73) dk ∂ (cid:104)arg(cid:16)B2 A2 l 2(cid:17)(cid:105) nKates=(k(i01,,0k)i,2)(πw,i0th),in(0th,eπ)p,laannedE(πk0,(πuˆ))aarreelcehftosinevnasruiacnhttuhna-t 2π l kl k− k| k| i L dersymmetry(11). Notethatatthesepointsiσ qˆ(K ,k )is = 1 (cid:73) dk ∂ (cid:2)arg(cid:0)ξ++i∆+(cid:1)+arg(cid:0)ξ−+i∆−(cid:1)(cid:3), antisymmetric,sothatthePfaffianiswell-define2d. i 0 2π L l kl k k k k As before, we consider the weak-pairing limit and set the (15) gaps ∆± to zero far away from the Fermi surfaces. Using k Eq. (17), we find that in this approximation the exponential where,ingoingfromthefirsttothesecondline,wehaveused factorinEq.(18)reducesto theidentity detq(k) =1. Assuming| that the|energy scales of the gap functions are (cid:89) (cid:89) isgn(cid:0)∆ν ∂ ξν (cid:1), (19) much smaller than those of the normal-state dispersions (i.e, k0F ki1 k|k=k0F foraweak-pairingsuperconductor),wecanrescale∆±k with- ν=± k0F∈S˜Eνk0 outchangingW ,suchthatthegapsarenonzeroonlywithina L where the set of points S˜ν is given by the intersection of smallneighborhoodoftheFermisurfacesheets[cf.Eq.(12)]. Ek0 Inthislimitwefindthatthephasearg(ξν +i∆ν)isconstant the Fermi surface for helicity ν with the integration paths k k k : (0,0) (π,0)andk : (0,π) (π,π). Assumingthat farawayfromtheFermisurfaceofhelicityν = andthatit i i → → ± theFermileveldoesnotcrossthepositive-helicityornegative- jumpsby helicity bands at (K ,k ), we find that Pf[iσ qˆ(K ,k )] is −πsgn(cid:0)∂klξkν|k=k0F (cid:1)sgn(cid:0)∆νk0F(cid:1) (16) either +1 or −1 depeind0ing on whether the hel2icityiban0ds at 5 (Ki,k0)areoccupiedorunoccupied. Asaresult, theZ2 in- D. Topologicalcriteriafortheexistence variantfor (k)simplifiesto ofzero-energysurfacestates H NE2Dk0 =sgn(cid:0)∆+Ek0(cid:1)sgn(cid:0)∆−Ek0(cid:1), (20) Asaconsequenceofabulk-boundarycorrespondence,15,49 a nontrivial value of any of the three topological invariants wheresgn(∆± )denotesthesignofthegapontheFermiline (14), (18), and (22) signals the appearance of zero-energy Ek0 ghievliecnitbyyFtehreminitseurrsfeaccteio.nOobfsEerkv0e(tuˆh)atwEitqh.t(h2e0p)odsoietisvne/ontedgeaptievned- ssutartfeasceatfltahtebasunrdfsa,cNe˜o2Df t=he N1CgSiv.eTshraisteist,oWarLcs(cid:54)=urfa0celesatdastetso, ± − onthelatticeregularizationandhenceisvalidalsointhecon- and N1D = 1 results in Majorana modes at time-reversal- L − tinuumlimit. invariantmomentaofthesurfaceBZ.Inthefollowing,wedis- ForaNCSthatisinvariantundersymmetry(11)foraone- cussindetailthetopologicalcriteriafortheexistenceofthese parameterfamilyofplanesE (uˆ),withforexamplek R,it threetypesofsurfacestates. Forthatpurpose,wedenotethe k ispossibletoassignaZ topologicalchargetotheline∈nodes, coordinates parallel (perpendicular) to a given surface of the 2 provided that there are fully gapped regions in momentum NCSbyr (r )andthecorrespondingmomentabyk (k ). (cid:107) ⊥ (cid:107) ⊥ space separating different line nodes. For concreteness, let a. Surface flat bands: The appearance of surface flat usconsiderthesituationwhereanodallineislocatedwithin bands can be understood by considering a continuous defor- theplaneE (uˆ). TheZ topologicalchargeofthisnodal mationoftheclosedintegrationpath ofW ,Eq.(14),into k=k0 2 L L ringcanbedefinedas an infinite semicircle, such that the diameter of the semicir- cle contains the line (k ,k ), with k R and k fixed. ⊥ (cid:107) ⊥ (cid:107) N˜2D =N2D N2D , (21) Thispathdeformationdoesnotalterthev∈alueoftheintegral, Ek0+ Ek0− as long as no nodal line is crossed while deforming ; if a L nodallineiscrossedW changesby 1.Ascanbeseenfrom where Ek0+ and Ek0− represent two planes that are located Eq. (17), the integral aLlong the arc o±f the semicircle is zero on either side of the nodal line. For the tetragonal point- andhencetheintegralalongthediameterisgivenby50 group C [with g of the form (6a)], the two-dimensional 4v k Z number can be defined for the one-parameter family of pthl2aenkezs-Eaxkizs(,zˆc)o.nTsehqeuennotdlyalcrainrrgys,awnhoicnhtriavriealcZen2tetroepdoaloroguicnadl W(lmn)(k(cid:107))=−12ν(cid:88)=±(cid:104)sgn(cid:0)∆νkF,ν(cid:1)−sgn(cid:0)∆νk(cid:101)F,ν(cid:1)(cid:105), (24) charge N˜2D = N2D N2D , where k = (cid:112)2mµ/(cid:126)2 andα =α distingEukizs=h0esEbekztw=αekeFnthetopoloFgicalchargesof where kF,± = (k⊥,±,k(cid:107)) and k(cid:101)F,± = ((cid:101)k⊥,±,k(cid:107)) satisfy hthaelf-nsopdaacle±sr.ings in the upper (kz > 0) and lower (kz < 0) ξk±F,± =0andξk(cid:101)±F,± =0,respectively,withkF,±(k(cid:101)F,±)cor- responding to solutions with positive (negative) signs of the Fermi-velocity component perpendicular to the surface. The subscript (lmn) in Eq. (24) parametrizes the direction per- C. One-dimensionalZ topologicalinvariant pendiculartothesurface. FromEq.(24)itfollowsthatzero- 2 energysurfacestatesoccurwheneverW (k )=0,which (lmn) (cid:107) (cid:54) Finally, we also introduce a one-dimensional Z invari- correspondstoregionsofthesurfaceBZthatareboundedby 2 ant that characterizes the topological properties of (k) re- theprojectionsofthenodalringsofthebulkgap. strictedtoatime-reversal-invariantloop(orline) ,Hwhichis b. Arcsurfacestates: ConsideranNCSsatisfyingsym- mapped onto itself under k k. Similarly tLo Eq. (18), metry(11)forEk(uˆ),withk R,andwithtwonodalrings the one-dimensional Z2 topo→log−ical number can be conve- carryingnontrivialZ2topolog∈icalcharge,Eq.(21). Anytwo- niently defined in terms of the lattice-regularized version of dimensional subsystem Ek(uˆ) lying between these two line q(k),Eq.(13),9,14,21,23 nodes can be viewed as a time-reversal-invariant topological superconductor in class DIII. When these two-dimensional NL1D = PPff[[iiσσ2qqˆˆ((KK2))]]e−12(cid:72)LdklTr[qˆ†(k)∂klqˆ(k)], (22) scualbsMysatjeomrasnaareedtgeermstiantaetse.dTbhyesaebMouanjodraarnya, tmheordeeaspcpreoasrshzeelrio- 2 1 energyonthesurfaceBZ,somewhereinbetweentheprojec- wherewehaveassumedthat doesnotcrossthenodallines tionsofthetwonodalrings. Thus,thereisaone-dimensional L and K and K denote the two time-reversal-invariant mo- arcofzero-energystatesconnectingtheprojectionsofthetwo 1 2 mentaonthepath . Repeatingsimilarstepsasintheprevi- nodal rings. If the projected nodal rings have a finite over- L oussubsection,wefindthatforaweak-pairingsuperconduc- lapinthesurfaceBZ,cancellationoccursandnoarcsurface torN1Dsimplifiesto states are expected. By symmetry, the arc surface states al- L waysappearatthosesurfacemomentathatareinvariantunder N1D =sgn(cid:0)∆+(cid:1)sgn(cid:0)∆−(cid:1), (23) symmetry(11). Itisinterestingtonotethatthesearcsurface L L L statesarereminiscentoftheFermiarcsthatappearatthesur- where sgn(∆±) represents the sign of the gap at the points faceofWeylsemimetals,whichhaverecentlybeendiscussed L given by the intersection of with the positive/negative- inthecontextoftheAphaseof3He,51 pyrochloreiridates,52 helicityFermisurface. L andtopologicalinsulatormultilayers.53 6 c. Majoranasurfacestates: Weobservethatthegap∆ν most two solutions in each helicity sector. If there are more k (withν = )hasthesamevaluesatanytwomomentarelated thantwosolutionsineithersector(forexampleforaconcave ± byTRS.Thus,foragiventime-reversal-invariantsurfacemo- Fermisurface)weareunabletouniquelydeterminethecoef- mentumK ,theone-dimensionalZ number(23)reads50 ficientsofthedifferentspinorsappearinginthebound-state- (cid:107) 2 wavefunctionansatzforthegivenk . Ourapproachisthere- (cid:107) N1D =sgn(cid:0)∆+ (cid:1)sgn(cid:0)∆− (cid:1), (25) forereasonableinthelimitofweaktomoderateSOC,where K(cid:107) KF,+ KF,− theconcavityoftheFermisurfaceisonlyrelevantoverasmall whereK = (K ,K )satisfiesξ± = 0andthesign fractionofthesurfaceBZ. toofbtheepFoesrFimt,i±vi-ev.eCloocnit⊥sye±qcuoemn(cid:107)ptloyn,eNnt1D∂K=⊥ξKk±F1(cid:12)(cid:12),±ki=nKdiFc,a±teisstahsesupmreesd- waFvoevregcitvoerns kk±(cid:107) w=e(mk⊥u,s±t,tkhe(cid:107)r)efaonrdek(cid:101)in±g=en(e(cid:101)kra⊥l,±co,nks(cid:107)i)d,ewr hfoicuhr K(cid:107) − satisfyξ± =ξ± =0. Weclassifyasolutionaspropagating ence of Kramers-degenerate Majorana surface modes at the k± k(cid:101)± ifk isrealandasevanescentotherwise. Intheformercase, time-reversal-invariantmomentumK ofthesurfaceBZ. ⊥ (cid:107) Before closing this subsection, we note that the topologi- k±andk(cid:101)±correspondtosolutionswithoppositesignsofthe Fermi-velocity component perpendicular to the surface. We cal protection of boundary modes in nodal NCSs is weaker assumethattheNSCislocatedinthehalf-spacer >0. than the protection of surface states in strong topological ⊥ insulators or superconductors with a full gap in the bulk. Nevertheless, the surface states in nodal NCSs are expected 1. PropagatingsolutionsonbothFermisurfaces to possess a certain robustness against disorder, similar to the zero-energy edge states in graphene54 or in d -wave x2−y2 superconductors.55 Forexample,weexpectthatweaksurface If there are propagating solutions on both the positive- helicityandthenegative-helicityFermisurfaceswehavethe roughnesswillresultinabroadeningofthesurfacestatesde- wavefunctionansatz scribed above, but the surface spectral function will still dis- playsharppeaksattheboundstateenergies.Deeperexamina- Ψ(k(cid:107);r)= (cid:88)Ψν(k(cid:107);r)eik(cid:107)·r, (26a) tionoftheeffectofdisorderisbeyondthescopeofthispaper, ν=± andislefttolaterpublications. Ψν(k(cid:107);r)= (cid:88) αν(k)ψν(k)eik⊥r⊥e−κνkr⊥,(26b) k=kν,k(cid:101)ν IV. BOUNDSTATESPECTRA where the positive-helicity and negative-helicity spinors are givenby Inthissection,weusequasiclassicalscatteringtheorytode- rwivilelcsoeendtihtaiotntshefoqrutahseicelxasisstiecnaclecroiftesruiarffaocretbhoeuanpdpsetaartaensc.eWoef ψ+(k)=(cid:16)1, |llkxk+|+illkykz, −|llkxk+|+illkykz γk+, γk+ (cid:17)T , (26c) ztoeproo-leongeicrgalycsruitrefraicaegsivtaetnesinartheeinprpeevrifoeucstsaegcrteioemn.eHntenwcieth,tthhies ψ−(k)=(cid:16) |llkxk−|+illkykz, −1, γk−, |llkxk−|+illkykz γk− (cid:17)T , (26d) provides a verification of the bulk-boundary correspondence respectively,with that relates nontrivial topological characteristics of quasipar- ticlewavefunctionsinthebulktotheexistenceofzero-energy 1 (cid:20) (cid:113) (cid:21) γ± = E isgn(v± (k)) ∆± 2 E2 ,(26e) statesatthesurface. k ∆± − F,⊥ | k| − k 1 (cid:113) κ± = ∆± 2 E2, (26f) k (cid:126)v± (k) | k| − A. Generalconditionforboundstates | F,⊥ | and vν (k) is the component of the ν = helicity Fermi The wavevector component k(cid:107) parallel to an ideal surface velociFty,⊥normaltothesurface. ± isagoodquantumnumberduetotranslationalinvariance,and Aboundstateisrealizedwhenitispossibletochoosethe so we can construct the bound-state wavefunction for each coefficientsα (k)inEq.(26)suchthatthewavefunctionvan- ν puosuinatlqinuatshieclsaussrficaaclemBeZthiondd5e6piesnodnelnytlayp.plFicoarbalegifivtehnerke(cid:107)a,rethaet ilsehnetstoatthtehecosnudrfiaticoen, i.e., Ψ(k(cid:107);r)|r⊥=0 = 0. Thisisequiva- 0=(cid:0)γ− γ− (cid:1)(cid:0)γ+ γ+ (cid:1)(cid:104)(cid:0)l +lz (cid:1)(cid:0)l +lz (cid:1) (cid:0)lx +ily (cid:1)(cid:0) lx +ily (cid:1)(cid:105) k− − k(cid:101)− k(cid:101)+ − k+ | k+| k+ | k(cid:101)−| k(cid:101)− − k+ k+ − k(cid:101)− k(cid:101)− (cid:104)(cid:0)l +lz (cid:1)(cid:0)l +lz (cid:1) (cid:0) lx +ily (cid:1)(cid:0)lx +ily (cid:1)(cid:105) × | k−| k− | k(cid:101)+| k(cid:101)+ − − k− k− k(cid:101)+ k(cid:101)+ +(cid:0)γ− γ+ (cid:1)(cid:0)γ+ γ− (cid:1)(cid:104)(cid:0)l +lz (cid:1)(cid:0)lx +ily (cid:1) (cid:0)lx +ily (cid:1)(cid:0)l +lz (cid:1)(cid:105) k− − k(cid:101)− k+ − k(cid:101)− | k+| k+ k(cid:101)+ k(cid:101)+ − k+ k+ | k(cid:101)+| k(cid:101)+ (cid:104)(cid:0)l +lz (cid:1)(cid:0) lx +ily (cid:1) (cid:0) lx +ily (cid:1)(cid:0)l +lz (cid:1)(cid:105). (27) × | k−| k− − k(cid:101)− k(cid:101)− − − k− k− | k(cid:101)−| k(cid:101)− 7 Solutions of this equation satisfying E < 2. PropagatingsolutionsononlyoneFermisurface min ∆± , ∆± are the bound-state energ|ies|. Fo- {| k±| | k(cid:101)±|} cusing on zero-energy solutions that occur within a finite Inthecasethattherearepropagatingsolutionsonlyonthe region of the surface BZ, we find three possibilities for such negative-helicityFermisurface, thenegative-helicitycompo- states: nents of the wavefunction ansatz remain as above, but the positive-helicitycomponentsarenowwritten (cid:110) Ψ+(k(cid:107);r)= α+(p)φ(p)e−iqpr⊥ (i)sgn(∆− ∆− )= 1and sgn(∆+ ∆+ )=+1, (cid:111) k− k(cid:101)− − k+ k(cid:101)+ +α(cid:101)+(p)φ(cid:101)(p)eiqpr⊥ eip⊥r⊥, (28a) (ii)sgn(∆− ∆− )=+1and sgn(∆+ ∆+ )= 1, k− k(cid:101)− k+ k(cid:101)+ − (iii)sgn(∆− ∆− )= 1and sgn(∆+ ∆+ )= 1and where p is chosen from k+ and k(cid:101)+ such that the imaginary k− k(cid:101)− − k+ k(cid:101)+ − partofp⊥ ispositive, thespinorsφ(p)andφ(cid:101)(p)aredefined sgn(∆− ∆+ )= 1. by k− k(cid:101)+ − (cid:16) lx+ily lx+ily (cid:17)T φ(p)= 1, p p, p pΓ , Γ , (28b) |lp|+lpz −|lp|+lpz p p (cid:16) lx+ily lx+ily (cid:17)T Theseconditionsagreeperfectlywiththetopologicalcriterion φ(cid:101)(p)= 1,|lpp|+lppz, −|lpp|+lppzΓ(cid:101)p, Γ(cid:101)p , (28c) (24). Thatis,scenarios(i)and(ii)correspondtotopologically andwehave protected singly degenerate zero-energy states with winding number W(lmn) = ±1, while (iii) gives doubly degenerate Γ = 1 (cid:18)E+i(cid:113)(∆+)2 E2(cid:19) , (28d) states of winding number W(lmn) = 2. We note that a p ∆+ p − ± p careful examination of the terms involving l can also yield k 1 (cid:18) (cid:113) (cid:19) zTehreos-eensetargteysdiniscpluedrsei,nbgusttaarteesnaottliismoliateteddtop,otihnetstooproilnogaiclainlley. Γ(cid:101)p = ∆+p E−i (∆+p)2−E2 , (28e) protected Majorana modes and arc surface states introduced 1 (cid:113) q = (∆+)2 E2. (28f) inSec.IIID.Thegeneralformofthisconditionisrathercum- p (cid:126)Im v+ (p) p − bersome, but it simplifies significantly in the limit of weak { F,⊥ } SOCandsowedeferdiscussiontothiscase. Usingthesameargumentasabove,wefindthecondition 0=(cid:0)Γ(cid:101)p−Γp(cid:1)(cid:0)γk−− −γk(cid:101)−−(cid:1)(cid:104)(cid:0)|lp|+lpz(cid:1)(cid:0)|lk−|+lkz−(cid:1)−(cid:0)lpx +ilpy(cid:1)(cid:0)−lkx− +ilky−(cid:1)(cid:105) (cid:104)(cid:0)l +lz(cid:1)(cid:0)l +lz (cid:1) (cid:0)lx +ily(cid:1)(cid:0) lx +ily (cid:1)(cid:105) (29) × | p| p | k(cid:101)−| k(cid:101)− − p p − k(cid:101)− k(cid:101)− fortheformationofboundstates. UnlikeEq.(27),thiscondi- ThisresultwaspreviouslypresentedinRef.10andisutilized tion only allows for the existence of singly degenerate zero- here to obtain the surface bound-state spectra for the O and energy surface states which occur whenever sgn(∆− ) = T point groups. Although describing a physically idealized k− d sgn(∆− ).57Again,wefindthatthiscriterionmatcheswith situation, Eq. (30) is useful as it significantly simplifies the − k(cid:101)− discussionofthezero-energydispersingstates. Inparticular, thetopologicalone,Eq.(24). wefindthatsuchstatesarepossibleif(i)l l = l l and k· k(cid:101) | k|| k(cid:101)| sgn(∆+)=sgn(∆−)=sgn(∆+)=sgn(∆−)or(ii)l l = k k(cid:101) (cid:54) k(cid:101) k k· k(cid:101) l l andsgn(∆+)=sgn(∆+)=sgn(∆−)=sgn(∆−). 3. Limitofweakspin-orbitcoupling −| k|| k(cid:101)| k k(cid:101) (cid:54) k k(cid:101) Scenario(ii)includes,butisnotlimitedto,thetopologicalcri- teria (20) and (25) which desrcibe arc surface states and the Because of the difficulty of working with spin-orbit split Kramers-degenerate Majorana modes, respectively. In par- Fermi surfaces, many theoretical studies assume that the ticular, the antisymmetry of the SOC vector ensures that the SOC is weak so that the spin splitting of the Fermi surfaces latter state is realized at the zone center. In contrast, states can be ignored.10,20,25–28 This limit can be directly obtained satisfyingscenario(i)donotfallintoeithertopologicalcate- fromEq.(27)bysettingk+ =k− =kandk(cid:101)+ =k(cid:101)− =k(cid:101)to gory: They cannot be Kramers-degenerate Majorana modes, yieldthecompactbound-statecondition sincetherequirementthatl l = l l isneversatisfied k · k(cid:101) | k|| k(cid:101)| 0=(cid:0)γ+ γ−(cid:1)(cid:0)γ− γ+(cid:1)(cid:0)l l l l (cid:1) atthezonecenter;norcantheybearcsurfacestatesprotected +(cid:0)k(cid:101)γ−− kγ−(cid:1)(cid:0)k(cid:101)γ+− kγ+(cid:1)|(cid:0)kl|| k(cid:101)l|−+kl· k(cid:101)l (cid:1). (30) by a Z2 number, as the condition on the gap signs implies k(cid:101) − k k(cid:101) − k | k|| k(cid:101)| k· k(cid:101) 8 1 0.5 F k 0 k/z -0.5 - helicity, approx. + helicity, approx. - helicity, exact -1 + helicity, exact -1 -0.5 0 0.5 1 k /k x F FIG.1. (Coloronline)ComparisonoftheFermisurfacesinthex-z plane of the approximate dispersion Eq. (32) (solid lines) and the exactdispersionEq.(31)(dashedlines)forλk /2µ=0.1. F that any plane containing k and k(cid:101) must also contain a gap node. Wenotethattheconditiononthegapsisequivalentto sgn(f(k))= sgn(f(k(cid:101))),whichisnotrealizedtogetherwith − FIG. 2. (Color online) Surface bound-state spectra at the (100) theconditiononthepolarizationvectorforanyofthesystems face of a C point-group NCS as a function of surface momen- 4v consideredinthispaper,i.e.,allexamplesofzero-energydis- tum k = (k ,k ) with (a) (s + p)-wave, (b) (d + f)- (cid:107) y z x2−y2 persingstatespresentedbelowsatisfyscenario(ii). wave, and (c) (d + p)-wave pairing symmetry. Here we set xy λk /(2µ)=0.1andr=0.5.Thecolorscaleindicatestheenergy: F blackrepresentszeroenergywhileyellowrepresentsthemaximum B. SurfacestatesforthetetragonalpointgroupC4v energyEmax.Theblack(gray)lineshowstheextentoftheprojected negative-helicity(positive-helicity)Fermisurface.(d)Windingnum- berW ,Eq.(24),atthe(100)facecorrespondingtothesamepa- InthissectionweanalyzetheboundstatesoftheC point (100) 4v rametersasinpanel(c). Black(white)indicatesW =+2(−2), groupforfinitespin-orbitsplittingoftheFermisurface. As- (100) darkblue(gray)correspondstoW =+1(−1),whilelightblue (100) suming a spherical Fermi surface in the limit of vanishing isW =0.Thereddashed(greensolid)linesrepresentthenodal (100) SOCwefindthenormal-statedispersionatfiniteλ, linesonthenegative-helicity(positive-helicity)Fermisurface. µ (cid:113) ξ± = k2 µ λ k2+k2, (31) k k2 | | − ± x y F and they only touch along the line k = k = 0. As can be x y where k = (cid:112)2mµ/(cid:126)2. This implies a concave negative- seeninFig.1,theFermisurfacesoftheapproximateandexact F chlealsicsiictyalFmeremthiosdurmfaacye nnoeatrbkezw=ell-±de|kfiFne|,daancdrossosotuhreqeunatisrie- ddiestperemrsiinoensthaegrbeoeuvnedr-ystwateellspfoerctmraoadtergaitveenλkkF(cid:107)/,2wµe≤nee0d.1o.nTlyo surface BZ. In order to avoid this problem, we approximate findkν,k(cid:101)ν,andthesignofvFν,⊥(k)atthesepointssothatwe the negative-helicity and positive-helicity Fermi surfaces by expect that obtaining these parameters from Eq. (32) should oblateandprolatespheroids,respectively, giveexcellentagreementwiththeexactresultsacrossmostof thesurfaceBZ. µ µ ξk± ≈ (k±)2(kx2+ky2)+ k2 kz2−µ, (32) In Figs. 2(a)–(c) we present the surface bound-state spec- F F tra for the (100) face of a C point-group NCS for several 4v different pairing symmetries. In the case of (s + p)-wave where pairing we observe dispersing states in the region bounded  λk (cid:115) (cid:18)λk (cid:19)2 by the projected positive-helicity Fermi surface and the two kF± =kF ∓ 2µF + 1+ 2µF  (33) nriondgaslcrianrgrys antoknztri(cid:39)via±l 0Z.89tkoFpo[lFoiggi.ca2l(ac)h].arSgein,cienthaegsreeenmoednatl 2 with the discussion in Sec. IIID there are zero-energy arc gives the radius of the helical Fermi surfaces in the k = 0 surface states10,20,25–29 connecting the projections of the two z plane. Our dispersion, Eq. (32), qualitatively captures the nodal rings. Moreover, in accordance with the analysis of salient features of the true dispersion ξ±, Eq. (31): In the Secs.IIIDandIVA3,wefindthatthisarcliesalongtheline k k = 0planetheFermisurfacesarecirclesofdifferentradii, k = 0, i.e., atsurfacemomentathatareleftinvariantunder z y 9 r=(1+2g /3) r=(1+g /2) r=1 2 2 topological phase topological phase topological phase transition, marginal transition, nodal transition, marginal nodal points lines touch nodal points ν=±1 W =±1 W =±1 ν=0 L L fully gapless with gapless with fully r 0 gapped nodal lines nodal lines gapped FIG.4. (Coloronline)SchematicphasediagramforanNCSwith cubic point group O as a function of the ratio r = ∆ /∆ of the s t singletandtripletgaps.Here,thesecond-orderSOCg [seeEq.(6b)] 2 isassumedtobenegative. side the projected positive-helicity Fermi surface (light gray line)arethesinglydegenerate“time-reversal-invariantMajo- ranastates” foundin Ref.13, and areassociatedwith anon- trivialwindingnumberofW = 1asshowninFig.2(d). (100) ± Incontrast,thezero-energysurfacestateslyinginsidethepro- jected positive-helicity Fermi surface are doubly degenerate andhavewindingnumberW = 2. Thesestatesoccurin (100) ± theregionwherethegaphaspredominantlysingletcharacter, FIG.3. (Coloronline)Surfacebound-statespectraatthe(101)face andhenceareduetothesamemechanismasthezero-energy of a C point-group NCS as a function of surface momentum k surfacestatesinapured -wavesuperconductor.49,56,58 4v (cid:107) xy with(a)(s+p)-wave,(c)(d +f)-wave,and(e)(d +p)- x2−y2 xy wavepairingsymmetry. Herewesetλk /(2µ)=0.1andr=0.5. F The bound states at the (101) surface shown in Fig. 3 dis- ThecolorscaleisthesameasinFigs.2(a)–(c).Theblack(gray)line play a much more interesting topological character. We first showstheextentoftheprojectednegative-helicity(positive-helicity) consider the results for the (s + p)-wave case [Fig. 3(a)], Fermi surface. Panels (b), (d), and (f) show the winding number whicharequalitativelyidenticaltothosepreviouslyobtained W at the (101) face corresponding to the same parameters as (101) in panels (a), (c), and (e), respectively. Dark blue (gray) indicates inRef.10forvanishingspin-orbitsplittingoftheFermisur- W = +1(−1),whilelightblueisW = 0. Thereddashed faces. Specifically, wefind that flatzero-energy bandsoccur (101) (101) (greensolid)linesrepresentthenodallinesonthenegative-helicity withintheprojectednodesofthenegative-helicityFermisur- (positive-helicity)Fermisurface. face where the sign of the negative-helicity gap reverses be- tweentheforward-andbackward-facinghalvesoftheFermi surface. These zero-energy states are associated with a fi- symmetry(11),andwherewehavel l = l l . nite winding number W = 1; the variation of W k· k(cid:101) −| k|| k(cid:101)| (101) ± (101) Thesituationisqualitativelysimilarforthe(d +f)- acrossthesurfaceBZshowninpanel(b)clearlydemonstrates x2−y2 wave case [Fig. 2(b)], although the extra nodes due to the the non-zero topological charge associated with the nodal d form-factorf(k)modulatetheresultsofthe(s+p)- rings of the negative-helicity gap. Like for the (100) face, x2−y2 wave case. Note that these extra nodes remove the condi- the projections of these topologically charged nodal rings tion for the topological protection of the line of zero-energy are connected by arc surface states. The presence of higher surface states at k = 0; the zero energy state at the zone angular-momentum harmonics [Figs. 3(c)–(f)] results in the y center nevertheless remains a Kramers-degenerate Majorana appearanceofadditionalregionsofzero-energystatesdueto mode. In contrast, Fig. 2(c) shows that we do not find any the nodes of both the positive-helicity and negative-helicity dispersingzero-energystatesforthe(d +p)-wavepairing, gaps. All of these states correspond to a winding number of xy butinsteadtherearezero-energyflatbandsinseveralregions W = 1, as can be seen by comparing the bound state (101) ± bounded by the projected line nodes of the positive-helicity spectra, Fig. 3(c) and (e), with the winding number calcula- andnegative-helicitygaps. Thezero-energystateslyingout- tions,Fig.3(d)and(f),respectively. 10 FIG.5. (Coloronline)(a)–(e)Surfacebound-statespectraforthe(100)faceofaNCSwithpointgroupO,g = −1.5,andλ = 0,asa 2 functionofsurfacemomentumk for(a)r=0,(b)r=0.15,(c)r=r =0.25,(d)r=0.6,and(e)r=0.9.Thecolorscaleisthesameas (cid:107) c inFigs.2(a)–(c). (f)–(j)Sameaspanels(a)–(e)butforthe(110)face. (k)–(o)Sameaspanels(a)–(e)butforthe(111)face. (p)–(t)Winding numberW forthe(111)facecorrespondingtothesameparametersasinpanels(k)–(o). Darkblue(gray)indicatesW = +1(−1), (111) (111) whilelightblueisW =0.Thereddashedlinesrepresenttheprojectionsofnodallines. (111) C. SurfacestatesforthecubicpointgroupO non-trivial topological charge. A critical value is reached at r = r = 1+g /2, where the nodal rings touch each other c 2 andreconnectinadifferentmanner, i.e., thereisachangein InthecubicpointgroupOtherearepronouncedchangesin the topology of the nodal structure itself, with the rings now thenodalstructureofthenegative-helicitygapasthesinglet- centered about k = (kF/√3)(1,1,1) and equivalent points. to-tripletratior =∆s/∆tisvaried,whicharereflectedinthe Finally,atr =1+2g2/3thereisanotherLifshitzphasetran- surfacebound-statespectrum. Tosimplifythediscussion,we sition to a fully gapped phase with topologically non-trivial assume a spherical Fermi surface, negligible spin-orbit split- order characterized by the three-dimensional winding num- ting,andfiniteg < 0.59 Aschematictopologicalphasedia- ber ν = 1.9 The nodal structure at this transition point is 2 ± gram of this NCS is presented in Fig. 4. For r > 1 the sys- marginalinthesensethatitistopologicallytrivialandnotpro- temisfullygappedandtopologicallytrivial. Reducingr,we tectedagainstdecayeitherintothefullygappedtopologically findthatatr = 1pointnodesappearinthenegative-helicity non-trivialstateorintothetopologicallystablegaplessphase, gap at k = k (1,0,0) and equivalent points. This is a Lif- i.e. pointnodesdonotpossesanytopologicalprotectionina F shitz transition60 at which the topology of the Bogoliubov- three-dimensionalNCS.Experimentalsignaturesofthetopo- de Gennes quasiparticle spectrum changes, but the symme- logical phase transition will be discussed in Sec. VB. In the try of the ground state remains unaltered.61,62 Upon further followingdiscussionoftheboundstateswetakeg2 = 1.5, − lowering r, these point nodes develop into nodal rings with which implies line nodes for 0 < r < 1, point nodes for

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.