Studies in Computational Intelligence 666 Jia Zeng Zhi-Qiang Liu Type-2 Fuzzy Graphical Models for Pattern Recognition Studies in Computational Intelligence Volume 666 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in com- putational intelligence spanning the areas of neural networks, connectionist sys- tems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/7092 Jia Zeng Zhi-Qiang Liu (cid:129) Type-2 Fuzzy Graphical Models for Pattern Recognition 123 Jia Zeng Zhi-QiangLiu School ofComputer Science School ofCreative Media andTechnology CityUniversity ofHong Kong Soochow University Hong Kong Suzhou China China ISSN 1860-949X ISSN 1860-9503 (electronic) ISBN 978-3-662-44689-8 ISBN 978-3-662-44690-4 (eBook) DOI 10.1007/978-3-662-44690-4 LibraryofCongressControlNumber:2014948756 SpringerHeidelbergNewYorkDordrechtLondon JointlypublishedwithTsinghuaUniversityPress,Beijing ISBN:978-7-302-36890-8,TsinghuaUniversityPress,Beijing ©TsinghuaUniversityPress,BeijingandSpringer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publishers’ locations, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublisherscanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishersmakenowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) This book is dedicated to my family: Tian-Yi Zeng and Xiao-Qin Cao Preface Thisstate-of-the-artbookdescribesimportantadvancesintype-2fuzzysystemsthat have been made in the past decade for real-world pattern recognition problems, such as speech recognition, handwriting recognition, and topic modeling. The success of type-2 fuzzy sets has been largely attributed to their three-dimensional membership functions to handle both randomness and fuzziness uncertainties in real-world problems. In pattern recognition, both features and models have uncertainties,suchasnonstationarybabblenoiseinspeechsignals,largevariations of handwritten Chinese character shapes, uncertain meaning of words in topic modeling, and uncertain parameters of models because of insufficient and noisy trainingdata.Alltheseuncertaintiesmotivateustointegratetype-2fuzzysetswith probabilistic graphical models to achieve better overall performance in terms of robustness, generalization ability, or recognition accuracy. For example, we inte- grate type-2 fuzzy sets with graphical models such as Gaussian mixture models, hidden Markov models, Markov random fields, and latent Dirichlet allocation- based topic models for pattern recognition. The type-2 fuzzy Gaussian mixture models can describe uncertain densities of observations. The type-2 fuzzy hidden Markov models incorporate the first-order Markov chain into the type-2 fuzzy Gaussian mixture models, which is suitable for modeling uncertain speech signals under babblenoise.Thetype-2fuzzyMarkovrandom fieldscombinetype-2fuzzy sets with Markov random fields, which is able to handle large variations in struc- tural patterns such as handwritten Chinese characters. The type-2 fuzzy topic modelsfocusonuncertainmixedmembershipofwordstodifferenttopicalclusters, which is effective to partition the observed (visual) words into semantically meaningful topical themes. In conclusion, these real-world pattern recognition applications demonstrate the effectiveness of type-2 fuzzy graphical models for handling uncertainties. Suzhou, May 2013 Jia Zeng Hong Kong Zhi-Qiang Liu vii Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Book Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Probabilistic Graphical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 The Labeling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Markov Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Bayesian Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Descriptive and Generative Models . . . . . . . . . . . . . . . . 14 2.3.2 Statistical–Structural Pattern Recognition . . . . . . . . . . . . 15 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Type-2 Fuzzy Sets for Pattern Recognition . . . . . . . . . . . . . . . . . . 17 3.1 Type-2 Fuzzy Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Operations on Type-2 Fuzzy Sets. . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Type-2 Fuzzy Logic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Fuzzifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Rule Base and Inference. . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3 Type Reducer and Defuzzifier. . . . . . . . . . . . . . . . . . . . 28 3.4 Pattern Recognition Using Type-2 Fuzzy Sets. . . . . . . . . . . . . . 32 3.5 The Type-2 Fuzzy Bayesian Decision Theory . . . . . . . . . . . . . . 35 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ix x Contents 4 Type-2 Fuzzy Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . 45 4.1 Gaussian Mixture Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Type-2 Fuzzy Gaussian Mixture Models. . . . . . . . . . . . . . . . . . 48 4.3 Multi-category Pattern Classification . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Type-2 Fuzzy Hidden Moarkov Models. . . . . . . . . . . . . . . . . . . . . 57 5.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 The Forward-Backward Algorithm. . . . . . . . . . . . . . . . . 59 5.1.2 The Viterbi Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.3 The Baum–Welch Algorithm . . . . . . . . . . . . . . . . . . . . 61 5.2 Type-2 Fuzzy Hidden Markov Models. . . . . . . . . . . . . . . . . . . 62 5.2.1 Elements of a Type-2 FHMM. . . . . . . . . . . . . . . . . . . . 64 5.2.2 The Type-2 Fuzzy Forward-Backward Algorithm . . . . . . 64 5.2.3 The Type-2 Fuzzy Viterbi Algorithm. . . . . . . . . . . . . . . 66 5.2.4 The Learning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.5 Type-Reduction and Defuzzification . . . . . . . . . . . . . . . 71 5.2.6 Computational Complexity. . . . . . . . . . . . . . . . . . . . . . 71 5.3 Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.1 Automatic Speech Recognition System . . . . . . . . . . . . . 72 5.3.2 Phoneme Classification . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.3 Phoneme Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Type-2 Fuzzy Markov Random Fields. . . . . . . . . . . . . . . . . . . . . . 85 6.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.1 The Neighborhood System. . . . . . . . . . . . . . . . . . . . . . 87 6.1.2 Clique Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.3 Relaxation Labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Type-2 Fuzzy Markov Random Fields . . . . . . . . . . . . . . . . . . . 91 6.2.1 The Type-2 Fuzzy Relaxation Labeling . . . . . . . . . . . . . 94 6.2.2 Computational Complexity. . . . . . . . . . . . . . . . . . . . . . 96 6.3 Stroke Segmentation of Chinese Character . . . . . . . . . . . . . . . . 96 6.3.1 Gabor Filters-Based Cyclic Observations . . . . . . . . . . . . 97 6.3.2 Stroke Segmentation Using MRFs. . . . . . . . . . . . . . . . . 100 6.3.3 Stroke Extraction of Handprinted Chinese Characters. . . . 102 6.3.4 Stroke Extraction of Cursive Chinese Characters. . . . . . . 102 6.4 Handwritten Chinese Character Recognition . . . . . . . . . . . . . . . 105 6.4.1 MRFs for Character Structure Modeling. . . . . . . . . . . . . 109 6.4.2 Handwritten Chinese Character Recognition (HCCR). . . . 115 6.4.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Contents xi 7 Type-2 Fuzzy Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.1 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.1.1 Factor Graph for the Collapsed LDA. . . . . . . . . . . . . . . 132 7.1.2 Loopy Belief Propagation (BP). . . . . . . . . . . . . . . . . . . 134 7.1.3 An Alternative View of BP . . . . . . . . . . . . . . . . . . . . . 137 7.1.4 Simplified BP (siBP). . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.5 Relationship to Previous Algorithms . . . . . . . . . . . . . . . 139 7.1.6 Belief Propagation for ATM. . . . . . . . . . . . . . . . . . . . . 141 7.1.7 Belief Propagation for RTM. . . . . . . . . . . . . . . . . . . . . 143 7.2 Speedup Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.1 Fast Topic Modeling Techniques. . . . . . . . . . . . . . . . . . 147 7.2.2 Residual Belief Propagation . . . . . . . . . . . . . . . . . . . . . 148 7.2.3 Active Belief Propagation. . . . . . . . . . . . . . . . . . . . . . . 149 7.3 Type-2 Fuzzy Latent Dirichlet Allocation. . . . . . . . . . . . . . . . . 155 7.3.1 Topic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3.2 Type-2 Fuzzy Topic Models (T2 FTMs) . . . . . . . . . . . . 161 7.4 Topic Modeling Performance . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.4.1 Belief Propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.4.2 Residual Belief Propagation . . . . . . . . . . . . . . . . . . . . . 175 7.4.3 Active Belief Propagation. . . . . . . . . . . . . . . . . . . . . . . 179 7.5 Human Action Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.5.1 Feature Extraction and Vocabulary Formation. . . . . . . . . 190 7.5.2 Results on KTH Data Set. . . . . . . . . . . . . . . . . . . . . . . 191 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201