ebook img

Two transformation formulas for $_7ψ_7$-series PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Two transformation formulas for $_7ψ_7$-series

TWO TRANSFORMATION FORMULAS FOR ψ -SERIES 7 7 3 1CHUANAN WEI, 2QINGLUN YAN, 3DIANXUAN GONG∗ 1 0 1Department of Information Technology 2 Hainan Medical College, Haikou 571199, China n 2College of Mathematics and Physics a Nanjing University of Posts and Telecommunications, Nanjing 210046, China J 3College of Sciences 7 Hebei United University, Tangshan 063009, China 1 ] A Abstract. Interms ofCauchy’smethod, we establishtwo trans- C formation formulas for ψ -series. Surprisingly, they include the 7 7 . h direct nonterminating generalizations of four summation formulas t for bilateral q-series as special cases. a m [ 1 v 1. Introduction 6 7 4 For two complex numbers q and x, define the q-shifted factorial by 4 . n−1(1 xqi), when n>0; 1 i=0 − 0 (x;q) = 1, when n=0; n Q 13 Q−j=1n(11−xqj), when n<0. : v When q <1, the q-shifted factorial of infinite order reads as i | | X ∞ r (x;q)∞ = (1 xqk). a − k=0 Y For simplifying the expressions, we shall use the following compact notations: a,b, ,c (a;q)n(b;q)n (c;q)n ··· q = ··· , α,β, ,γ (α;q) (β;q) (γ;q) (cid:20) ··· (cid:12) (cid:21)n n n··· n a,b, ,c (cid:12) (a;q)∞(b;q)∞ (c;q)∞ ··· (cid:12)q = ··· . (cid:20)α,β,··· ,γ (cid:12) (cid:21)∞ (α;q)∞(β;q)∞···(γ;q)∞ Following Gasper and Rahman [8(cid:12)(cid:12)], define the unilateral q-series by ∞ 1+rφs(cid:20)a0, ab11,, ······,,absr (cid:12)q;z(cid:21)=kX=0(cid:20)aq0,,ba11,,······,,absr (cid:12)q(cid:21)kn(−1)kq(k2)os−rzk. (cid:12) (cid:12) Then Bailey’s four-term tra(cid:12)nsformation formula (cf. [8,(cid:12)p. 57]) can be written as 2010 Mathematics Subject Classification: Primary05A19andSecondary33D15. Key words and phrases. Cauchy’smethod; Unilateralq-series;Bilateralq-series. ∗Corresponding author. Email addresses: [email protected] (C. Wei), [email protected](Q. Yan), [email protected](D. Gong). 2 Chuanan Wei, Qinglun Yan,Dianxuan Gong a,q√a, q√a,b,c,d,e,f,g,h 10φ9 √a, √a,aq/b,aq−/c,aq/d,aq/e,aq/f,aq/g,aq/h q;q (cid:20) − (cid:12) (cid:21) aq,b/a,c,d,e,f,g,h,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h(cid:12) + (cid:12) q (cid:20)b2q/a,a/b,aq/c,aq/d,aq/e,aq/f,aq/g,aq/h,bc/a,bd/a,be/a,bf/a,bg/a,bh/a (cid:12) (cid:21)∞ b2/a,qb/√a, qb/√a,b,bc/a,bd/a,be/a,bf/a,bg/a,bh/a(cid:12) ×10φ9 b/√a, b/√−a,bq/a,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h (cid:12) q;q (cid:20) − (cid:12) (cid:21) aq,b/a,λq/f,λq/g,λq/h,bf/λ,bg/λ,bh/λ (cid:12) = q (cid:12) λq,b/λ,aq/f,aq/g,aq/h,bf/a,bg/a,bh/a (cid:20) (cid:12) (cid:21)∞ λ,q√λ, q√λ,b,λc/a,λd/a,λe/a,(cid:12)f,g,h ×10φ9 √λ, √λ,λq−/b,aq/c,aq/d,aq/e,λq/f,λ(cid:12)q/g,λq/h q;q (cid:20) − (cid:12) (cid:21) (cid:12) + aq,b/a,f,g,h,bq/f,bq/g,bq/h,λc/a,λd/a,λe/a,abq/λc,abq/λd,abq(cid:12)/λe q (cid:20)b2q/λ,λ/b,aq/c,aq/d,aq/e,aq/f,aq/g,aq/h,bc/a,bd/a,be/a,bf/a,bg/a,bh/a (cid:12) (cid:21)∞ b2/λ,qb/√λ, qb/√λ,b,bc/a,bd/a,be/a,bf/λ,bg/λ,bh/(cid:12)λ ×10φ9 b/√λ, b/√λ,−bq/λ,abq/λc,abq/λd,abq/λe,bq/f,bq/g,bq(cid:12)/h q;q (1) (cid:20) − (cid:12) (cid:21) (cid:12) where λ=qa2/cde and q2a3 =bcdefgh. (cid:12) Following the same book, define the bilateral q-series by ∞ rψs(cid:20)ab11,, ······,,absr (cid:12)q;z(cid:21)=k=X−∞(cid:20)ab11,,······ ,,absr (cid:12)q(cid:21)kn(−1)kq(k2)os−rzk. (cid:12) (cid:12) (cid:12) (cid:12) Then two nice ψ -series identities due to Bailey [1, Equations (2.2) and (2.3)] can 3 3 be stated as follows: b,c,d q q,q/bc,q/bd,q/cd ψ q; = q , (2) 3 3 q/b,q/c,q/d bcd q/b,q/c,q/d,q/bcd (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ b,c,d (cid:12) q2 q,q2/bc,q2/bd,q(cid:12)2/cd ψ (cid:12) q; = (cid:12) q , (3) 3 3 q2/b,q2/c,q2/d bcd q2/b,q2/c,q2/d,q2/bcd (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ (cid:12) (cid:12) where the convergent conditions(cid:12)for (2) and (3) are q/bcd < 1 and(cid:12) q2/bcd < 1 | | | | respectively. The finite forms of them read as b,c,d,qn+1/bcd,q−n ψ q;q 5 5 q/b,q/c,q/d,bcd/qn,qn+1 (cid:20) (cid:12) (cid:21) q,q/bc,q/bd,q/cd (cid:12) = q , (cid:12) (4) q/b,q/c,q/d,q/bcd (cid:20) (cid:12) (cid:21)n b,c,d,qn+3/bc(cid:12)d,q−n ψ (cid:12) q;q 5 5 q2/b,q2/c,q2/d,bcd/qn+1,qn+2 (cid:20) (cid:12) (cid:21) q2,q2/bc,q2/bd,q2/cd (cid:12) = q (1 (cid:12) q), (5) q2/b,q2/c,q2/d,q2/bcd − (cid:20) (cid:12) (cid:21)n (cid:12) where (4) and (5) are due to Jackson [4, Equatio(cid:12)n (1)] and Bailey [1, Equation (3.2)] respectively. Recently, Cauchy’s method has been utilized to study the bilateral q-series in [2], [5],[6],[7],[10]and[11]. Inspiredbythesework,weshallderivetwotransformation formulas for ψ -series, which include the direct nonterminating generalizations of 7 7 (2), (3), (4) and (5) as special cases, from (1) in the same way. Two transformation formulas for 7ψ7-series 3 2. Two transformation formulas for ψ -series 7 7 Theorem 1. For u = q/cde and q2 = bcdefgh, there holds the transformation formula for ψ -series: 7 7 b,c,d,e,f,g,h ψ q;q 7 7 q/b,q/c,q/d,q/e,q/f,q/g,q/h (cid:20) (cid:12) (cid:21) q,b,c,d,e,f,g,h,bq/c,bq/d,b(cid:12)q/e,bq/f,bq/g,bq/h + (cid:12) q b2q,1/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2, qb,bc,bd,be,bf,bg,bh (cid:12) ×8φ7 b,bq/c−,bq/d,bq/e,bq/f,bq/g,bq/h q;q (cid:12) (cid:20)− (cid:12) (cid:21) q,b,uq/f,uq/g,uq/h,bf/u,bg/u,bh/u (cid:12) = (cid:12)q uq,b/u,q/f,q/g,q/h,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ u,q√u, q√u,b,uc,ud,ue,f(cid:12),g,h ×10φ9 √u, √u,uq/b−,q/c,q/d,q/e,uq/f,(cid:12)uq/g,uq/h q;q (cid:20) − (cid:12) (cid:21) q,b,f,g,h,bq/f,bq/g,bq/h,uc,ud,ue,bq/uc,bq/ud(cid:12),bq/ue + (cid:12) q b2q/u,u/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2/u,qb/√u, qb/√u,b,bc,bd,be,bf/u,bg/u,bh/u (cid:12) ×10φ9 b/√u, b/√u,bq−/u,bq/uc,bq/ud,bq/ue,bq/f,bq/g,bq/(cid:12)h q;q . (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Proof. The limiting case a 1 of (1) leads to the following equation: → ∞ b,c,d,e,f,g,h 1+ 1+qk q qk ( Xk=1{ }(cid:20)q/b,q/c,q/d,q/e,q/f,q/g,q/h(cid:12) (cid:21)k ) (cid:12) q,b,c,d,e,f,g,h,bq/c,bq/d,bq/e,bq/f,bq/g,(cid:12)bq/h + q b2q,1/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2, qb,bc,bd,be,bf,bg,bh (cid:12) ×8φ7 b,bq/c−,bq/d,bq/e,bq/f,bq/g,bq/h q;q (cid:12) (cid:20)− (cid:12) (cid:21) q,b,uq/f,uq/g,uq/h,bf/u,bg/u,bh/u (cid:12) = (cid:12)q uq,b/u,q/f,q/g,q/h,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ u,q√u, q√u,b,uc,ud,ue,f(cid:12),g,h ×10φ9 √u, √u,uq/b−,q/c,q/d,q/e,uq/f,(cid:12)uq/g,uq/h q;q (cid:20) − (cid:12) (cid:21) q,b,f,g,h,bq/f,bq/g,bq/h,uc,ud,ue,bq/uc,bq/ud(cid:12),bq/ue + (cid:12) q b2q/u,u/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2/u,qb/√u, qb/√u,b,bc,bd,be,bf/u,bg/u,bh/u (cid:12) ×10φ9 b/√u, b/√u,bq−/u,bq/uc,bq/ud,bq/ue,bq/f,bq/g,bq/(cid:12)h q;q , (cid:20) − (cid:12) (cid:21) (cid:12) where u = q/cde and q2 = bcdefgh. The first term on the left hand(cid:12)side can be reformulated as ∞ b,c,d,e,f,g,h 1+ 1+qk q qk { } q/b,q/c,q/d,q/e,q/f,q/g,q/h Xk=1 (cid:20) (cid:12) (cid:21)k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) = 1+ q qk q/b,q/c,q/d,q/e,q/f,q/g,q/h kX=1(cid:20) (cid:12) (cid:21)k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) + q q2k q/b,q/c,q/d,q/e,q/f,q/g,q/h kX=1(cid:20) (cid:12) (cid:21)k (cid:12) (cid:12) 4 Chuanan Wei, Qinglun Yan,Dianxuan Gong ∞ b,c,d,e,f,g,h = 1+ q qk q/b,q/c,q/d,q/e,q/f,q/g,q/h Xk=1(cid:20) (cid:12) (cid:21)k + −1 b,c,d,e,f,g,h (cid:12)(cid:12) q q−2k q/b,q/c,q/d,q/e,q/f,q/g,q/h k=X−∞(cid:20) (cid:12) (cid:21)−k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) = 1+ q qk q/b,q/c,q/d,q/e,q/f,q/g,q/h Xk=1(cid:20) (cid:12) (cid:21)k −1 b,c,d,e,f,g,h (cid:12)(cid:12) + q qk q/b,q/c,q/d,q/e,q/f,q/g,q/h k=X−∞(cid:20) (cid:12) (cid:21)k (cid:12) b,c,d,e,f,g,h (cid:12) = ψ q;q . 7 7 q/b,q/c,q/d,q/e,q/f,q/g,q/h (cid:20) (cid:12) (cid:21) (cid:12) Therefore, we obtain Theorem 1 to complete the proof(cid:12). (cid:3) Takingb=qn+2/cdefg,h=q−n inTheorem1andthenletting n ,wegetthe →∞ following result under the replacements e b and g e. → → Corollary 2. For µ = q/bcd and max q2/bcdef , q/ef < 1, there holds the {| | | |} transformation formula between a ψ -series and a φ -series: 5 5 8 7 b,c,d,e,f q2 q,q/ef,µq/e,µq/f ψ q; = q 5 5 q/b,q/c,q/d,q/e,q/f bcdef q/e,q/f,µq/ef,µq (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ µ,q√µ, q√µ,µ(cid:12)b,µc,µd,e,f q (cid:12) × 8φ7 √µ, √µ,q−/b,q/c,(cid:12)q/d,µq/e,µq/f q;ef . (cid:12) (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Whenc=q/d,Corollary2reducesto(2)underthesubstitutionse candf d. → → Settingc=q/dinTheorem1,weattainthefollowingresultunderthereplacements g c and h d. → → Corollary 3. For q = bcdef, there holds the transformation formula between a ψ -series and a φ -series: 5 5 6 5 b,c,d,e,f b2, qb,bc,bd,be,bf 5ψ5 q/b,q/c,q/d,q/e,q/f q;q =6φ5 b,bq−/c,bq/d,bq/e,bq/f q;q (cid:20) (cid:12) (cid:21) (cid:20)− (cid:12) (cid:21) q,bq,c,d,e,f,bq/c,(cid:12)bq/d,bq/e,bq/f (cid:12) b (cid:12) q (cid:12) × b2q,q/b,q/c,q/d,q/e,q/f,bc,bd,be,bf (cid:20) (cid:12) (cid:21)∞ q,b,q/cd,q/ce,q/cf,q/de,q/df,q/ef (cid:12) + q (cid:12) . q/c,q/d,q/e,q/f,bc,bd,be,bf (cid:20) (cid:12) (cid:21)∞ (cid:12) (cid:12) When e=qn+1/bcd and f =q−n, Corollary 3 reduces to (4) exactly. Theorem 4. For v = q3/cde and q5 = bcdefgh, there holds the transformation formula for ψ -series: 7 7 b,c,d,e,f,g,h ψ q;q 7 7 q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h (cid:20) (cid:12) (cid:21) q,b/q,c,d,e,f,g,h,bq/c,bq/d,bq/e,bq/f(cid:12),bq/g,bq/h + (cid:12) q (cid:20)b2,q/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ (cid:12) (cid:12) Two transformation formulas for 7ψ7-series 5 b2/q,b√q, b√q,bc/q,bd/q,be/q,bf/q,bg/q,bh/q ×9φ8 b/√q, b−/√q,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h q;q (cid:20) − (cid:12) (cid:21) q,b/q,vq/f,vq/g,vq/h,bf/v,bg/v,bh/v (cid:12) = q (cid:12) vq,b/v,q2/f,q2/g,q2/h,bf/q,bg/q,bh/q (cid:20) (cid:12) (cid:21)∞ v,q√v, q√v,b,vc/q,vd/q,ve/q,(cid:12)f,g,h ×10φ9 √v, √v,vq−/b,q2/c,q2/d,q2/e,vq/f,(cid:12)vq/g,vq/h q;q (cid:20) − (cid:12) (cid:21) q,b/q,f,g,h,bq/f,bq/g,bq/h,vc/q,vd/q,ve/q,bq2/vc,bq2/vd,bq2/(cid:12)ve + (cid:12) q (cid:20)b2q/v,v/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ b2/v,qb/√v, qb/√v,b,bc/q,bd/q,be/q,bf/v,bg/v,bh/(cid:12)v ×10φ9 b/√v, b/√v,−bq/v,bq2/vc,bq2/vd,bq2/ve,bq/f,bq/g,bq(cid:12)/h q;q . (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Proof. The limiting case a q of (1) leads to the following equation: → ∞ b,c,d,e,f,g,h 1 q1+2k q qk { − } q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h kX=0 (cid:20) (cid:12) (cid:21)k (cid:12) q,b/q,c,d,e,f,g,h,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h (cid:12) + q (cid:20)b2,q/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ b2/q,b√q, b√q,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) ×9φ8 b/√q, b−/√q,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h q;q(cid:12) (cid:20) − (cid:12) (cid:21) q,b/q,vq/f,vq/g,vq/h,bf/v,bg/v,bh/v (cid:12) = q (cid:12) vq,b/v,q2/f,q2/g,q2/h,bf/q,bg/q,bh/q (cid:20) (cid:12) (cid:21)∞ v,q√v, q√v,b,vc/q,vd/q,ve/q,(cid:12)f,g,h ×10φ9 √v, √v,vq−/b,q2/c,q2/d,q2/e,vq/f,(cid:12)vq/g,vq/h q;q (cid:20) − (cid:12) (cid:21) q,b/q,f,g,h,bq/f,bq/g,bq/h,vc/q,vd/q,ve/q,bq2/vc,bq2/vd,bq2/(cid:12)ve + (cid:12) q (cid:20)b2q/v,v/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ b2/v,qb/√v, qb/√v,b,bc/q,bd/q,be/q,bf/v,bg/v,bh/(cid:12)v ×10φ9 b/√v, b/√v,−bq/v,bq2/vc,bq2/vd,bq2/ve,bq/f,bq/g,bq(cid:12)/h q;q , (cid:20) − (cid:12) (cid:21) where v = q3/cde and q5 = bcdefgh. The first term on the left hand (cid:12)side can be (cid:12) manipulated as ∞ b,c,d,e,f,g,h 1 q1+2k q qk { − } q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h kX=0 (cid:20) (cid:12) (cid:21)k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) = q qk q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h Xk=0(cid:20) (cid:12) (cid:21)k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) q q3k+1 − q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h Xk=0(cid:20) (cid:12) (cid:21)k ∞ (cid:12) b,c,d,e,f,g,h (cid:12) = q qk q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h Xk=0(cid:20) (cid:12) (cid:21)k −1 b,c,d,e,f,g,h (cid:12)(cid:12) q q−3k−2 − q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h k=X−∞(cid:20) (cid:12) (cid:21)−k−1 ∞ (cid:12) b,c,d,e,f,g,h (cid:12) = q qk q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h Xk=0(cid:20) (cid:12) (cid:21)k −1 b,c,d,e,f,g,h (cid:12)(cid:12) + q qk q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h k=X−∞(cid:20) (cid:12) (cid:21)k (cid:12) (cid:12) 6 Chuanan Wei, Qinglun Yan,Dianxuan Gong b,c,d,e,f,g,h = ψ q;q . 7 7 q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h (cid:20) (cid:12) (cid:21) Hence, we achieve Theorem 4 to finish the proof. (cid:12) (cid:3) (cid:12) Taking b=qn+5/cdefg,h=q−n in Theorem 4 and then letting n , we obtain →∞ the following result under the substitutions e b and g e. → → Corollary 5. For ϑ = q3/bcd and max q4/bcdef , q2/ef < 1, there holds the {| | | |} transformation formula between a ψ -series and a φ -series: 5 5 8 7 b,c,d,e,f q4 q,q2/ef,ϑq/e,ϑq/f ψ q; = q 5 5 q2/b,q2/c,q2/d,q2/e,q2/f bcdef q2/e,q2/f,ϑq/ef,ϑq (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ ϑ,q√ϑ, q√ϑ,ϑb/q,ϑc(cid:12)/q,ϑd/q,e,f q2 (cid:12) × 8φ7 √ϑ, √ϑ−,q2/b,q2/c,q2/(cid:12)d,ϑq/e,ϑq/f q;ef . (cid:12) (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) When c = q2/d, Corollary 5 reduces to (3) under the replacements e c and → f d. → Setting c=q2/d in Theorem 4, we get the following result under the substitutions g c and h d. → → Corollary 6. For q3 = bcdef, there holds the transformation formula between a ψ -series and a φ -series: 5 5 7 6 b,c,d,e,f ψ q;q 5 5 q2/b,q2/c,q2/d,q2/e,q2/f (cid:20) (cid:12) (cid:21) b q,b,c,d,e,f,bq/c(cid:12),bq/d,bq/e,bq/f = (cid:12) q q b2,q2/b,q2/c,q2/d,q2/e,q2/f,bc/q,bd/q,be/q,bf/q (cid:20) (cid:12) (cid:21)∞ b2/q,b√q, b√q,bc/q,bd/q,be/q,bf/q (cid:12) × 7φ6 b/√q, b−/√q,bq/c,bq/d,bq/e,bq/f q;q (cid:12) (cid:20) − (cid:12) (cid:21) q,b/q,q2/cd,q2/ce,q2/cf,q2/de,q2/df,q2/e(cid:12)f + (cid:12) q . q2/c,q2/d,q2/e,q2/f,bc/q,bd/q,be/q,bf/q (cid:20) (cid:12) (cid:21)∞ (cid:12) (cid:12) When e=qn+3/bcd and f =q−n, Corollary 6 reduces to (5) exactly. 3. Equivalent forms of Theorems 1 and 2 Two ψ -seriesidentities,whicharerespectivelyduetoBailey[1,Equation1.2]and 3 3 Chu and Wang [3, p. 3891], can be expressed as follows: b,c,d q2 q,q/bc,q/bd,q/cd ψ q; = q , (6) 3 3 q/b,q/c,q/d bcd q/b,q/c,q/d,q/bcd (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ b,c,d (cid:12) q4 1 q,q2/bc,q2/(cid:12)bd,q2/cd ψ (cid:12) q; = − (cid:12) q , (7) 3 3 q2/b,q2/c,q2/d bcd q q2/b,q2/c,q2/d,q2/bcd (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ where the convergent condi(cid:12)(cid:12)tions for (6) and (7) are q/bcd < 1 an(cid:12)(cid:12)d q2/bcd < 1 | | | | respectively. The finite forms of them read as b,c,d,qn+1/bcd,q−n ψ q;q2 5 5 q/b,q/c,q/d,bcd/qn,qn+1 (cid:20) (cid:12) (cid:21) q,q/bc,q/bd,q/cd (cid:12) = q , (cid:12) (8) q/b,q/c,q/d,q/bcd (cid:20) (cid:12) (cid:21)n (cid:12) (cid:12) Two transformation formulas for 7ψ7-series 7 b,c,d,qn+3/bcd,q−n ψ q;q3 5 5 q2/b,q2/c,q2/d,bcd/qn+1,qn+2 (cid:20) (cid:12) (cid:21) q2,q2/bc,q2/bd,q2/cd q (cid:12)1 = q −(cid:12) , (9) q2/b,q2/c,q2/d,q2/bcd q (cid:20) (cid:12) (cid:21)n (cid:12) where(8)and(9)aredueto VermaandJoshi[9,(cid:12)Equation3.8]andChuandWang [3, Equation 2.8] respectively. Let k stand for the summation index of the bilateral q-series in (2), (3), (4) and (5). Then there hold the following equivalent relations: k k, (2) (6); →− ⇒ k k 1, (3) (7); →− − ⇒ k k, (4) (8); →− ⇒ k k 1, (5) (9). →− − ⇒ Performingthereplacementk kinTheorem1,wherekisthesummationindex →− of the ψ -series, we attain the equivalent form of Theorem 1. 7 7 Proposition 7. For u = q/cde and q2 = bcdefgh, there holds the transformation formula for ψ -series: 7 7 b,c,d,e,f,g,h ψ q;q2 7 7 q/b,q/c,q/d,q/e,q/f,q/g,q/h (cid:20) (cid:12) (cid:21) q,b,c,d,e,f,g,h,bq/c,bq/d,b(cid:12)q/e,bq/f,bq/g,bq/h + (cid:12) q b2q,1/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2, qb,bc,bd,be,bf,bg,bh (cid:12) ×8φ7 b,bq/c−,bq/d,bq/e,bq/f,bq/g,bq/h q;q (cid:12) (cid:20)− (cid:12) (cid:21) q,b,uq/f,uq/g,uq/h,bf/u,bg/u,bh/u (cid:12) = (cid:12)q uq,b/u,q/f,q/g,q/h,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ u,q√u, q√u,b,uc,ud,ue,f(cid:12),g,h ×10φ9 √u, √u,uq/b−,q/c,q/d,q/e,uq/f,(cid:12)uq/g,uq/h q;q (cid:20) − (cid:12) (cid:21) q,b,f,g,h,bq/f,bq/g,bq/h,uc,ud,ue,bq/uc,bq/ud(cid:12),bq/ue + (cid:12) q b2q/u,u/b,q/c,q/d,q/e,q/f,q/g,q/h,bc,bd,be,bf,bg,bh (cid:20) (cid:12) (cid:21)∞ b2/u,qb/√u, qb/√u,b,bc,bd,be,bf/u,bg/u,bh/u (cid:12) ×10φ9 b/√u, b/√u,bq−/u,bq/uc,bq/ud,bq/ue,bq/f,bq/g,bq/(cid:12)h q;q . (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Taking b = qn+2/cdefg,h = q−n in Proposition 7 and then letting n , we → ∞ achieve the following result under the substitutions e b and g e. → → Corollary 8. For µ = q/bcd and max q2/bcdef , q/ef < 1, there holds the {| | | |} transformation formula between a ψ -series and a φ -series: 5 5 8 7 b,c,d,e,f q3 q,q/ef,µq/e,µq/f ψ q; = q 5 5 q/b,q/c,q/d,q/e,q/f bcdef q/e,q/f,µq/ef,µq (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ µ,q√µ, q√µ,µ(cid:12)b,µc,µd,e,f q (cid:12) × 8φ7 √µ, √µ,q−/b,q/c,(cid:12)q/d,µq/e,µq/f q;ef . (cid:12) (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Whenc=q/d,Corollary8reducesto(6)underthereplacementse candf d. → → Setting c = q/d in Proposition 7, we obtain the following result under the substi- tutions g c and h d. → → 8 Chuanan Wei, Qinglun Yan,Dianxuan Gong Corollary 9. For q = bcdef, there holds the transformation formula between a ψ -series and a φ -series: 5 5 6 5 b,c,d,e,f b2, qb,bc,bd,be,bf 5ψ5 q/b,q/c,q/d,q/e,q/f q;q2 =6φ5 b,bq−/c,bq/d,bq/e,bq/f q;q (cid:20) (cid:12) (cid:21) (cid:20)− (cid:12) (cid:21) q,bq,c,d,e,f,bq/c,(cid:12)bq/d,bq/e,bq/f (cid:12) b (cid:12) q (cid:12) × b2q,q/b,q/c,q/d,q/e,q/f,bc,bd,be,bf (cid:20) (cid:12) (cid:21)∞ q,b,q/cd,q/ce,q/cf,q/de,q/df,q/ef (cid:12) + q (cid:12) . q/c,q/d,q/e,q/f,bc,bd,be,bf (cid:20) (cid:12) (cid:21)∞ (cid:12) (cid:12) When e=qn+1/bcd and f =q−n, Corollary 9 reduces to (8) exactly. Employing the replacement k k 1 in Theorem 4, where k is the summation → − − index of the ψ -series, we get the equivalent form of Theorem 4. 7 7 Proposition10. Forv =q3/cdeandq5 =bcdefgh,thereholds thetransformation formula for ψ -series: 7 7 b,c,d,e,f,g,h ψ q;q3 7 7 q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h (cid:20) (cid:12) (cid:21) b q,b,c,d,e,f,g,h,bq/c,bq/d,bq/e,bq(cid:12)/f,bq/g,bq/h + (cid:12) q q2 (cid:20)b2,q2/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ b2/q,b√q, b√q,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) ×9φ8 b/√q, b−/√q,bq/c,bq/d,bq/e,bq/f,bq/g,bq/h q;q (cid:12) (cid:20) − (cid:12) (cid:21) 1 q,b/q,vq/f,vq/g,vq/h,bf/v,bg/v,bh/v (cid:12) + q (cid:12) q vq,b/v,q2/f,q2/g,q2/h,bf/q,bg/q,bh/q (cid:20) (cid:12) (cid:21)∞ v,q√v, q√v,b,vc/q,vd/q,ve/q,f(cid:12),g,h ×10φ9 √v, √v,vq−/b,q2/c,q2/d,q2/e,vq/f,v(cid:12)q/g,vq/h q;q (cid:20) − (cid:12) (cid:21) 1 q,b/q,f,g,h,bq/f,bq/g,bq/h,vc/q,vd/q,ve/q,bq2/vc,bq2/vd,bq(cid:12)2/ve + (cid:12) q q (cid:20)b2q/v,v/b,q2/c,q2/d,q2/e,q2/f,q2/g,q2/h,bc/q,bd/q,be/q,bf/q,bg/q,bh/q (cid:12) (cid:21)∞ b2/v,qb/√v, qb/√v,b,bc/q,bd/q,be/q,bf/v,bg/v,bh/v(cid:12) ×10φ9 b/√v, b/√v,−bq/v,bq2/vc,bq2/vd,bq2/ve,bq/f,bq/g,bq/(cid:12)h q;q =0. (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) Taking b = qn+5/cdefg,h = q−n in Proposition 10 and then letting n , we → ∞ attain the following result under the substitutions e b and g e. → → Corollary 11. For ϑ= q3/bcd and max q4/bcdef , q2/ef <1, there holds the {| | | |} transformation formula between a ψ -series and a φ -series: 5 5 8 7 b,c,d,e,f q6 1 q,q2/ef,ϑq/e,ϑq/f ψ q; + q 5 5 q2/b,q2/c,q2/d,q2/e,q2/f bcdef q q2/e,q2/f,ϑq/ef,ϑq (cid:20) (cid:12) (cid:21) (cid:20) (cid:12) (cid:21)∞ ϑ,q√ϑ, q√ϑ,ϑb/q,ϑc(cid:12)/q,ϑd/q,e,f q2 (cid:12) × 8φ7 √ϑ, √ϑ−,q2/b,q2/c,q2/(cid:12)d,ϑq/e,ϑq/f q;ef =0. (cid:12) (cid:20) − (cid:12) (cid:21) (cid:12) (cid:12) When c = q2/d, Corollary 11 reduces to (7) under the replacements e c and → f d. → Setting c = q2/d in Proposition 10, we achieve the following result under the sub- stitutions g c and h d. → → Two transformation formulas for 7ψ7-series 9 Corollary 12. For q3 = bcdef, there holds the transformation formula between a ψ -series and a φ -series: 5 5 7 6 b,c,d,e,f ψ q;q3 5 5 q2/b,q2/c,q2/d,q2/e,q2/f (cid:20) (cid:12) (cid:21) b q,b,c,d,e,f,bq/c(cid:12),bq/d,bq/e,bq/f + (cid:12) q q2 b2,q2/b,q2/c,q2/d,q2/e,q2/f,bc/q,bd/q,be/q,bf/q (cid:20) (cid:12) (cid:21)∞ b2/q,b√q, b√q,bc/q,bd/q,be/q,bf/q (cid:12) × 7φ6 b/√q, b−/√q,bq/c,bq/d,bq/e,bq/f q;q (cid:12) (cid:20) − (cid:12) (cid:21) 1 q,b/q,q2/cd,q2/ce,q2/cf,q2/de,q2/df,q2(cid:12)/ef + (cid:12) q =0. q q2/c,q2/d,q2/e,q2/f,bc/q,bd/q,be/q,bf/q (cid:20) (cid:12) (cid:21)∞ (cid:12) When e=qn+3/bcd and f =q−n, Corollary 12 reduces to (9(cid:12)) exactly. References [1] W. N. Bailey,Onthe analogueofDixon’s theoremfor bilateralbasic hyper- geometric series, Quart. J. Math. 1 (1950) 318-320. [2] W.Y.C. Chen, A.M. Fu, Semi-finite forms of bilateral basic hypergeometric series, Prop. Amer. Math. Soc. 134 (2006) 1719-1725. [3] W.Chu,C.Wang,Bilateralinversonsandterminatingbasichypergeometric series identities, Discrete. Math. 309 (2009) 3888-3904. [4] F. H. Jackson, Certain q-identities, Quart. J. Math. 12 (1941) 167-172. [5] F. Jouhet, M. Schlosser, Another proof of Bailey’s ψ summation, Aequa- 6 6 tiones Mathematicae 70 (2005) 43-50. [6] F. Jouhet, Some more Semi-finite forms of bilateral basic hypergeometric series, Ann. Combin. 11 (2007) 47-57. [7] F. Jouhet, M. Schlosser, New curious bilateral q-series identities, Axioms 1 (2012) 365-371. [8] G. Gasper, M. Rahman, Basic Hypergeometric Series (2nd edition), Cam- bridge Univercity Press, Cambridge, 2004. [9] A.Verma,C.M.Joshi,Someremarksonsummationofbasichypergeometric series, Houston J. Math. 5 (1979) 277-294. [10] C. Zhang, Z. Zhang, Two new transformation formulas of basic hypertgeo- metric series, J. Math. Anal. Appl. 336 (2007) 777-787. [11] Z.Zhang,Onthebilateralseries ψ ,J.Math.Anal.Appl.337(2008)1002- 5 5 1009.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.