NonamemanuscriptNo. (willbeinsertedbytheeditor) Two-step pulse observation to improve resonance contrast for coherent population trapping atomic clock YuichiroYano · ShigeyoshiGoka · MasatoshiKajita 7 1 0 2 n a J Received:date/Accepted:date 0 2 Abstract We studyresonancecontrastbyatwo-steppulse ] h observationmethodtoenhancethefrequencystabilityofco- p herent population trapping (CPT) atomic clocks. The pro- - posed method is a two-step Raman–Ramsey scheme with m low intensity duringresonanceobservationand highinten- o sityaftertheobservation.Thismethodreducesthefrequency t a variationin the lightintensity and maintainsa high signal- . s to-noiseratio.Theresonancecharacteristicswerecalculated c i by density matrix analysis of a Λ-type three-level system s that was modeled on the 133Cs D1 line, and the character- y h istics were also measured using a vertical-cavity surface- p emittinglaserandaCsvaporcell. [ Fig.1 ProposedRamseypulsesequence. PACS PACScode1·PACScode2·more 1 v clocksisoftenlimitedbyacombinationoflightsourceAM 6 noise and FM-AM conversion noise in the atomic absorp- 9 1 Introduction 6 tion. Therefore, the contrast, which is given by the reso- 5 nance signal amplitude divided by the background signal Coherent population trapping (CPT) atomic clocks are in 0 level,isusedastheSNRoftheCPTresonance.TheQvalue great demand for many applications, such as telecommu- . 1 is given by clock transition frequencydivided by the reso- nications, navigation systems, and the synchronization of 0 nance linewidth. The Q value is degeneratedby the power networks[1],andsuchclocksarerequiredfortheirhighfre- 7 broadeningeffect.Therefore,itisnecessarytoimprovethe 1 quencystability. : The frequencystability in atomic clocks can be classi- resonancecontrastandreducepowerbroadeningtoenhance v theshort-termfrequencystability.Thelong-termfrequency i fiedintotwotypesbasedontheaveragingtimeoftheAllan X stabilityismainlylimitedbythelightshift(theacStarkshift deviation,whicharetheshort-termandlong-termfrequency r inducedbythelaserlight)becauseitchangeswiththelight stability. The short-term stability is determined as the in- a powerfluctuationortheagingofopticalelements. verse of the productof the signal-to-noiseratio (SNR) and theQvalue[2].TheSNRoflaser-pumpedvaporcellatomic TheRaman–Ramsey(RR)schemeforenhancingthefre- quencystabilityofCPTatomicclockshasbeeninvestigated YuichiroYano( )·ShigeyoshiGoka byanumberofresearchers[3,4,5,6,7].Thisschemesimul- (cid:0) DepartmentofElectrical&Engineering,TokyoMetropolitanUniver- taneouslyreduceslinebroadeningandthelightshift[6,7,8]. sity Recently,a short-termstability of 3.2×10−13τ−1/2 has been 1-1Minami-Osawa,Hachioji-shi,Tokyo,Japan192-0397 PresentE-mailaddress:[email protected] obtained,andstabilityaslowas3×10−14hasbeenachieved at an averaging time of 200 s using a Cs vapor cell with MasatoshiKajita National Institute of Information and Communications Technology theRRscheme[9].Also,whencoldRbatomswereused,a (NICT) short-termfrequencystabilityof4×10−11τ−1/2wasobtained, 2 YuichiroYanoetal. andalong-termfrequencystabilityof3×10−13wasachieved foranaveragingtimeof5h[10]. In ourpreviouspaper,we investigatedthe light shiftin the RR scheme both theoretically and experimentally with the aim of enhancing the long-term frequency stability of CPTatomicclocks[7].Theresultsshowedthatthelightshift intheRRschemeislowerthanthatundercwillumination. We also found that the fluctuation of the clock frequency duetothelightintensityfluctuationisreducedbyreducing Fig.2 Ramseypulsesequence:τistheexcitationtime,T isthefree evolutiontime,andτ istheresonancesignalobservationtime. the observation time, which is defined as the time interval m betweentheriseofthepulsedlaserandtheobservation. Themainreasonforthisisthattheatomsevolvetowards asteadystateduringobservation.Inaddition,wefoundthat the light shift in the RR scheme is a nonlinear function of thelightintensity,andreducedclockfrequencyvariationis obtainedunderahighlightintensitybeyondasetthreshold value. To reduce the light shift, it is preferable to perform measurementswiththeobservationtimeasshortaspossible andthelightintensityslightlyhigherthanthethreshold. Ahighersignalcanalsobeobtainedwhensettingbotha shortdetectiontime andhighlightintensity[11].Certainly, thesignalincreaseswithincreasinglightintensity;however thenoisealsoincreasesowingtotheshortdetectiontimeand the AM noise in the highintensity.Thus,the contrastdoes Fig.3 (a)Excitationschemewiththeσ+lightfieldontheD lineof 1 notincreasewithincreasinglightintensity.Whilealowlight Cs. (b) Closed Λ-type three-level model used tocalculate CPT phe- nomenon:δ andδ arethedetuningsoftheprobelaserandcoupling intensityleadsto a weaksignal,a detectedsignalwithlow p c laser,respectively.Ω andΩ areRabifrequencies.Γ andΓ arethe p c 31 32 laser intensity decreasesmore slower than one with a high relaxationtermsbetweenanexcitedstateandthetwogroundstates.γ f intensity.Consequently,the signalcan bestrongerata low isthedecoherenceratebetweentheexcitedstateandthegroundstates, intensityforlargedetectiontimes. andγsisthedecoherenceratebetweenthetwogroundstates. Weproposedatwo-steppulseobservationmethodtore- solvethisissue(Fig.1).ThismethodisanRRschemewith 2 Theory low lightintensity duringobservation[12]. We investigated the lightshiftbytwo-step pulseobservation.Asa result, it 2.1 Two-steppulseobservation was shown that the clock frequency variation in the light intensityusingthismethodislowerthanthatoftheconven- Theobservationscheme forthetwo-step pulseobservation tionalmethodowingto thereducedrepumpingratetoward methodis shown in Fig. 2. Ip is the total light intensity ir- thesteadystateduringtheobservationtime. radiatingtothegascell.TheRamsey–CPTresonanceisob- servedbymeasuringthetransmittedlightintensityatobser- In this work, we discuss the improvementof the reso- vationtimeτ afterthepulserise.Thetwo-steppulseobser- m nance contrast when using the two-step pulse observation vationmaintainsalowlightintensityofrI untiltheobser- p method via numericalcalculation and experiment. A com- vationpoint,whererisdefinedastheobservationintensity parisonwiththeRRschemeisperformedbycalculationus- ratio,andtakesavaluesfrom0to1.Whenr = 1isset,the ingthedensitymatrixanalysis.Thecharacteristicswerealso two-steppulseobservationmethodistreatedwiththesame measuredusingavertical-cavitysurface-emittinglaser(VC- scheme as that used for the conventional RR scheme. Af- SEL)andaCsvaporcell.WeinvestigatedthecontrastandQ terthemeasurementistaken,thelightintensityisconverted valueasfunctionsofthefreeevolutiontimeandobservation intoI andtheatomsarepreparedforthenextmeasurement. p time because they are importantparametersthat determine Alaserpulsewithadurationof(τ−τ )irradiatestheatoms m the contrastand Q value. Fromthe results, it is shownthat forpumpingofthesteadydarkstate.Afterthefreeevolution this method reduces the repumping to the steady state and timeT,alaserpulseirradiatestheatomsagainwithlightin- providesalargercontrastthantheconventionalmethod. tensityrI .ThelightintensityI(t)forthisschemeiswritten p Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 3 as usedtoobtaintheabsorptionindex,andtheresonancecon- trastcanbederivedas rI (0<t≤τ ) p m I(t)=Ip (τm <t≤τ) . (1) Contrast(%)=k~ωnatomL∆ΩIm(ρ)·100, (5) 0 (τ<t≤τ+T) 3rIp where k is a proportional constant that is determined by 2.2 Theoreticalmodel the sum of the laser intensities not interacting with alkali atoms such as higher-order sidebands, ~ is Planck’s con- Figure3(a)showstheexcitationschemeusingtheσ+ light stant,ωistheangularfrequencyofthelaser,cisthespeed fieldforthe133Cs-D line.IntheCPTphenomenon,thetwo of light, n is the number of atoms per unit volume, L 1 atom groundstatesof62S arecoupledsimultaneouslytoacom- is the optical length of the gas cell, and ∆ΩIm(ρ) is the 1/2 mon excited state of 62P . In this system, the dynamical difference between the maximum and minimum values of 1/2 behaviorofthedensitymatrixρisgovernedbythequantum Ω Im(ρ )+Ω Im(ρ ). 13 13 23 23 Liouvilleequation, ∂ i ρ(t)= [ρ,H]+Rρ, (2) 2.3 CalculatedRamsey–CPTresonancespectrumwith ∂t ~ two-steppulseobservation where H is theHamiltonianmatrixforthisthree-levelsys- temandRrepresentstherelaxationterms.Usingtherotating- Thecalculatedresonancespectrafordifferentfreeevolution wave approximation with the simplified Λ-type model de- timesT areshowninFig.4.Theexcitationtimeτandobser- pictedinFig.3(b),Eq.(2)canberewrittenas vationtimeT were1.0msand10µs,respectively.Theden- sitymatrixwascalculatedusingEq.(10)intheappendixA. Ω TheRamsey–CPTamplitudedecreasedwithincreasingfree p ρ˙11 =i (−ρ13+ρ31)+Γ31ρ33+γs(ρ22−ρ11), evolutiontimebecauseofthecoherencerelaxationbetween 2 Ω ground states. The resonance linewidth decreased with in- ρ˙22 =i c(−ρ23+ρ32)+Γ32ρ33−γs(ρ22−ρ11), creasingT sincetheRamseyschemewasused[14]. 2 Ω Ω Figure5showsthecalculatedresonancespectrafordif- ρ˙33 =i 2p(ρ13−ρ31)+i 2c(ρ23−ρ32)−Γ3ρ33, ferentobservationtimesτm andobservationintensityratios (3) Ω Ω r. T and τ are 0.5 and 1.0 ms, respectively.The total light ρ˙12 =iρ12(δp−δc)−i 2cρ13+i 2pρ32−γsρ12, intensityIp is2.4mW/cm2.TheRamseyfringewasclearly ρ˙13 =iρ13δp−iΩcρ12+iΩp(ρ33−ρ11)−γfρ13, voabnseisrhveeddffoorraalsamrgaelloobbsseerrvvaatitoionntitmimee.T(τhme∼res0o)n.aHnocweeavmepr,lii-t 2 2 ρ˙23 =iρ23δc−iΩ2pρ21+iΩ2c(ρ33−ρ22)−γfρ23, stuudbestoanfttihaellyRdamecsreeyasferdinwgeithstrionncrgelaysidnegpeτnmd.eTdhoisniτsmb,eacnadusiet atomsevolvedtowardasteadystateduringthetimefromthe whereΩ andΩ areRabifrequenciesandδ andδ arefre- p c p c pulserisetotheobservationpoint.Theresonanceamplitude quencydetunings,Γ andΓ arerelaxationtermsbetween 31 32 ofthe Ramseyfringein thetwo-steppulseobservationcan anexcitedstateandthetwogroundstates,withthetraceof be retained for a longer observation time. Because the re- thedensitymatrixsatisfyingtheclosed-systemcondition pumpingrateisproportionaltothelightintensity,asmaller Tr(ρ)=ρ +ρ +ρ =1. (4) repumpingrateisobtainedwhensettingasmallerr.There- 11 22 33 fore,evenifalongobservationtimeisset,alargeresonance InFig.3(b),|1iand|2icorrespondtothetwogroundstates amplitudecanbeobtained.Sincethelinewidthofthecenter |F = 3,m = 0i and |F = 4,m = 0i in the 62S state, F F 1/2 fringe is independentof the observationtime, the two-step respectively,and |3i correspondsto the state in 62P . We 1/2 pulse observation enhances the SNR without degenerating assume Γ = Γ (= γ ). The ground-state relaxation rate 31 32 f theQvalue. γ isaminusculequantity,γ ≪ γ .Inthiscalculation,the s s f totalemissionratewassetat370MHz,whichwasobtained experimentallyfromtheabsorptionlinesofaCscellwithNe 3 Experimentalsetup buffer gas at a pressure of 4.0 kPa. The obtained emission rate of 370 MHz is consistent with the value estimated in Figure 6 shows the experimental setup. The measurement Ref. [13]. For bichromaticlight, we havethe relationδ = systemisbasedonapreviousRamsey–CPTobservationsys- p −δ =∆ /2. tem. c 0 Thenumericalcalculationmethodforthedensitymatrix A single-mode VCSEL (Ricoh Company Ltd., Japan) ρ is described in the appendix A. The density matrix ρ is wasused to simultaneouslyexcite the two groundstates to 4 YuichiroYanoetal. 1.0 u.) 0.01 µs ) a. 100 µs a.u. T (ms) nd ( 200 µs sity ( 010...602 kgrou0.5 en 1.4 ac Int al / B n g -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Si 0.0 Frequency detuning (kHz) -30 -20 -10 0 10 20 30 Fig.4 (Coloronline)Calculatedresonancespectrumfordifferentfree s Frequency detuning (kHz) evolutiontimesT:theexcitationtimeτis1.0ms,theobservationtime (a) r=1.00 τ is10µs,theobservationintensityratioris1.0. 1.0 m u.) 0.01 µs a. 100 µs the common excited state. The wavelength of the VCSEL d ( 200 µs n usedtoexcite133CsattheD linewas895nm.TheVCSEL u 1 o r wasdrivenbyadcinjectioncurrentusingabiasTandwas g0.5 k c modulated at 4.6 GHz using an analog signal generator to a B generatefirst-ordersidebandsaroundthelasercarrier. al / Forpulseexcitation,anacousto-opticalmodulator(AOM) n g wasusedtomodulatethelightintensity.Afirst-orderdiffrac- Si 0.0 tion beam was irradiated to the gas cell. The AOM had a -30 -20 -10 0 10 20 30 nominal rise and fall time of 65 ns. The total light inten- Frequency detuning (kHz) 0 sity incidenton the gascell was adjusted using the control (b) r=0.25 voltageoftheAOMandwascalibratedbyanopticalpower 1.0 meter.APyrexgascellcontainingamixtureof133Csatoms u.) 0.01 µs a. 100 µs and Ne buffer gas at a pressure of 4.0 kPa was used. This d ( 200 µs cellwascylindricalwithadiameterof20mmandanoptical n u o lengthof 22.5mm.Its temperaturewas maintainedat 42.0 r g0.5 ◦C. The gas cell and Helmholtz coil were covered with a ck a magneticshieldtopreventexternalmagneticfieldsfromaf- B fectingthemagneticfieldinsidethecell.TheHelmholtzcoil al / n producedaninternalmagneticfieldinthegascell.Theaxis g Si ofthe10µTmagneticfieldwassetparalleltothedirection 0.0 -30 -20 -10 0 10 20 30 ofthelaserlight(C-axisdirection). Frequency detuning (kHz) (c) r∼0.00 Fig.5 (Coloronline)Calculatedresonancespectrumfordifferentob- 4 Results servationtimeτ andr:thefreeevolutiontimeTis500µs,theexcita- m tiontimeτis1.0ms,theobservationintensityratioris1.0. 4.1 ContrastandQvalueasfunctionsoffreeevolutiontime T atoms,thebuffergas,andthecellwalls.Thecontrastexpo- Thecontrastasafunctionofthefreeevolutiontimeisshown nentiallydecreasedwithincreasingfreeevolutiontimefrom inFig.7.Theexcitationtimeandobservationtimewereset 0.2 ms to 1.1 ms. The variation was 0.79% per 1 ms. The to 1.0 ms and 5.0 µs in both the experiment and the cal- calculatedresonancecontrasthadthesametendencyasthe culation, respectively. The total light intensity I was 2.4 measurementvalues. p mW/cm2 in both the experiment and the calculation. The The Q value as a function of the free evolution time is coefficient kn was set to 8.55 × 1016 m−3. γ /2π was showninFig.8.TheQvaluelinearlyincreasedwithincreas- atom s 127Hz. Themeasuredcontrastundercontinuousillumina- ing free evolution time because the linewidth is inversely tionwas2.4%andthelinewidthwas2.4kHz.Thecontrast proportionaltothefreeevolutiontimeT.Allthemeasured decreasedwith increasing free evolutiontime owing to the Qvalueswerelargerthanthecalculatedvalues.Oneofthe coherencerelaxationinducedbythecollisionwithotherCs reasonsforthisdifferenceisthattheexperimentalfreeevo- Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 5 Oscillo- with increasing free evolution time, and the Q value pro- scope portionally increased with increasing free evolution time. RF AOM Pulse Sample Therefore,thereisanoptimalfreeevolutiontimeT formax- Generator Driver Generator /Hold imizingtheproductoftheSNRandtheQvalue.Theoptimal Magnetic shield freeevolutiontimewas1.0msinthisexperiment.Themax- RF frequency B imumvaluewasaboutfivetimeslargerthanthatundercon- tinuous illumination, and it is expected that the short-term Cs + Ne Bias T VCSEL AOM PD stabilitywasimprovedbyafactoroffive. Cell Linearpolarizer Helmholtz coil 4.2 Contrastasafunctionofobservationtime Current 60 kHz Function Lock-in Driver Generator Amp. Figure 9 shows the contrast as a function of the observa- Fig.6 Schematicofexperimentalsetup.PD:photodiode. tiontimefordifferentr.Thecontrasthadamaximumvalue at the pulse rise (τ ∼ 1/Γ) and exponentially decreased m with increasing observation time. At a very short observa- 2.0 tiontime(τ < 1/Γ),thecontrastwassmallbecauseofthe m limitation of the optical transition response. When the ob- )1.5 % servation time was larger than 1/Γ, the contrast decreased ( st Calc. withincreasingobservationtimebecauseoftherepumping ra1.0 Expt. tothesteadydarkstate[11].Ontheotherhand,therewaslit- nt o tlechangeintheQvaluewiththeobservationtime.There- C0.5 fore,itisnecessarytoreducetheobservationtimetoobtain goodshort-termfrequencystability. 0 0 0.4 0.8 1.2 1.6 In the conventional observation method (r = 1.0), the Free evolution time T (ms) contrast substantially decreased after a pulse rise. A larger Fig.7 ContrastasafunctionofthefreeevolutiontimeT. decrease in contrast was observedwhen a shorter observa- tiontimewasset.Thedecreaseincontrastwas0.078%/µsat τ =5.0µsinthisexperiment.Thiswastwoordersofmag- 3.0 m nitude larger than that with increasing free evolution time. ) The contrast under the RR scheme was dominated by the 7 102.0 observationtime. ·( Calc. Inthetwo-steppulseobservation(0.0<r<1.0),higher ue Expt. contrast was obtained. Because there was little repumping al1.0 underasmallr,asmallerdecreaseincontrastwasobserved v Q forasmallr.Whenr wasnegligiblesmallandapproached zero,thecontrastincreasedandgraduallyapproachedacon- 0 0 0.4 0.8 1.2 1.6 trast curve with r ∼ 0. Therefore, the contrast curve with Free evolution time T (ms) r ∼ 0isanasymptoticsolutionandistheupperlimitofthe Fig.8 QvalueasafunctionofthefreeevolutiontimeT. contrast improvementin two-step pulse observation. How- ever,thecontrastalsotendedtodecreasewhensettingr∼0. In such a case, the decrease in contrast is strongly depen- lution time is long because of the relationship betweenthe denton the relaxation between the groundstates γ , and it s atomicmotionandthe interactionregion.Forexample,the increasedwithincreasingγ .Therefore,thedecreaseincon- s atomsfallinginthedarkstatemovedoutsidetheinteraction trastunderr∼0wasinducedbytherelaxationoftheatomic regionduringthefirstpulse,andtheyreturnedtotheinterac- stateduringtheobservationtime.Thedecreasewasreduced tionregionasaresultofthecollisionswithbuffergasatoms toabouthalfofthatintheconventionalmethod.Therefore, afterthefreeevolutiontime,wheretheywereirradiatedby thecontrastincreasedwithdecreasingr,andthecontrastin thelightagain.Becausetheeffectivefreeevolutiontimewas thetwo-steppulseobservation(r=0.3)wastwicethatinthe long in the experiment,the measuredQ valueswere larger conventionalmethodatτ =25µs.Thedecreaseincontrast m thanthecalculatedvalues. waslowerforalargerobservationtime,andthecontrastin The short-term frequencystability is determined as the thetwo-steppulseobservationwas4.5timeslargerthanthat productoftheSNRandtheQvalue.Thecontrastdecreased in the conventionalmethod at τ = 115 µs. These results m 6 YuichiroYanoetal. effectivemethodforrealisingCPTatomicclockswithgood 2.0 r fi 0 short-termandlong-termfrequencystability. )1.5 ropt % st ( 0.30 AppendixA:Numericalcalculation a1.0 r nt Here,thebehaviorofthedynamicdensitymatrixisderived o 0.50 C0.5 from the solution of Eq. (3). The easiest way to solve the time-dependentbehaviorofthedensitymatrixistoperform 1.00 0.0 numericalintegrationbythefinite-differencemethod.How- 0 20 40 60 80 100 120 Observation time tm (m s) ever, finite-difference methods require a long computation time because the time step must be smaller than the relax- Fig.9 (Coloronline)Contrastasafunctionoftheobservationtimefor ationtime Γ−1 to satisfythe stabilitycondition.Inthiscal- differentvaluesoftheobservationintensityratior:thedashedlineisa contrastwithr thatsuppresesthevariationofthelightshiftwiththe culation,we showhowto calculate the time dependentbe- opt observationtime[12]. haviorofthedensitymatrixusingitseigenvector.Sincethe numericalsolutiondoesnotrequirenumericalintegration,it canreduceboththecomputationtimeandtheerror. showthatalargecontrastcanbeobtainedbytwo-steppulse The total number of calculation elements is 9 because observationwithoutreducingtheobservationtime. thedensitymatrixisa3×3Hermitianmatrix.Forthesakeof Thelightshiftisdependentontheobservationtimeτ . m simplicity of the differential equation, a vector comprising Our previous paper showed that the variation of light shift thenineelementsρisdefinedasfollows: withobservationtimeissuppressedbyadjustingtheobser- vationintensityratior[12]. Inthiscalculation,thevalueof rthatsuppressesthelightshiftvariationwas0.04.Thecon- ρ11 1eal5tirvd2gaCej0hsurtot,sµfnsttsoehhc.rdeilfTutttmhohsviieasoaarxnrnveiifaamaoltpuiruopeemnr,oowcdpfahirrnffieaienstsreiemtlhvonueawclleouetarbeins,stehebnoraoovuntahsmttlhiygooaorbnteoefditonohcrtbaeortnnnas=it1nirt0ae0y%sd.t0r.aa0atn;tidohτolmrowwi=s- ρ:=IIIRRRmmmeeeρρ((((((23ρρρρρρ23211211332332)))))), (6) Usingρ,Eq.(3)isrewrittenas† We theoreticallyandexperimentallydiscussedcontrastim- ∂ρ provementby two-step pulse observation.From the results =H˜ρ. (7) ∂t forthe contrastandQ valueasfunctionsofthe freeevolu- tion time, the contrast decreased with increasing free evo- IntheRaman–Ramseyscheme,H˜ duringtheexcitation lutiontime,whereasQ valueproportionallyincreasedwith timeisdifferentfromthatduringthefreeevolutiontime.The the free evolution time. The results show that there is an matrixH˜ isdenotedasH˜onandH˜offwhenthepulseisonand optimalvalueatwhichtheshort-termfrequencystabilityis off,respectively.Also,thevectorattheboundary(vectorat maximized. From the results for the contrast as a function pulseriseρonandfallρoff)isdefinedasfollows: oftheobservationtime,thecontrastsignificantlydecreased ρ =ρ(n(τ+T)), on withincreasingobservationtime.Also,therateofdecrease ρ =ρ(n(τ+T)+τ ), (8) ofthecontrastwithincreasingobservationtimewastwoor- m m dersofmagnitudelargerthanthatwithincreasingfreeevo- ρoff =ρ(n(τ+T)+τ), lutiontime,meaningthatthecontrastunderpulseexcitation wherenisaninteger.Becauseρ isthevectorT safterthat on was strongly dependenton the observation time. Two-step atthepulsefallρ ,andρ isthevectorτsafterthatatthe off off pulseobservationsubstantiallyreducedtherateofdecrease pulserise ρ , the relationshipbetweenρ andρ canbe on off on ofthecontrastwithincreasingobservationtime.Asaresult, expressedasfollows: goodcontrastrelativetothatintheconventionalmethodwas obtained. These results show that two-step pulse observa- ρ =exp(H˜ T)ρ , tionleadsto improvedshort-termstability. Inaddition,our on off off previouspapershowedthattwo-steppulseobservationalso ρm =exp(H˜mτm)ρon, (9) reducesthelightshift[12].Two-steppulseobservationisan ρ =exp(H˜ (τ−τ ))ρ , off on m m Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 7 † −γ γ Γ 0 0 0 0 Ω 0 s s 31 p H˜ =−Ωγ000000ps/2−−Ω000000γc/s2−(ΓΩΩ3Γ1pc00003+//222Γ32) δ−−p−ΩΩ−0000γcp/s/δ22c −−Ωδ00000γcp/f2Ω−δp00000γc/f2−(−δΩ−Ωpc0000γp−//s22δc)Ω−−Ωc0000γδ/ppf2Ω−−ΩΩp000γδ/cccf2 whereexpistheexponentialfunctionofthematrix. Because αL is small, taking into account the fact that the By rearranging Eq. (9), the following equation can be conventional resonance contrast is no more than 10%, we obtained: canassumethat (cid:16)E−exp(H˜mτm)exp(H˜offT)exp(H˜on(τ−τm))(cid:17)ρm =0, (10) Itr ≈ I(1−αL). (16) whereEistheidentitymatrix.FromEq.(10),becauseρ is FromEqs.(14)and(16),theresonanceamplitudeI is: m pp notanullvector,ρ istheeigenvectoroftheeigenvalue0of m ~ωn L (cid:16)E−exp(H˜mτm)exp(H˜offT)exp(H˜on(τ−τm))(cid:17).Sinceallthe Ipp = atom ∆ΩIm(ρ). (17) 3 matrix elements are known, the vector at the pulse rise ρ m canbederivedbycalculatingtheeigenvectorofthematrix. The contrast is defined as the signal amplitude divided by Notethatthevectorisnormalizedtosatisfythenormaliza- thebackgroundsignallevel.Thebackgroundlevelispropor- tionconditionofEq.(4). tionaltorandkisaproportionalconstantthatisdetermined bythesumofthelaserintensitiesnotinteractingwithalkali atomssuchashigher-ordersidebands. AppendixB:Contrastderivationfromdensitymatrix I ~ωn L Contast(%)= pp ·100=k atom ∆ΩIm(ρ)·100 (18) Here, the relationshipbetweenthe contrastand the density rIp 3rIp matrixofEq.(5)isderived. Thus,thecontrastcanbederivedusingthedensitymatrix. Thephotonnumbersdensityn is: p I np = ~ωc, (11) Acknowledgements andthenumberdensityofabsorbedphotonsperunittimenv This work was supported by a Grant-in-Aid for JSPS Fel- is: lows (No. JP26·6442). The authors are grateful to Ricoh 1 CompanyLtd.forprovidinguswiththeCsD1VCSEL.The n = n ΩIm(ρ). (12) v atom researchofM.K.wassupportedbyaGrant-in-AidforSci- 3 entific Research (B) (Grant No. JP25287100), a Grant-in- FromEqs.(11)and(12),thetimerateofabsorbedphotons Aid for Scientific Research (C) (Grant No. JP16K05500), is andaGrant-in-AidforExploratoryResearch(GrantNo.JP n ~ωcn ΩIm(ρ) 15K13545)fromtheJapanSocietyforthePromotionofSci- v = atom . (13) n 3I ence(JSPS). p The absorption index α, which is the number rate of ab- sorbedphotonsperunitlength,isderivedas: References n ~ωn ΩIm(ρ) α= v = atom . (14) 1. J.R. Vig, IEEE Transactions on Ultrasonics, Ferroelectrics and cnp 3I FrequencyControl40(5),522(1992) 2. J.Vanier,C.Audoin,TheQuantumPhysicsofAtomicFrequency ThetransmittedlightintensityItr is: Standards,vol.1(Hilger,Bristol,1989) 3. T.Zanon,S.Gue´randel,E.DeClercq,D.Holleville,N.Dimarcq, Itr = Iexp(−αL). (15) A.Clairon,PhysicalReviewLetters94(19),193002(2005) 8 YuichiroYanoetal. 4. F.X. Esnault, E. Blanshan, E. Ivanov, R. Scholten, J. Kitching, E.A.Donley,PhysicalReviewA88(4),042120(2013) 5. C. Xi, Y. Guo-Qing, W. Jin, Z. Ming-Sheng, Chin. Phys. Lett. 27(11),113201(2010) 6. I. Yoshida, N. Hayashi, K. Fujita, S. Taniguchi, Y. Hoshina, M.Mitsunaga,PhysicalReviewA87(2),023836(2013) 7. Y.Yano,W.Gao,S.Goka,M.Kajita,PhysicalReviewA90(1), 013826(2014) 8. N.Castagna,R.Boudot,S.Gue´randel,E.deClercq,N.Dimarcq, C.Clairon,IEEETransactionsonUltrasonics,Ferroelectricsand FrequencyControl56(2),246(2009) 9. J.M.Danet,M.Lours,S.Gue´randel,E.deClercq,IEEETransac- tionsonUltrasonics,FerroelectricsandFrequencyControl61(4), 567(2014) 10. E.A.Donley,E.Blanshan,F.X.Esnault,J.Kitching,inProceed- ings of 2014 IEEE International Frequency Control Symposium (2014),p.296 11. S. Gue´randel, T. Zanon, N. Castagna, F. Dahes, E. de Clercq, N. Dimarcq, A. Clairon, IEEE Transactions on Instrumentation andMeasurement56(2),383(2007) 12. Y. Yano, S. Goka, M. Kajita, Applied Physics Express 8(1), 012801(2015) 13. G.A.Pitz,D.E.Wertepny,G.P.Perram,PhysicalReviewA80(6), 062718(2009) 14. R.Boudot,S.Gue´randel, E.deClercq,N.Dimarcq,A.Clairon, IEEE Transactions on instrumentation and measurement 58(4), 1217(2009)