ebook img

Two-step pulse observation to improve resonance contrast for coherent population trapping atomic clock PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Two-step pulse observation to improve resonance contrast for coherent population trapping atomic clock

NonamemanuscriptNo. (willbeinsertedbytheeditor) Two-step pulse observation to improve resonance contrast for coherent population trapping atomic clock YuichiroYano · ShigeyoshiGoka · MasatoshiKajita 7 1 0 2 n a J Received:date/Accepted:date 0 2 Abstract We studyresonancecontrastbyatwo-steppulse ] h observationmethodtoenhancethefrequencystabilityofco- p herent population trapping (CPT) atomic clocks. The pro- - posed method is a two-step Raman–Ramsey scheme with m low intensity duringresonanceobservationand highinten- o sityaftertheobservation.Thismethodreducesthefrequency t a variationin the lightintensity and maintainsa high signal- . s to-noiseratio.Theresonancecharacteristicswerecalculated c i by density matrix analysis of a Λ-type three-level system s that was modeled on the 133Cs D1 line, and the character- y h istics were also measured using a vertical-cavity surface- p emittinglaserandaCsvaporcell. [ Fig.1 ProposedRamseypulsesequence. PACS PACScode1·PACScode2·more 1 v clocksisoftenlimitedbyacombinationoflightsourceAM 6 noise and FM-AM conversion noise in the atomic absorp- 9 1 Introduction 6 tion. Therefore, the contrast, which is given by the reso- 5 nance signal amplitude divided by the background signal Coherent population trapping (CPT) atomic clocks are in 0 level,isusedastheSNRoftheCPTresonance.TheQvalue great demand for many applications, such as telecommu- . 1 is given by clock transition frequencydivided by the reso- nications, navigation systems, and the synchronization of 0 nance linewidth. The Q value is degeneratedby the power networks[1],andsuchclocksarerequiredfortheirhighfre- 7 broadeningeffect.Therefore,itisnecessarytoimprovethe 1 quencystability. : The frequencystability in atomic clocks can be classi- resonancecontrastandreducepowerbroadeningtoenhance v theshort-termfrequencystability.Thelong-termfrequency i fiedintotwotypesbasedontheaveragingtimeoftheAllan X stabilityismainlylimitedbythelightshift(theacStarkshift deviation,whicharetheshort-termandlong-termfrequency r inducedbythelaserlight)becauseitchangeswiththelight stability. The short-term stability is determined as the in- a powerfluctuationortheagingofopticalelements. verse of the productof the signal-to-noiseratio (SNR) and theQvalue[2].TheSNRoflaser-pumpedvaporcellatomic TheRaman–Ramsey(RR)schemeforenhancingthefre- quencystabilityofCPTatomicclockshasbeeninvestigated YuichiroYano( )·ShigeyoshiGoka byanumberofresearchers[3,4,5,6,7].Thisschemesimul- (cid:0) DepartmentofElectrical&Engineering,TokyoMetropolitanUniver- taneouslyreduceslinebroadeningandthelightshift[6,7,8]. sity Recently,a short-termstability of 3.2×10−13τ−1/2 has been 1-1Minami-Osawa,Hachioji-shi,Tokyo,Japan192-0397 PresentE-mailaddress:[email protected] obtained,andstabilityaslowas3×10−14hasbeenachieved at an averaging time of 200 s using a Cs vapor cell with MasatoshiKajita National Institute of Information and Communications Technology theRRscheme[9].Also,whencoldRbatomswereused,a (NICT) short-termfrequencystabilityof4×10−11τ−1/2wasobtained, 2 YuichiroYanoetal. andalong-termfrequencystabilityof3×10−13wasachieved foranaveragingtimeof5h[10]. In ourpreviouspaper,we investigatedthe light shiftin the RR scheme both theoretically and experimentally with the aim of enhancing the long-term frequency stability of CPTatomicclocks[7].Theresultsshowedthatthelightshift intheRRschemeislowerthanthatundercwillumination. We also found that the fluctuation of the clock frequency duetothelightintensityfluctuationisreducedbyreducing Fig.2 Ramseypulsesequence:τistheexcitationtime,T isthefree evolutiontime,andτ istheresonancesignalobservationtime. the observation time, which is defined as the time interval m betweentheriseofthepulsedlaserandtheobservation. Themainreasonforthisisthattheatomsevolvetowards asteadystateduringobservation.Inaddition,wefoundthat the light shift in the RR scheme is a nonlinear function of thelightintensity,andreducedclockfrequencyvariationis obtainedunderahighlightintensitybeyondasetthreshold value. To reduce the light shift, it is preferable to perform measurementswiththeobservationtimeasshortaspossible andthelightintensityslightlyhigherthanthethreshold. Ahighersignalcanalsobeobtainedwhensettingbotha shortdetectiontime andhighlightintensity[11].Certainly, thesignalincreaseswithincreasinglightintensity;however thenoisealsoincreasesowingtotheshortdetectiontimeand the AM noise in the highintensity.Thus,the contrastdoes Fig.3 (a)Excitationschemewiththeσ+lightfieldontheD lineof 1 notincreasewithincreasinglightintensity.Whilealowlight Cs. (b) Closed Λ-type three-level model used tocalculate CPT phe- nomenon:δ andδ arethedetuningsoftheprobelaserandcoupling intensityleadsto a weaksignal,a detectedsignalwithlow p c laser,respectively.Ω andΩ areRabifrequencies.Γ andΓ arethe p c 31 32 laser intensity decreasesmore slower than one with a high relaxationtermsbetweenanexcitedstateandthetwogroundstates.γ f intensity.Consequently,the signalcan bestrongerata low isthedecoherenceratebetweentheexcitedstateandthegroundstates, intensityforlargedetectiontimes. andγsisthedecoherenceratebetweenthetwogroundstates. Weproposedatwo-steppulseobservationmethodtore- solvethisissue(Fig.1).ThismethodisanRRschemewith 2 Theory low lightintensity duringobservation[12]. We investigated the lightshiftbytwo-step pulseobservation.Asa result, it 2.1 Two-steppulseobservation was shown that the clock frequency variation in the light intensityusingthismethodislowerthanthatoftheconven- Theobservationscheme forthetwo-step pulseobservation tionalmethodowingto thereducedrepumpingratetoward methodis shown in Fig. 2. Ip is the total light intensity ir- thesteadystateduringtheobservationtime. radiatingtothegascell.TheRamsey–CPTresonanceisob- servedbymeasuringthetransmittedlightintensityatobser- In this work, we discuss the improvementof the reso- vationtimeτ afterthepulserise.Thetwo-steppulseobser- m nance contrast when using the two-step pulse observation vationmaintainsalowlightintensityofrI untiltheobser- p method via numericalcalculation and experiment. A com- vationpoint,whererisdefinedastheobservationintensity parisonwiththeRRschemeisperformedbycalculationus- ratio,andtakesavaluesfrom0to1.Whenr = 1isset,the ingthedensitymatrixanalysis.Thecharacteristicswerealso two-steppulseobservationmethodistreatedwiththesame measuredusingavertical-cavitysurface-emittinglaser(VC- scheme as that used for the conventional RR scheme. Af- SEL)andaCsvaporcell.WeinvestigatedthecontrastandQ terthemeasurementistaken,thelightintensityisconverted valueasfunctionsofthefreeevolutiontimeandobservation intoI andtheatomsarepreparedforthenextmeasurement. p time because they are importantparametersthat determine Alaserpulsewithadurationof(τ−τ )irradiatestheatoms m the contrastand Q value. Fromthe results, it is shownthat forpumpingofthesteadydarkstate.Afterthefreeevolution this method reduces the repumping to the steady state and timeT,alaserpulseirradiatestheatomsagainwithlightin- providesalargercontrastthantheconventionalmethod. tensityrI .ThelightintensityI(t)forthisschemeiswritten p Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 3 as usedtoobtaintheabsorptionindex,andtheresonancecon- trastcanbederivedas rI (0<t≤τ )  p m I(t)=Ip (τm <t≤τ) . (1) Contrast(%)=k~ωnatomL∆ΩIm(ρ)·100, (5) 0 (τ<t≤τ+T) 3rIp where k is a proportional constant that is determined by 2.2 Theoreticalmodel the sum of the laser intensities not interacting with alkali atoms such as higher-order sidebands, ~ is Planck’s con- Figure3(a)showstheexcitationschemeusingtheσ+ light stant,ωistheangularfrequencyofthelaser,cisthespeed fieldforthe133Cs-D line.IntheCPTphenomenon,thetwo of light, n is the number of atoms per unit volume, L 1 atom groundstatesof62S arecoupledsimultaneouslytoacom- is the optical length of the gas cell, and ∆ΩIm(ρ) is the 1/2 mon excited state of 62P . In this system, the dynamical difference between the maximum and minimum values of 1/2 behaviorofthedensitymatrixρisgovernedbythequantum Ω Im(ρ )+Ω Im(ρ ). 13 13 23 23 Liouvilleequation, ∂ i ρ(t)= [ρ,H]+Rρ, (2) 2.3 CalculatedRamsey–CPTresonancespectrumwith ∂t ~ two-steppulseobservation where H is theHamiltonianmatrixforthisthree-levelsys- temandRrepresentstherelaxationterms.Usingtherotating- Thecalculatedresonancespectrafordifferentfreeevolution wave approximation with the simplified Λ-type model de- timesT areshowninFig.4.Theexcitationtimeτandobser- pictedinFig.3(b),Eq.(2)canberewrittenas vationtimeT were1.0msand10µs,respectively.Theden- sitymatrixwascalculatedusingEq.(10)intheappendixA. Ω TheRamsey–CPTamplitudedecreasedwithincreasingfree p ρ˙11 =i (−ρ13+ρ31)+Γ31ρ33+γs(ρ22−ρ11), evolutiontimebecauseofthecoherencerelaxationbetween 2 Ω ground states. The resonance linewidth decreased with in- ρ˙22 =i c(−ρ23+ρ32)+Γ32ρ33−γs(ρ22−ρ11), creasingT sincetheRamseyschemewasused[14]. 2 Ω Ω Figure5showsthecalculatedresonancespectrafordif- ρ˙33 =i 2p(ρ13−ρ31)+i 2c(ρ23−ρ32)−Γ3ρ33, ferentobservationtimesτm andobservationintensityratios (3) Ω Ω r. T and τ are 0.5 and 1.0 ms, respectively.The total light ρ˙12 =iρ12(δp−δc)−i 2cρ13+i 2pρ32−γsρ12, intensityIp is2.4mW/cm2.TheRamseyfringewasclearly ρ˙13 =iρ13δp−iΩcρ12+iΩp(ρ33−ρ11)−γfρ13, voabnseisrhveeddffoorraalsamrgaelloobbsseerrvvaatitoionntitmimee.T(τhme∼res0o)n.aHnocweeavmepr,lii-t 2 2 ρ˙23 =iρ23δc−iΩ2pρ21+iΩ2c(ρ33−ρ22)−γfρ23, stuudbestoanfttihaellyRdamecsreeyasferdinwgeithstrionncrgelaysidnegpeτnmd.eTdhoisniτsmb,eacnadusiet atomsevolvedtowardasteadystateduringthetimefromthe whereΩ andΩ areRabifrequenciesandδ andδ arefre- p c p c pulserisetotheobservationpoint.Theresonanceamplitude quencydetunings,Γ andΓ arerelaxationtermsbetween 31 32 ofthe Ramseyfringein thetwo-steppulseobservationcan anexcitedstateandthetwogroundstates,withthetraceof be retained for a longer observation time. Because the re- thedensitymatrixsatisfyingtheclosed-systemcondition pumpingrateisproportionaltothelightintensity,asmaller Tr(ρ)=ρ +ρ +ρ =1. (4) repumpingrateisobtainedwhensettingasmallerr.There- 11 22 33 fore,evenifalongobservationtimeisset,alargeresonance InFig.3(b),|1iand|2icorrespondtothetwogroundstates amplitudecanbeobtained.Sincethelinewidthofthecenter |F = 3,m = 0i and |F = 4,m = 0i in the 62S state, F F 1/2 fringe is independentof the observationtime, the two-step respectively,and |3i correspondsto the state in 62P . We 1/2 pulse observation enhances the SNR without degenerating assume Γ = Γ (= γ ). The ground-state relaxation rate 31 32 f theQvalue. γ isaminusculequantity,γ ≪ γ .Inthiscalculation,the s s f totalemissionratewassetat370MHz,whichwasobtained experimentallyfromtheabsorptionlinesofaCscellwithNe 3 Experimentalsetup buffer gas at a pressure of 4.0 kPa. The obtained emission rate of 370 MHz is consistent with the value estimated in Figure 6 shows the experimental setup. The measurement Ref. [13]. For bichromaticlight, we havethe relationδ = systemisbasedonapreviousRamsey–CPTobservationsys- p −δ =∆ /2. tem. c 0 Thenumericalcalculationmethodforthedensitymatrix A single-mode VCSEL (Ricoh Company Ltd., Japan) ρ is described in the appendix A. The density matrix ρ is wasused to simultaneouslyexcite the two groundstates to 4 YuichiroYanoetal. 1.0 u.) 0.01 µs ) a. 100 µs a.u. T (ms) nd ( 200 µs sity ( 010...602 kgrou0.5 en 1.4 ac Int al / B n g -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Si 0.0 Frequency detuning (kHz) -30 -20 -10 0 10 20 30 Fig.4 (Coloronline)Calculatedresonancespectrumfordifferentfree s Frequency detuning (kHz) evolutiontimesT:theexcitationtimeτis1.0ms,theobservationtime (a) r=1.00 τ is10µs,theobservationintensityratioris1.0. 1.0 m u.) 0.01 µs a. 100 µs the common excited state. The wavelength of the VCSEL d ( 200 µs n usedtoexcite133CsattheD linewas895nm.TheVCSEL u 1 o r wasdrivenbyadcinjectioncurrentusingabiasTandwas g0.5 k c modulated at 4.6 GHz using an analog signal generator to a B generatefirst-ordersidebandsaroundthelasercarrier. al / Forpulseexcitation,anacousto-opticalmodulator(AOM) n g wasusedtomodulatethelightintensity.Afirst-orderdiffrac- Si 0.0 tion beam was irradiated to the gas cell. The AOM had a -30 -20 -10 0 10 20 30 nominal rise and fall time of 65 ns. The total light inten- Frequency detuning (kHz) 0 sity incidenton the gascell was adjusted using the control (b) r=0.25 voltageoftheAOMandwascalibratedbyanopticalpower 1.0 meter.APyrexgascellcontainingamixtureof133Csatoms u.) 0.01 µs a. 100 µs and Ne buffer gas at a pressure of 4.0 kPa was used. This d ( 200 µs cellwascylindricalwithadiameterof20mmandanoptical n u o lengthof 22.5mm.Its temperaturewas maintainedat 42.0 r g0.5 ◦C. The gas cell and Helmholtz coil were covered with a ck a magneticshieldtopreventexternalmagneticfieldsfromaf- B fectingthemagneticfieldinsidethecell.TheHelmholtzcoil al / n producedaninternalmagneticfieldinthegascell.Theaxis g Si ofthe10µTmagneticfieldwassetparalleltothedirection 0.0 -30 -20 -10 0 10 20 30 ofthelaserlight(C-axisdirection). Frequency detuning (kHz) (c) r∼0.00 Fig.5 (Coloronline)Calculatedresonancespectrumfordifferentob- 4 Results servationtimeτ andr:thefreeevolutiontimeTis500µs,theexcita- m tiontimeτis1.0ms,theobservationintensityratioris1.0. 4.1 ContrastandQvalueasfunctionsoffreeevolutiontime T atoms,thebuffergas,andthecellwalls.Thecontrastexpo- Thecontrastasafunctionofthefreeevolutiontimeisshown nentiallydecreasedwithincreasingfreeevolutiontimefrom inFig.7.Theexcitationtimeandobservationtimewereset 0.2 ms to 1.1 ms. The variation was 0.79% per 1 ms. The to 1.0 ms and 5.0 µs in both the experiment and the cal- calculatedresonancecontrasthadthesametendencyasthe culation, respectively. The total light intensity I was 2.4 measurementvalues. p mW/cm2 in both the experiment and the calculation. The The Q value as a function of the free evolution time is coefficient kn was set to 8.55 × 1016 m−3. γ /2π was showninFig.8.TheQvaluelinearlyincreasedwithincreas- atom s 127Hz. Themeasuredcontrastundercontinuousillumina- ing free evolution time because the linewidth is inversely tionwas2.4%andthelinewidthwas2.4kHz.Thecontrast proportionaltothefreeevolutiontimeT.Allthemeasured decreasedwith increasing free evolutiontime owing to the Qvalueswerelargerthanthecalculatedvalues.Oneofthe coherencerelaxationinducedbythecollisionwithotherCs reasonsforthisdifferenceisthattheexperimentalfreeevo- Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 5 Oscillo- with increasing free evolution time, and the Q value pro- scope portionally increased with increasing free evolution time. RF AOM Pulse Sample Therefore,thereisanoptimalfreeevolutiontimeT formax- Generator Driver Generator /Hold imizingtheproductoftheSNRandtheQvalue.Theoptimal Magnetic shield freeevolutiontimewas1.0msinthisexperiment.Themax- RF frequency B imumvaluewasaboutfivetimeslargerthanthatundercon- tinuous illumination, and it is expected that the short-term Cs + Ne Bias T VCSEL AOM PD stabilitywasimprovedbyafactoroffive. Cell Linearpolarizer Helmholtz coil 4.2 Contrastasafunctionofobservationtime Current 60 kHz Function Lock-in Driver Generator Amp. Figure 9 shows the contrast as a function of the observa- Fig.6 Schematicofexperimentalsetup.PD:photodiode. tiontimefordifferentr.Thecontrasthadamaximumvalue at the pulse rise (τ ∼ 1/Γ) and exponentially decreased m with increasing observation time. At a very short observa- 2.0 tiontime(τ < 1/Γ),thecontrastwassmallbecauseofthe m limitation of the optical transition response. When the ob- )1.5 % servation time was larger than 1/Γ, the contrast decreased ( st Calc. withincreasingobservationtimebecauseoftherepumping ra1.0 Expt. tothesteadydarkstate[11].Ontheotherhand,therewaslit- nt o tlechangeintheQvaluewiththeobservationtime.There- C0.5 fore,itisnecessarytoreducetheobservationtimetoobtain goodshort-termfrequencystability. 0 0 0.4 0.8 1.2 1.6 In the conventional observation method (r = 1.0), the Free evolution time T (ms) contrast substantially decreased after a pulse rise. A larger Fig.7 ContrastasafunctionofthefreeevolutiontimeT. decrease in contrast was observedwhen a shorter observa- tiontimewasset.Thedecreaseincontrastwas0.078%/µsat τ =5.0µsinthisexperiment.Thiswastwoordersofmag- 3.0 m nitude larger than that with increasing free evolution time. ) The contrast under the RR scheme was dominated by the 7 102.0 observationtime. ·( Calc. Inthetwo-steppulseobservation(0.0<r<1.0),higher ue Expt. contrast was obtained. Because there was little repumping al1.0 underasmallr,asmallerdecreaseincontrastwasobserved v Q forasmallr.Whenr wasnegligiblesmallandapproached zero,thecontrastincreasedandgraduallyapproachedacon- 0 0 0.4 0.8 1.2 1.6 trast curve with r ∼ 0. Therefore, the contrast curve with Free evolution time T (ms) r ∼ 0isanasymptoticsolutionandistheupperlimitofthe Fig.8 QvalueasafunctionofthefreeevolutiontimeT. contrast improvementin two-step pulse observation. How- ever,thecontrastalsotendedtodecreasewhensettingr∼0. In such a case, the decrease in contrast is strongly depen- lution time is long because of the relationship betweenthe denton the relaxation between the groundstates γ , and it s atomicmotionandthe interactionregion.Forexample,the increasedwithincreasingγ .Therefore,thedecreaseincon- s atomsfallinginthedarkstatemovedoutsidetheinteraction trastunderr∼0wasinducedbytherelaxationoftheatomic regionduringthefirstpulse,andtheyreturnedtotheinterac- stateduringtheobservationtime.Thedecreasewasreduced tionregionasaresultofthecollisionswithbuffergasatoms toabouthalfofthatintheconventionalmethod.Therefore, afterthefreeevolutiontime,wheretheywereirradiatedby thecontrastincreasedwithdecreasingr,andthecontrastin thelightagain.Becausetheeffectivefreeevolutiontimewas thetwo-steppulseobservation(r=0.3)wastwicethatinthe long in the experiment,the measuredQ valueswere larger conventionalmethodatτ =25µs.Thedecreaseincontrast m thanthecalculatedvalues. waslowerforalargerobservationtime,andthecontrastin The short-term frequencystability is determined as the thetwo-steppulseobservationwas4.5timeslargerthanthat productoftheSNRandtheQvalue.Thecontrastdecreased in the conventionalmethod at τ = 115 µs. These results m 6 YuichiroYanoetal. effectivemethodforrealisingCPTatomicclockswithgood 2.0 r fi 0 short-termandlong-termfrequencystability. )1.5 ropt % st ( 0.30 AppendixA:Numericalcalculation a1.0 r nt Here,thebehaviorofthedynamicdensitymatrixisderived o 0.50 C0.5 from the solution of Eq. (3). The easiest way to solve the time-dependentbehaviorofthedensitymatrixistoperform 1.00 0.0 numericalintegrationbythefinite-differencemethod.How- 0 20 40 60 80 100 120 Observation time tm (m s) ever, finite-difference methods require a long computation time because the time step must be smaller than the relax- Fig.9 (Coloronline)Contrastasafunctionoftheobservationtimefor ationtime Γ−1 to satisfythe stabilitycondition.Inthiscal- differentvaluesoftheobservationintensityratior:thedashedlineisa contrastwithr thatsuppresesthevariationofthelightshiftwiththe culation,we showhowto calculate the time dependentbe- opt observationtime[12]. haviorofthedensitymatrixusingitseigenvector.Sincethe numericalsolutiondoesnotrequirenumericalintegration,it canreduceboththecomputationtimeandtheerror. showthatalargecontrastcanbeobtainedbytwo-steppulse The total number of calculation elements is 9 because observationwithoutreducingtheobservationtime. thedensitymatrixisa3×3Hermitianmatrix.Forthesakeof Thelightshiftisdependentontheobservationtimeτ . m simplicity of the differential equation, a vector comprising Our previous paper showed that the variation of light shift thenineelementsρisdefinedasfollows: withobservationtimeissuppressedbyadjustingtheobser- vationintensityratior[12]. Inthiscalculation,thevalueof rthatsuppressesthelightshiftvariationwas0.04.Thecon-  ρ11  1eal5tirvd2gaCej0hsurtot,sµfnsttsoehhc.rdeilfTutttmhohsviieasoaarxnrnveiifaamaoltpuiruopeemnr,oowcdpfahirrnffieaienstsreiemtlhvonueawclleouetarbeins,stehebnoraoovuntahsmttlhiygooaorbnteoefditonohcrtbaeortnnnas=it1nirt0ae0y%sd.t0r.aa0atn;tidohτolmrowwi=s- ρ:=IIIRRRmmmeeeρρ((((((23ρρρρρρ23211211332332)))))), (6) Usingρ,Eq.(3)isrewrittenas† We theoreticallyandexperimentallydiscussedcontrastim- ∂ρ provementby two-step pulse observation.From the results =H˜ρ. (7) ∂t forthe contrastandQ valueasfunctionsofthe freeevolu- tion time, the contrast decreased with increasing free evo- IntheRaman–Ramseyscheme,H˜ duringtheexcitation lutiontime,whereasQ valueproportionallyincreasedwith timeisdifferentfromthatduringthefreeevolutiontime.The the free evolution time. The results show that there is an matrixH˜ isdenotedasH˜onandH˜offwhenthepulseisonand optimalvalueatwhichtheshort-termfrequencystabilityis off,respectively.Also,thevectorattheboundary(vectorat maximized. From the results for the contrast as a function pulseriseρonandfallρoff)isdefinedasfollows: oftheobservationtime,thecontrastsignificantlydecreased ρ =ρ(n(τ+T)), on withincreasingobservationtime.Also,therateofdecrease ρ =ρ(n(τ+T)+τ ), (8) ofthecontrastwithincreasingobservationtimewastwoor- m m dersofmagnitudelargerthanthatwithincreasingfreeevo- ρoff =ρ(n(τ+T)+τ), lutiontime,meaningthatthecontrastunderpulseexcitation wherenisaninteger.Becauseρ isthevectorT safterthat on was strongly dependenton the observation time. Two-step atthepulsefallρ ,andρ isthevectorτsafterthatatthe off off pulseobservationsubstantiallyreducedtherateofdecrease pulserise ρ , the relationshipbetweenρ andρ canbe on off on ofthecontrastwithincreasingobservationtime.Asaresult, expressedasfollows: goodcontrastrelativetothatintheconventionalmethodwas obtained. These results show that two-step pulse observa- ρ =exp(H˜ T)ρ , tionleadsto improvedshort-termstability. Inaddition,our on off off previouspapershowedthattwo-steppulseobservationalso ρm =exp(H˜mτm)ρon, (9) reducesthelightshift[12].Two-steppulseobservationisan ρ =exp(H˜ (τ−τ ))ρ , off on m m Two-steppulseobservationtoimproveresonancecontrastforcoherentpopulationtrappingatomicclock 7 † −γ γ Γ 0 0 0 0 Ω 0  s s 31 p  H˜ =−Ωγ000000ps/2−−Ω000000γc/s2−(ΓΩΩ3Γ1pc00003+//222Γ32) δ−−p−ΩΩ−0000γcp/s/δ22c −−Ωδ00000γcp/f2Ω−δp00000γc/f2−(−δΩ−Ωpc0000γp−//s22δc)Ω−−Ωc0000γδ/ppf2Ω−−ΩΩp000γδ/cccf2 whereexpistheexponentialfunctionofthematrix. Because αL is small, taking into account the fact that the By rearranging Eq. (9), the following equation can be conventional resonance contrast is no more than 10%, we obtained: canassumethat (cid:16)E−exp(H˜mτm)exp(H˜offT)exp(H˜on(τ−τm))(cid:17)ρm =0, (10) Itr ≈ I(1−αL). (16) whereEistheidentitymatrix.FromEq.(10),becauseρ is FromEqs.(14)and(16),theresonanceamplitudeI is: m pp notanullvector,ρ istheeigenvectoroftheeigenvalue0of m ~ωn L (cid:16)E−exp(H˜mτm)exp(H˜offT)exp(H˜on(τ−τm))(cid:17).Sinceallthe Ipp = atom ∆ΩIm(ρ). (17) 3 matrix elements are known, the vector at the pulse rise ρ m canbederivedbycalculatingtheeigenvectorofthematrix. The contrast is defined as the signal amplitude divided by Notethatthevectorisnormalizedtosatisfythenormaliza- thebackgroundsignallevel.Thebackgroundlevelispropor- tionconditionofEq.(4). tionaltorandkisaproportionalconstantthatisdetermined bythesumofthelaserintensitiesnotinteractingwithalkali atomssuchashigher-ordersidebands. AppendixB:Contrastderivationfromdensitymatrix I ~ωn L Contast(%)= pp ·100=k atom ∆ΩIm(ρ)·100 (18) Here, the relationshipbetweenthe contrastand the density rIp 3rIp matrixofEq.(5)isderived. Thus,thecontrastcanbederivedusingthedensitymatrix. Thephotonnumbersdensityn is: p I np = ~ωc, (11) Acknowledgements andthenumberdensityofabsorbedphotonsperunittimenv This work was supported by a Grant-in-Aid for JSPS Fel- is: lows (No. JP26·6442). The authors are grateful to Ricoh 1 CompanyLtd.forprovidinguswiththeCsD1VCSEL.The n = n ΩIm(ρ). (12) v atom researchofM.K.wassupportedbyaGrant-in-AidforSci- 3 entific Research (B) (Grant No. JP25287100), a Grant-in- FromEqs.(11)and(12),thetimerateofabsorbedphotons Aid for Scientific Research (C) (Grant No. JP16K05500), is andaGrant-in-AidforExploratoryResearch(GrantNo.JP n ~ωcn ΩIm(ρ) 15K13545)fromtheJapanSocietyforthePromotionofSci- v = atom . (13) n 3I ence(JSPS). p The absorption index α, which is the number rate of ab- sorbedphotonsperunitlength,isderivedas: References n ~ωn ΩIm(ρ) α= v = atom . (14) 1. J.R. Vig, IEEE Transactions on Ultrasonics, Ferroelectrics and cnp 3I FrequencyControl40(5),522(1992) 2. J.Vanier,C.Audoin,TheQuantumPhysicsofAtomicFrequency ThetransmittedlightintensityItr is: Standards,vol.1(Hilger,Bristol,1989) 3. T.Zanon,S.Gue´randel,E.DeClercq,D.Holleville,N.Dimarcq, Itr = Iexp(−αL). (15) A.Clairon,PhysicalReviewLetters94(19),193002(2005) 8 YuichiroYanoetal. 4. F.X. Esnault, E. Blanshan, E. Ivanov, R. Scholten, J. Kitching, E.A.Donley,PhysicalReviewA88(4),042120(2013) 5. C. Xi, Y. Guo-Qing, W. Jin, Z. Ming-Sheng, Chin. Phys. Lett. 27(11),113201(2010) 6. I. Yoshida, N. Hayashi, K. Fujita, S. Taniguchi, Y. Hoshina, M.Mitsunaga,PhysicalReviewA87(2),023836(2013) 7. Y.Yano,W.Gao,S.Goka,M.Kajita,PhysicalReviewA90(1), 013826(2014) 8. N.Castagna,R.Boudot,S.Gue´randel,E.deClercq,N.Dimarcq, C.Clairon,IEEETransactionsonUltrasonics,Ferroelectricsand FrequencyControl56(2),246(2009) 9. J.M.Danet,M.Lours,S.Gue´randel,E.deClercq,IEEETransac- tionsonUltrasonics,FerroelectricsandFrequencyControl61(4), 567(2014) 10. E.A.Donley,E.Blanshan,F.X.Esnault,J.Kitching,inProceed- ings of 2014 IEEE International Frequency Control Symposium (2014),p.296 11. S. Gue´randel, T. Zanon, N. Castagna, F. Dahes, E. de Clercq, N. Dimarcq, A. Clairon, IEEE Transactions on Instrumentation andMeasurement56(2),383(2007) 12. Y. Yano, S. Goka, M. Kajita, Applied Physics Express 8(1), 012801(2015) 13. G.A.Pitz,D.E.Wertepny,G.P.Perram,PhysicalReviewA80(6), 062718(2009) 14. R.Boudot,S.Gue´randel, E.deClercq,N.Dimarcq,A.Clairon, IEEE Transactions on instrumentation and measurement 58(4), 1217(2009)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.