ebook img

Two-Scale Stochastic Systems: Asymptotic Analysis and Control PDF

274 Pages·2003·3.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Two-Scale Stochastic Systems: Asymptotic Analysis and Control

StochasticMechanics Applications of RandomMedia Mathematics SignalProcessing StochasticModelling andImageSynthesis a4nd9AppliedProbability MathematicalEconomicsandFinance StochasticOptimization StochasticControl StochasticModelsinLifeSciences Editedby B.Rozovskii M.Yor AdvisoryBoard D.Dawson D.Geman G.Grimmett I.Karatzas F.Kelly Y.LeJan B.Øksendal E.Pardoux G.Papanicolaou Springer-Verlag Berlin Heidelberg GmbH ApplicationsofMathematics 1 Fleming/Rishel,DeterministicandStochasticOptimalControl(1975) 2 Marchuk,MethodsofNumericalMathematics1975,2nd.ed.1982) 3 Balakrishnan,AppliedFunctionalAnalysis(1976,2nd.ed.1981) 4 Borovkov,StochasticProcessesinQueueingTheory(1976) 5 Liptser/Shiryaev,StatisticsofRandomProcessesI:GeneralTheory(1977,2nd.ed.2001) 6 Liptser/Shiryaev,StatisticsofRandomProcessesII:Applications(1978,2nd.ed.2001) 7 Vorob’ev,GameTheory:LecturesforEconomistsandSystemsScientists(1977) 8 Shiryaev,OptimalStoppingRules(1978) 9 Ibragimov/Rozanov,GaussianRandomProcesses(1978) 10 Wonham,LinearMultivariableControl:AGeometricApproach(1979,2nd.ed.1985) 11 Hida,BrownianMotion(1980) 12 Hestenes,ConjugateDirectionMethodsinOptimization(1980) 13 Kallianpur,StochasticFilteringTheory(1980) 14 Krylov,ControlledDiffusionProcesses(1980) 15 Prabhu,StochasticStorageProcesses:Queues,InsuranceRisk,andDams(1980) 16 Ibragimov/Has’minskii,StatisticalEstimation:AsymptoticTheory(1981) 17 Cesari,Optimization:TheoryandApplications(1982) 18 Elliott,StochasticCalculusandApplications(1982) 19 Marchuk/Shaidourov,DifferenceMethodsandTheirExtrapolations(1983) 20 Hijab,StabilizationofControlSystems(1986) 21 Protter,StochasticIntegrationandDifferentialEquations(1990) 22 Benveniste/Me´tivier/Priouret,AdaptiveAlgorithmsandStochasticApproximations(1990) 23 Kloeden/Platen,NumericalSolutionofStochasticDifferentialEquations (1992,corr.3rdprinting1999) 24 Kushner/Dupuis,NumericalMethodsforStochasticControlProblemsinContinuous Time(1992) 25 Fleming/Soner,ControlledMarkovProcessesandViscositySolutions(1993) 26 Baccelli/Bre´maud,ElementsofQueueingTheory(1994) 27 Winkler,ImageAnalysis,RandomFieldsandDynamicMonteCarloMethods (1995,2nd.ed.2003) 28 Kalpazidou,CycleRepresentationsofMarkovProcesses(1995) 29 Elliott/Aggoun/Moore,HiddenMarkovModels:EstimationandControl(1995) 30 Herna´ndez-Lerma/Lasserre,Discrete-TimeMarkovControlProcesses(1995) 31 Devroye/Gyo¨rfi/Lugosi,AProbabilisticTheoryofPatternRecognition(1996) 32 Maitra/Sudderth,DiscreteGamblingandStochasticGames(1996) 33 Embrechts/Klu¨ppelberg/Mikosch,ModellingExtremalEventsforInsuranceandFinance (1997,corr.4thprinting2003) 34 Duflo,RandomIterativeModels(1997) 35 Kushner/Yin,StochasticApproximationAlgorithmsandApplications(1997) 36 Musiela/Rutkowski,MartingaleMethodsinFinancialModelling(1997) 37 Yin,Continuous-TimeMarkovChainsandApplications(1998) 38 Dembo/Zeitouni,LargeDeviationsTechniquesandApplications(1998) 39 Karatzas,MethodsofMathematicalFinance(1998) 40 Fayolle/Iasnogorodski/Malyshev,RandomWalksintheQuarter-Plane(1999) 41 Aven/Jensen,StochasticModelsinReliability(1999) 42 Hernandez-Lerma/Lasserre,FurtherTopicsonDiscrete-TimeMarkovControlProcesses (1999) 43 Yong/Zhou,StochasticControls.HamiltonianSystemsandHJBEquations(1999) 44 Serfozo,IntroductiontoStochasticNetworks(1999) 45 Steele,StochasticCalculusandFinancialApplications(2001) 46 Chen/Yao,FundamentalsofQueuingNetworks:Performance,Asymptotics, andOptimization(2001) 47 Kushner,HeavyTrafficAnalysisofControlledQueueingandCommunicationsNetworks (2001) 48 Fernholz,StochasticPortfolioTheory(2002) 49 Kabanov/Pergamenshchikov,Two-ScaleStochasticSystems(2003) 50 Han,Information-SpectrumMethodsinInformationTheory(2003) Yuri Kabanov Sergei Pergamenshchikov Two-Scale Stochastic Systems Asymptotic Analysis and Control 1 3 Authors YuriKabanov Universite´deFranche-Comte´ De´partementdeMathe´matiques 16routedeGray 25030BesançonCedex,France e-mail:[email protected] SergeiPergamenshchikov Universite´deRouen LIFAR,UFRSciencesetTechniques 76821MontSaintAignanCedex,France e-mail:[email protected] ManagingEditors B.Rozovskii M.Yor UniversityofSouthernCalifornia Universite´deParisVI Center for Applied Mathematical LaboratoiredeProbabilite´s Sciences etMode`lesAle´atoires 1042West36thPlace, 175,rueduChevaleret DenneyResearchBuilding308 75013Paris,France LosAngeles,CA90089,USA MathematicsSubjectClassification(2000):93-02,60-02,49-02 CoverpatternbycourtesyofRickDurrett(CornellUniversity,Ithaca) CoverillustrationbyMargaritaKabanova LibraryofCongressCataloging-in-PublicationDataappliedfor BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie;detailed bibliographicdataisavailableintheInternetat<http://dnb.ddb.de>. ISSN0172-4568 ISBN 978-3-642-08467-6 ISBN 978-3-662-13242-5 (eBook) DOI 10.1007/978-3-662-13242-5 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindata banks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermission forusemustalwaysbeobtainedfromSpringer-Verlag Berlin Heidelberg GmbH. ViolationsareliableforprosecutionundertheGermanCopyrightLaw. http://www.springer.de ©Springer-VerlagBerlinHeidelberg2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003 Softcover reprint of the hardcover 1st edition 2003 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:ErichKirchner,Heidelberg TypesettingLe-TexJelonek,Schmidt&Vo¨cklerGbR,Leipzig Printedonacid-freepaper SPIN:10702078 41/3142ck-543210 Table of Contents Introduction.................................................. IX 0 Warm-up ................................................. 1 0.1 Processeswith Fast MarkovModulations .................. 1 0.1.1 Model Formulation ............................... 1 0.1.2 Asymptotic Behavior of Distributions ............... 2 0.2 The Li´enardOscillator Under Random Force............... 6 0.3 Filtering of Nearly ObservedProcesses .................... 9 0.4 Stochastic Approximation ............................... 11 1 Toolbox: Moment Bounds for Solutions of Stable SDEs... 19 1.1 Moment Bounds for Nonlinear Equations.................. 20 1.1.1 Key Lemma ..................................... 20 1.1.2 Bounds Efficient on Small Intervals ................. 22 1.1.3 Bounds Efficient on LargeIntervals ................. 24 1.2 Bounds for Linear Equations............................. 26 1.2.1 Assumption on the Fundamental Matrix............. 26 1.2.2 Differential Equationswith Random Coefficients ..... 27 1.2.3 The Continuity Theorem .......................... 29 1.2.4 Linear SDEs with Unbounded Coefficients........... 31 1.3 On the Growth Rate of the Maximal Function ............. 34 1.3.1 Lapeyre’s Inequality .............................. 34 1.3.2 Ornstein–Uhlenbeck Process ....................... 37 1.3.3 Sample PathGrowth ............................. 39 1.3.4 Fernique’s Lemma................................ 40 2 The Tikhonov Theory for SDEs........................... 43 2.1 The Stochastic TikhonovTheorem........................ 45 2.1.1 Setting.......................................... 45 2.1.2 BoundaryLayer Behavior ......................... 46 2.1.3 LargeScale Behavior ............................. 49 2.1.4 Concluding Step ................................. 54 VI TableofContents 2.2 The First-OrderAsymptotics for Fast Variables ............ 56 2.2.1 Basic Hypotheses................................. 56 2.2.2 The First-Order Correction........................ 57 2.2.3 The First-Order Approximationof the Rest Point .... 59 2.2.4 Normal ApproximationResult ..................... 62 2.3 Higher-OrderExpansions................................ 63 2.3.1 Formal Expansions ............................... 63 2.3.2 Convergenceof the Remainder ..................... 65 2.3.3 ExpansionAround the Rest Point .................. 69 2.4 Stochastic Approximation: Proofs ........................ 70 2.4.1 Asymptotic Expansionfor the Output Signal ........ 70 2.4.2 The Asymptotic Expansionat the Root ............. 78 2.4.3 Averaging ....................................... 80 2.4.4 Proofof Theorem 0.4.6............................ 83 3 Large Deviations ......................................... 87 3.1 Deviations in the Uniform Metric......................... 88 3.1.1 Formulation of the Result ......................... 88 3.1.2 A Lower Exponential Bound for the Non-Exit Probability....................... 89 3.1.3 An Upper Bound for the Probabilityof Deviation of a Trajectoryfrom the Lebesgue Sets of Sε ........ 91 T 3.1.4 Proofof Theorem 3.1.1............................ 99 3.1.5 Example: the Ornstein–UhlenbeckProcess........... 104 3.2 Deviations in the Metric of L2[0,T]....................... 105 4 Uniform Expansions for Two-Scale Systems............... 111 4.1 No Diffusion at the Fast Variable......................... 112 4.1.1 Formal Calculations .............................. 112 4.1.2 Integrabilityof Coefficients ........................ 119 4.1.3 The BoundaryLayer Function of Zero Order......... 120 4.1.4 BoundaryLayer Functions of Higher Order .......... 124 4.1.5 Proofof Theorem 4.1.1............................ 129 4.2 Expansionsfor the General Model ........................ 133 4.2.1 Formulations .................................... 133 4.2.2 Growth of Coefficients ............................ 135 4.2.3 Proofof Theorem 4.2.1............................ 136 4.3 Li´enardOscillator Driven by a Random Force.............. 140 TableofContents VII 5 Two-Scale Optimal Control Problems..................... 145 5.1 Semilinear ControlledSystem ............................ 146 5.1.1 The Model and Main Result ....................... 146 5.1.2 Proofof Proposition5.1.2 ......................... 148 5.1.3 Proofof Proposition5.1.3 ......................... 155 5.1.4 Proofof Theorem 5.1.1............................ 157 5.2 Structure of the Attainability Sets ........................ 158 5.2.1 Weak and Strong Solutions of SDEs ................ 158 5.2.2 Closed Loop ControlsVersus Open Loop ............ 160 5.2.3 “Tubes” and Attainability Sets for Feedback Controls. 164 5.2.4 Extreme Pointsof the Set of Attainable Densities .... 167 5.2.5 On the Existence of Optimal Control ............... 169 5.2.6 Comparisonof Attainability Sets ................... 171 5.3 Convergenceof the Attainability Sets, I ................... 175 5.3.1 The Dontchev–VeliovTheorem..................... 175 5.3.2 The First Stochastic Generalization................. 176 5.4 Convergenceof the Attainability Sets, II .................. 180 5.4.1 Formulation of the Result ......................... 180 5.4.2 The Fast Variable Model .......................... 182 5.4.3 General Case .................................... 185 5.4.4 Proofof Theorem 5.4.1............................ 187 6 Applications .............................................. 193 6.1 Applications to PDEs................................... 193 6.2 Fast MarkovModulations Revisited....................... 199 6.2.1 Main Result ..................................... 199 6.2.2 Preliminariesfrom Weak Convergence............... 200 6.2.3 Proofof Theorem 6.3.1............................ 202 6.2.4 Calculations and Estimates ........................ 203 6.2.5 Cox Processeswith Fast MarkovModulations........ 206 6.3 Accuracyof Approximate Filters ......................... 207 6.4 Signal Estimation ...................................... 208 6.5 Linear Regulator with Infinite Horizon .................... 213 6.5.1 Sensitive Probabilistic Criteria ..................... 213 6.5.2 Linear-QuadraticRegulator........................ 214 6.5.3 Preliminaries .................................... 216 6.5.4 Proofof Theorem 6.5.2............................ 218 6.5.5 Example ........................................ 220 VIII TableofContents Appendix..................................................... 223 A.1 Basic Facts About SDEs ................................ 223 A.1.1 Existence and Uniqueness of Strong Solutions for SDEs with Random Coefficients................. 223 A.1.2 Existence and Uniqueness with a LyapunovFunction . 224 A.1.3 Moment Bounds for Linear SDEs................... 225 A.1.4 The NovikovCondition ........................... 226 A.2 Exponential Bounds for Fundamental Matrices ............. 227 A.2.1 Uniform Bound in the Time-HomogeneousCase...... 227 A.2.2 NonhomogeneousCase............................ 229 A.2.3 Models with Singular Perturbations................. 230 A.3 Total Variation Distance and Hellinger Processes ........... 234 A.3.1 Total Variation Distance and Hellinger Integrals...... 234 A.3.2 The Hellinger Processes ........................... 235 A.3.3 Example: Diffusion-Type Processes ................. 238 A.4 Hausdorff Metric ....................................... 239 A.5 MeasurableSelection.................................... 240 A.5.1 Aumann Theorem ................................ 240 A.5.2 Filippov Implicit Function Lemma.................. 241 A.5.3 MeasurableVersion of the Carath´eodoryTheorem .... 241 A.6 Compact Sets in P(X) .................................. 243 A.6.1 Notations and Preliminaries ....................... 243 A.6.2 Integrationof Stochastic Kernels ................... 245 A.6.3 Distributions of Integrals.......................... 246 A.6.4 Compactness of the Limit of Attainability Sets....... 248 A.6.5 Supports of Conditional Distributions............... 250 A.7 The Koml´osTheorem .................................. 250 Historical Notes .............................................. 255 References.................................................... 259 Index......................................................... 265 Introduction In many complex systems one can distinguish “fast” and “slow” processes withradicallydifferentvelocities.Inmathematicalmodelsbasedondifferen- tialequations,suchtwo-scalesystemscanbedescribedbyintroducingexplic- itlyasmallparameterεontheleft-handsideofstateequationsforthe“fast” variables,andtheseequationsarereferredtoassingularly perturbed.Surpris- ingly, this kind of equation attracted attention relatively recently (the idea of distinguishing “fast” and “slow” movements is, apparently, much older). RobertO’Malley,incommentstohisbook,attributestheoriginofthewhole historyofsingularperturbationstothecelebratedpaperofPrandtl[79].This was an extremely short note, the text of his talk at the Third International MathematicalCongressin 1904:the youngauthorbelievedthat ithadto be literally identical with his ten-minute long oral presentation. In spite of its length, it had a tremendous impact on the subsequent development. Many famous mathematicians contributed to the discipline, having numerous and important applications. We mention here only the name of A.N. Tikhonov, whodevelopedattheendofthe1940sinhisdoctoralthesisabeautifultheory for non-linear systems where the fast variables can almost reach their equi- librium states while the slow variables still remain near their initial values: the aerodynamics of a winged object like a plane or the “Katiusha” rocket may servean example of such a system. Itisgenerallyacceptedthat theprobabilisticmodeling ofreal-worldpro- cesses is more adequate than the deterministic modeling. Needs of applica- tions resulted in an increasing interest in the theory of two-scale stochastic systems where an essential progress has been achieved during the last 25 years. However, in comparison with the classical theory, many vast areas have never been explored and only a few research monographs have been available. The main subject of this book is a stochastic version of the Tikhonov theory including some optimal control problems for systems with singular perturbations. Of course, we do not pretend to cover all aspects of singular perturbations: the absolute majority of the results presented here are our own.The principalmodel wedealwith isgivenbythe stochasticdifferential equations dxε =f(t,xε,yε)dt+g(t,xε,yε)dwx, xε =xo, t t t t t t 0 X Introduction εdyε =F(t,xε,yε)dt+σ(ε)G(t,xε,yε)dwy, yε =yo, t t t t t t 0 where wx and wy are independent Wiener processes. We avoid in this brief introduction detailed discussions of needed assumptions on coefficients and mentiononlythatforthelinearcase,whereF(t,x,y)=A x+B y,werequire t t the matrix-valued function A to be continuous and “exponentially stable”. t Sometimes, in problems where we feel that the full generality will make our study unreasonably complicated, we constrain ourselves by considering the model with only fast variables, given by a singularly perturbed SDE, which is, in certain cases, important and interesting in itself. The assumption on the behavior of the coefficient when ε ↓ 0 merits a discussion. In the literature, one may observe a dominance of studies where σ(ε)=ε1/2 thoughthereisanoticeablenumberofpaperswheremodelswith σ = εδ, δ > 1/2, are also treated. No doubt, the case δ = 1/2, where the typical random perturbation has an amplitude which behaves like a square root of the velocity, is worthy of attention. In general, models of this type fit the Bogoliubov averaging principle remarkably well. This principle pre- scribes to do the following. To get a description of the limiting behavior of the slowvariableone should “freeze” it in the equation for the fast variable, i.e. consider the latter separately with a constant parameter x, representing a fixed point of the state space and replacing varying xε, and calculate the t invariant measure (for time-dependent coefficients, “instantaneously invari- ant”measure)oftheresultingdynamics.Thecoefficientsofthelimitingslow dynamics are obtained by averaging (in the y variable) the corresponding coefficients of the original prelimit equation with respect to these invariant measures (depending on x). Obviously, the ergodicity of the fast motion for the “frozen”slow variablecan be postulated explicitly or via some sufficient conditions.Undervarioussetsofhypothesesonemayexpectvarioustypesof convergence.Themostdevelopedtheoryconcernswiththeweakconvergence; itissummarizedinthedeeptreatisebyHaroldKushner[57].Weavoidinter- sectionswiththisexcellentbookbyconcentratingoureffortsonmodelswith δ>1/2.Theyariseinanaturalwayandweprovideseveraltypicalexamples widely discussed in the literature. At first glance, such models seem to be muchsimpler thanthosewith δ=1/2since thediffusion inthe fastvariable vanishes rapidly as ε tends to zero. However, the mathematics needed for their analysisisnontrivial(recallthatthedeterministicsetting isjust apar- ticularcase).Ifδ=1/2,thefastvariableusuallyexhibitsonlyconvergencein distributionand,typically,aquestionposedtothemodelconcernseitherthe convergenceoftheslowvariable(withamarginalinteresttothefastmotion) or the convergence in distributions of the whole dynamics. We notice here that the slow variable may converge almost surely also if δ = 0, though the fastonedoesnotconvergeinanysense(recallearlierattemptsofphysiciststo constructatheoryofBrownianmotionwithvelocity).Incontrasttothis,for models with δ>1/2one canprovea uniformconvergencein both variables; to getit for thefastmotiononthe wholetime intervaloneneeds“boundary

Description:
Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a m
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.