US006267913B1 (12) United States Patent (10) Patent N0.: US 6,267,913 B1 Marder et al. (45) Date of Patent: *Jul. 31, 2001 (54) TWO-PHOTON OR HIGHER-ORDER OTHER PUBLICATIONS ABSORBING OPTICAL MATERIALS AND METHODS OF USE Cassstevens, Martin K., et al., “A NeW Class of Materials for Optical PoWer Limiting”, in Nonlinear Optical liquids and (75) Inventors: Seth Marder; Joseph Perry, both of poWer limiters; Proceedings of the Meeting, San Diego, CA, Pasadena, CA (US) Jul. 30—31, 1997 (A98—22080 05—74), Bellingham, Society of Photo—Optical Instrumentation Engineers (SPIE Proceed (73) Assignee: California Institute of Technology, ings, vol. 3146), 1997, pp. 152—159. Pasadena, CA (US) He, et al., “TWo—photon absorption and optical—limiting properties of novel organic compounds,” Opt. Lett. 20 (18), (*) Notice: This patent issued on a continued pros pp. 435—437 (1995). ecution application ?led under 37 CFR He, et al., “TWo—photon absorption based optical limiting 1.53(d), and is subject to the tWenty year patent term provisions of 35 U.S.C. and stabilization in organic molecule—doped solid materi 154(a)(2). als,” Opt. Comm., 117, pp. 133—136 (1995). Zhao, et al., “NeWly Synthesized Dyes and Their Polymer/ Subject to any disclaimer, the term of this Glass Composites for One—and TWo—Photon Pumped Sol patent is extended or adjusted under 35 id—State Cavity Lasing,” Chem. Mater 7 (10), pp. U.S.C. 154(b) by 0 days. 1979—1983 (1995). Narang, et al., “Characterization of a NeW Solvent—Sensitive (21) Appl. No.: 08/965,945 TWo—Photon—Induced Fluorescent (Aminostyrl)pyridinium (22) Filed: Nov. 7, 1997 Salt Dye,” J. Phys. Chem. 100 (11), pp. 4521—4525 (1996). BhaWalkar, et al., “Ef?cient, tWo—photon pumped green Related US. Application Data upconverted cavity lasing in a neW dye,” Opt. Comm. 124, (60) Provisional application No. 60/029,443, ?led on Nov. 12, pp. 33—37 (1996). 1996, provisional application No. 60/029,437, ?led on Nov. 12, 1996, and provisional application No. 60/030,141, ?led He, et al., “Studies of tWo—photon pumped frequencey—up on Nov. 12, 1996. converted lasing properties of a neW dye material,” J. Appl. Phys. 81 (6), pp. 2529—2537 (1997). (51) Int. Cl.7 ...................... .. C09K 11/06; C07D 403/06; G02B 5/22; G02F 1/361 (List continued on next page.) (52) US. Cl. .................. .. 252/582; 252/301.17; 252/583; 252/586; 544/296; 548/303.7; 549/49; 564/443 Primary Examiner—Richard D. Lovering (58) Field of Search ................................... .. 252/582, 583, (74) Attorney, Agent, or Firm—McCutchen, Doyle, BroWn 252/586, 301.17, 301.21, 301.22; 372/53, & Enersen LLP 80, 30; 544/93, 296; 430/73, 74, 945; 359/27, 264; 564/443; 548/303.7; 549/49 (57) ABSTRACT (56) References Cited Compositions capable of simultaneous tWo-photon absorp tion and higher order absorptivities are disclosed. Many of U.S. PATENT DOCUMENTS these compositions are compounds satisfying the formulae D-H-D, A-H-A, D-A-D and A-D-A, Wherein D is an elec 3,158,475 * 11/1964 Cassiers et al. ................. .. 430/73 X 4,014,871 * 3/1977 Kormany et al. .. .. 252/301.17 X tron donor group, A is an electron acceptor group and H 4,041,476 8/1977 SWainson et al. ................. .. 340/173 comprises a bridge of J's-conjugated bonds connecting the 4,078,229 3/1978 SWainson et al. ................. .. 340/173 electron donor groups and electron acceptor groups. In 4,165,434 * 8/1979 Schafer et al. .. 252/301.17 X A-D-A and D-A-D compounds, the at bridge is substituted 4,238,840 12/1980 SWainson et al. . ......... .. 365/119 With electron donor groups and electron acceptor groups, 4,271,395 * 6/1981 Brinkmann et al. .. .. 252/301.17 X respectively. Also disclosed are methods that generate an 4,288,861 9/1981 SWainson et al. ................. .. 365/127 electronically excited state of a compound, including those 4,333,165 6/1982 SWainson et al. ................. .. 365/120 satisfying one of these formulae. The electronically excited 4,466,080 8/1984 SWainson et al. . 365/106 state is achieved in a method that includes irradiating the 4,471,470 9/1984 SWainson et al. . 365/127 5,009,815 * 4/1991 Wakita et al. 252/582 compound With light. Then, the compound is converted to a 5,034,613 7/1991 Denk et al. ..................... .. 250/4581 multi-photon electronically excited state upon simultaneous 5,086,239 * 2/1992 Wang ........................ .. 252/301.17 X absorption of at least tWo photons of light. The sum of the 5,268,862 12/1993 Rentzepis ...... .. 365/151 energies of all of the absorbed photons is greater than or 5,447,662 * 9/1995 Herr et al. 430/945 X equal to the transition energy from a ground state of the 5,451,494 * 9/1995 Diehl et al. 544/296 x compound to the multi-photon excited state. The energy of 5,484,821 * 1/1996 Mandal et al. . 522/26 each absorbed photon is less than the transition energy 5,492,792 * 2/1996 Tamura et al. 430/945 X betWeen the ground state and the loWest single-photon 5,523,573 6/1996 Hanninen et al. . 250/459 excited state of the compound is less than the transition 5,670,090 * 9/1997 Marder et al. . 252/582 5,795,729 * 8/1998 Lee ................................. .. 252/583 X energy betWeen the multi-photon excited state and the ground state. FOREIGN PATENT DOCUMENTS 2187734 * 7/1990 (JP) .................................... .. 252/582 6 Claims, 9 Drawing Sheets US 6,267,913 B1 Page 2 OTHER PUBLICATIONS Williams, et al., “TWo—photon molecular excitation provides intrinsic 3—dimensional resolution for laser—based micros He, et al., “Nonlinear optical properties of a neW chro copy and microphotochemistry, ” The FASEB Journal 8, pp. mophore,” J. Opt. Soc. Am B 14 (5), pp. 1079—1087 (1997). 804—813 (1994). Zhao, et al., “In?uence of tWo—photon absorption on thir Strickler, et al., “TWo—photon excitation in laser scanning d—order nonlinear optical processes as studied by degenerate ?uorescence microscopy,” SPIE 1398, pp. 107—118 (1990). four—Wave mixing: The study of soluble didecyloxy substi Hunter, et al., “Potentials of tWo—photon based 3—D optical tuted polyphenyls,” J. Chem. Phys. 95 (6), pp. 3991—4001 memories for high performance computing,” Applied Optics (1991). 29 (14), pp. 2058—2066 (1990). Prasad, et al., “Multiphoton Resonant Nonlinear Optical Kim, et al., “Synthesis of Electroluminescent Polymer con Processes in Organic Molecules,” ACS Symposium, Chap taining charge Transport and Emissive Chromophores on ter 13, pp. 225—236 (1996). Polymer Skeleton,” Chemistry Letters, pp. 587—588 (1995). He, et al., “Upconversion dye—doped polymer ?ber laser,” Parthenopoulos, et al., “Three—Dimensional Optical Storage Appl. Phys. Lett. 68 (25), pp. 3549—3551 (1996). Memory,” Science 245, pp. 843—845 (1989). Xu, et al., “Measurement of tWo—photon excitation cross Fuke, et al., “TWo—Photon Absorption Spectrum of Trans sections of molecular ?uorophores With data from 690 to —Stilbene, Trans—Cis PhotoisomeriZation via Upper 1A 1050 nm,” J. Opt. Soc. Am. B 13 (3), pp. 481—491 (1996). State,” Chem. Phys. Ltrs. 74 (3), pp. 546—548 (1980). Kennedy, et al., “p—Bis(o—methylstyryl)benZene as a PoW er—Squared Sensor for TWo—Photon Absorption Measure Plakhotnik, et al., “Nonlinear Spectroscopy on a Single Quantum System: TWo—Photon Absorption of a Single Mol ments betWeen 537 and 694 nm,” Anal. Chem. 58 (13), pp. 2643—2647 (1986). ecule,” Science 271, pp. 1703—1705 (1996). Maiti, et al., “Measuring Serotonin Distribution in Live Jones, et al., “Direct observation of the 2.1Ag’electronic Cells With Three—Photon Excitation,” Science 275, pp. state of carotenoid molecules by consecutive tWo—photon 530—532. absorption spectroscopy,” J. Photochem. Photobiol. A: Lin, et al., “Dual Fluorescence of p,p’—Disubstituted Chem. 68, pp. 59—75 (1992). 1,6—Diphenyl—1,3,5—hexatrienes: Evidence of a TWisted Wong, et al., “Measurements of X6) (u);u),—u), (n) in con Intramolecular Charge Transfer State,” J. Phys. Chem. 93 ducting polymers at )\.=620 nm,” Synthetic Metals 49—50, pp. (1), pp. 39—43 (1989). 13—20 (1992). Rice, et al., “TWo—Photon, Thermal Lensing Spectroscopy Tackx, et al., “Distinction of tWo—photon absorption from of Monosubstituted BenZenes in the 1BZM(1Lb) e 1A,g(1A) other nonlinear loss mechanisms by phase—conjugate inter and 1B1,,(1La) e 1A,g(1A) Transition Regions”, J. Phys. ferometry,” Appl. Phys. Lett. 65 (3), pp. 280—282 (1994). Chem. 90, pp. 6793—6800 (1986). Luo, et al., “One— and TWo—Photon Absorption Sepctra of Goodman, et al., “TWo—Photon Spectra of Aromatic Mol Short Conjugated Polyenes,” J. Phys. Chem. 98 (32), pp. ecules,” Acc. Chem. Res. 17, pp. 250—257 (1984). 7782—7789 (1994). Strickler, et al., “3—D Optical Data Storage by TWo—Photon Itoh, et al., “Fluorescence quantum yields of 0t, u)—diphe Excitation,” Adv. Mater. 5 (6), pp. 479—481 (1993). nylpolyenes,” Spectrochimica Acta 50A (13), pp. Maruo, et al., “Three—dimensional microfabrication With 2261—2263 (1994). tWo—photon—absorbed photopolymeriZation,” Opt. Lett. 22 Kumar, et al., “Optical nonlinearity in a mode—locking dye: (2), pp. 132—134 (1997). optical limiting and four Wave mixing,” Chemical Physics Denk, et al., “Anatomical and functional imaging of neurons Letters, 245, pp. 287—291 (1995). using 2—photon laser scanning microscopy,”J. Neuroscience Xu, et al., “Determination of absolute tWo—photon excitation Methods 54, pp. 151—162 (1994). cross sections by in situ second—order autocorrelation,” Anderson, et al., “TWo—photon absorptivities of the all trans Optics Letters 20 (23), pp. 2372—2374 (1995). 0t, u)—diphenylpolyenes from stilene to diphenyloctatetraene MertZ, et al., “Single—molecule detection by tWo—photon via three Wave mixing,” J. Chem. Phys. 70 (9), pp. —excited ?uorescence,” Optics Letters 20 (24), pp. 4310—4315 (1979). 2532—2534 (1995). Sutherland, et al., “TWo—photon absorption and second Beljonne, et al., “TWo—photon absorption and third—har hyperpolariZability measurements in diphenylbutadiene by monic generation of di—alkyl—amino—nitro—stilbene degenerate four—Wave mixing,” J. Chem. Phys. 98 (4), pp. (DANS): A joint experimental and theoretical study,” J. 2593—2603 (1993). Chem. Phys. 103 (18), pp. 7834—7843 (1995). McEWan, et al., “Picosecond—induced Nonlinear Absorption in Liquid Crystal Media,” J. Nonlinear Opt. Phys. and Couris, et al., “Concentration and Wavelength dependence of the effective third—order susceptibility and optical limiting Mater 4 (1), pp. 245—260 (1995). of C60 in toluene solution,” J. Phys. B: At. Mol. Opt. Phys. Said, et al., “Third— and ?fth—order optical nonlinearites in organic materials,” Chem. Phys. Lett. 228, pp. 646—650 28, pp. 4537—4554 (1995). (1994). Brede, et al., “Photo— and Radiation—induced Chemical LakoWicZ, et al., “TWo Photon—Induced Fluorescence Inten Generation and Reactions of Styrene Radical Cations in sity and Anisotropy Decays of Diphenylhexatriene in Sol Polar and Non—polar Solvents,” J. Chem. Soc. Perkin Trans. vents and Lipid Bilayers,” Journal of Fluorescence 2 (4), pp. 2, pp. 23—32 (1995). 247—258 (1992). Desai, et al., “Laser—Induced PolymeriZation Within Carbon Denk, et al., “TWo—Photon Laser Scanning Fluorescence Disul?de Clusters,” J. Phys. Chem., 99 (6), pp. 1786—1791 Microscopy,” Science 248, pp. 73—76 (1990). (1995). Strickler, et al., “Three—dimensional optical data storage in Roux, et al., “TWo—photon—absorption—induced lumines refractive media by tWo—photon point excitation,” Optics cence in organic Waveguide couplers,” J. Opt. Soc. Am. B, Letters 16 (22), pp. 1780—1782 (1991). 12 (3), pp. 428—433 (1995). US 6,267,913 B1 Page 3 El—Shall, et al., “Comparative Polymerization in the Gas Birnbaurn, et al., “Location of a 1Ag state in bithiophene,”J. Phase and in Clusters. 2. Electron Impact and Multiphoto Chem. Phys., 96 (4), pp. 2492—2495 (1992). n—Induced Reactions in Isobutene and BenZene/Isobutene Birnbaurn, et al., “LoW lying singlet states of or, u)—dithie Clusters,” J. Am. Chem. Soc., 117 (29), pp. 7744—7752 nylpolyenes: 0t, u)—dithienylbutadiene, 0t, u)—dithienyl (1995). heXatriene, and 0t, u)—dithienyloctatetraene,”J. Chem. Phys., Puccetti, et al., “Chain—Length Dependence of the Thir 94 (3), pp. 1684—1691 (1991). d—Order PolariZability of Disubstituted Polyenes. Effects of End Groups and Conjugation Length,” J. Phys. Chem, 97 Kohler, et al., “Fluorescence from the 11B“ State of Diphe (37), pp. 9385—9391 (1993). nylheXatriene: Inversion of the 11B“ and 21Ag Levels in Carre, et al., “Biphotonic process for recording holograrns CS2,” J. Phys. Chem, 92 (18), pp. 5120—5122 (1988). With continuous—Wave lasers in the near infraraed,” Optics Birge, “An Introduction to TWo—Photon Spectroscopy,” Letters, 12 (9), pp. 646—647 (1987). Spectroscopy of Biological Molecules: Theory andApplica Kohler, et al., “Saturation kinetics of the S0 to S2 optical tions—Chemistry, Physics, Biology, and Medicine, No. 39, transition in isolated diphenylheXatriene,” J. Chem. Phys., pp. 457—471 (1983). 82 (7), pp. 2939—2941 (1985). Rava, et al., “Regularities in the tWo—photon spectra of Cha, et al., TWo photon absorption of di—alkyl—arnino—ni polysubstituted benZenes,” J. Chem. Phys., 77 (10), pp. tro—stilbene side chain polyrner, Appl. Phys. Lett. 65 (21), 4912—4919 (1982). pp. 2648—2650 (1994). Stachelek, et al., “Detection and assignment of the ‘phan torn’ photochernical singlet of trans—stilbene by tWo—photon Parrna, et al., “TWo—Photon Absorption of 7—HydroXycou excitation,” J. Chem. Phys., 66 (10), pp. 4540—4543 (1977). rnarine,” Chem. Phys. Lett. 54 (3), pp. 541—543 (1978). Itoh, et al., “Dual Fluorescence of Diphenylpolyenes,” J. Phys. Chem, 91 (7), pp. 1760—1764 (1987). * cited by eXarniner U.S. Patent Jul. 31, 2001 Sheet 1 0f 9 US 6,267,913 B1 A 5 mnnu Am n/ HI Q TA 02n1II 2n1 II S__S_S_____________________ r/Iv W l /mII 4A/ A I-1Q /IV C nU0lI mmU f "\I- F nII UTTT FGmm- e/ I mm_ F.“nIII u. mR/ll El.lI II1 RR/ W- nP. ___-__________~_________ DDMuu Dm_/D-- nwI23411O mmmmmmmo IIII n__ __ w4MI. >Ia52Q2E; RR'N FIGURE 2 U.S. Patent Jul. 31, 2001 Sheet 5 0f 9 US 6,267,913 B1 PPh3Br 0 R Ph N R EtOH 2 Q \ O \ BrPh3P R O Nphz R=CN, Br FIGURE 11 / RO / N Me O Q S O 0 N70 KL CN 9 RN\/ 0 L 0,3 0 EtOH, Re?ux CN \ N EtOH, Reflux c 83 /° EtOH, Reflux NC 80% NaOAC EtOH, Reflux 60% N/ o FIGURE 12 U.S. Patent Jul. 31, 2001 Sheet 6 6f 9 US 6,267,913 B1 |IIII|IIII|III|| ||||||| 2205550125 1.5 5I. 0 _ 0 1|||||1||l| 550 600 650 700 750 800 850 Wavelength (nm) FIGURE 13 2 l I I l | I I I I | I I I I | I I I I | I I I l I I I l I o1w2ww2l%2s%: 551. O1 0 IlllIllllI 550 600 650 700 750 800 850 Wavelength (nm) FIGURE 14 U.S. Patent Jul. 31, 2001 Sheet 7 0f 9 US 6,267,913 B1 Exposure time (sec) required polymerization Compounds ln-Bu "'B‘“ WM, :1 n_Bu/ n-BU Et H-BLMNWN I n-Bu’ Et ERN‘QIQO-H-BU Et’ n-Bu, N Me n-Bu’ \ N n \ n Bu n22 me - \ e N , WBU/ MO :1 I I n n: 10 20 30 FIGURE 15 (OE1un1tepr1ug1ty) 0 ' - - l ' 0 500 1000 1500 2000 2500 input Energy (tLJ) FIGURE 17
Description: