ebook img

Two Globally Convergent Adaptive Speed Observers for Mechanical Systems PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Two Globally Convergent Adaptive Speed Observers for Mechanical Systems

TwoGlobally ConvergentAdaptiveSpeed Observers for Mechanical Systems JoseGuadalupe Romero* a, RomeoOrtegab, 5 a Laboratoire d’Informatique,deRobotique etde Microélectronique deMontpellier, 161 RueAda, 34090 Montpellier,France 1 0 b Laboratoire des Signauxet Systémes, Supélec, Plateaudu Moulon,91192 Gif-sur-Yvette, France 2 n a J Abstract 4 A globally exponentially stable speed observer for mechanical systems was recently reported in the literature, under the ] assumptions of known (or no) Coulomb friction and no disturbances. In this note we propose and adaptive version of this S observer, which is robust vis–à–vis constant disturbances. Moreover, we propose a new globally convergent speed observer D that, besides rejecting the disturbances, estimates some unknown friction coefficients for a class of mechanical systems that . containsseveral practical examples. h t a m Keywords: Mechanical systems,adaptiveobservers, robustness. [ 1 1 Introduction (ZRS) [11,14,16], we propose a new adaptive speed ob- v 9 serverthat,besidesrejectingthedisturbances,estimates 2 Thedesignofspeedobserversformechanicalsystemsisa some of the unknown friction coefficients. It should be 7 noted that in this case there are products of unmea- problemofgreatpracticalimportancethathasattracted 0 surablestates and unknownparameters,a situation for theattentionofresearchersforover25years—thereader 0 which very few results are available in the observer de- isreferredtotherecentbooks[1,3]foranexhaustivelist 1. ofreferences.Thefirstgloballyexponentiallyconvergent sign literature—even for the case of linear systems. A 0 speed observer for general, simple mechanical systems similartransformationhasbeenpresentedin[4,5],where 5 acoordinatetransformationthatremovesthequadratic was recently reported in [2], where the Immersion and 1 termsinvelocityisfoundto solvechallengingposition– Invariance (I&I) techniques developed in [1] were used. : feedbacktrackingproblemsforsurfaceshipsandmobile v Although the observer of [2] considers the case of sys- robots. i temswithnon–holonomicconstraints,itreliesontheas- X sumptionsofnofrictionandtheabsenceofdisturbances. r In[13] this speed observerwasredesignedto accommo- Thepaperisorganizedasfollows.Thetwoadaptiveob- a datethepresenceofknownCoulombfrictionanditwas servationproblemsaddressedinthepaperarepresented usedtodesignauniformlygloballyexponentiallystable in Section 2. The standing assumptions and a prelim- trackingcontrollerusing only positionfeedbackfor me- inary lemma are given in Section 3. In Section 4 we chanicalsystems (withoutnon–holonomicconstraints). presentanadaptiveobserverforsystemswithunknown frictionanddisturbances.InSection5the I&Iobserver In this paper we propose two new robust velocity ob- of [13] is redesigned to accommodate the possible pres- serversformechanicalsystems(withoutnon–holonomic ence ofdisturbances andknownfriction.Some physical constraints). First, we add an adaptation stage to the examplesaregiveninSection6.Thepaperiswrapped– observerof[2]torejectconstantinputdisturbances.Sec- upwithsomefuture researchinSection7. ond,formechanicalsystemswithzeroRiemannsymbols Notation. To avoid cluttering the notation, throughout ⋆ thepaperκandαaregenericpositiveconstants.I isthe Corresponding author J.G. Romero Tel. +33 4 67 14 95 n 68. n nidentitymatrixand0n sisann smatrixofzeros, Emailaddresses: [email protected] 0n×is an n–dimensional col×umn vect×or of zeros. Given (Jose GuadalupeRomero* ),[email protected] ai R, i n¯ := 1,...,n , we denote with col(ai) the ∈ ∈ { } (RomeoOrtega). n–dimensionalcolumnvectorwithelementsai.Forany Preprintsubmitted toAutomatica 6 January 2015 matrix A Rn n, (A) Rn denotes the i–th column, The problem is to design a globally convergent robust × i (A)i the i–∈throw and(A∈) the ij–th element. Thatis, adaptiveobserverforthemomentap.The maincontri- ij withe Rn, i n¯,theEuclideanbasisvectors,(A) := butionsofthe paper arethe following. i i Ae , (A∈)i := e∈A and (A) := e Ae . For x Rn, S i Rn×n, S =⊤iS⊤ >0,weidjenote⊤ithe Ejuclidean∈norm (i) For systems with ZRS design a new observer that is G|xi|∈v2en:=axfu⊤nxc,tiaonndfth:eRnweighRtewd–endoerfimnekxthke2Sd:i=fferxe⊤nStixa.l gtulorbbaalnlycecdonavnedrgseonmteinusnpkinteowofntfhreicptiroensecnoceeffiocfitehnetsdris-. → i operators (ii) If the friction is known robustify the observer of [2] torejectthe disturbanced. ∂f ⊤ ∂f ⊤ f := , f := , ∇ ∂x ∇xi ∂x (cid:18) (cid:19) (cid:18) i(cid:19) Remark2.1 The qualifier “some" in item (i) is essen- wherex Rp isanelementofthevectorx.Foramap- tial because, as will become clear later, except for the i pingg :R∈n Rm,itsJacobianmatrixis definedas case of constant inertia matrix, we will not be able to → considerthepresenceofunknownfrictioninallgeneral- izedcoordinates. ( g ) 1 ⊤ ∇ g := ... , Remark2.2 Notice that the objective is to observe ∇ only the momenta (equivalently, the velocity) not to   ( gm)⊤ ensure consistent estimation of the parameters d and  ∇  r:=col(r ).Asiswell–knownintheidentificationliter-   i whereg :Rn R isthe i-thelementofg. ature, a necessary condition for parameter convergence i → isthatthesignalssatisfyapersistencyofexcitationcon- dition[10].Inthisrespect,wenoticethatthesystem(1), 2 FORMULATIONOFTWOROBUSTSPEED (2),whichcanbe representedin the statespaceform OBSERVATION PROBLEMS q˙=v In the paper we consider n–degrees of freedom, per- v˙ =U(q,v) Rv+G(q)u+d − turbed, simple, mechanical systems described in port– r˙ =0 Hamiltonian(pH) form[15]by d˙=0, q˙ 0 I 0 0 n = H(q,p)+ u+ (1) "p˙ # " In R#∇ "G(q)# " d # for some U : Rn Rn Rn, with measurementq does − − × → not satisfy the observability rank condition [7] at zero withtotalenergyfunction H :Rn Rn R velocity, hampering the observation of the parameters × → r.1 1 H(q,p)= p M 1(q)p+V(q), (2) 2 ⊤ − Remark2.3 See Remark1in [12]fora physicalinter- pretationofthedisturbancesdthat,weunderscore,en- where q,p Rn are the generalized positions and mo- teratthe levelofthe momenta. menta, resp∈ectively, u Rm is the control input, G : Rn Rn m is the in∈put matrix, the inertia matrix × M :→Rn Rn n verifies M(q) = M (q) > 0 and 3 ASuitablepH Representation × ⊤ V : Rn →R is the potential energy function. As cus- → tomaryintheobserverliterature,itisassumedthatthe Asshownin [16],the changeofcoordinates control signal u(t) is such that trajectories exist for all t 0. ≥ (q,p) (q,T⊤(q)p), 7→ The systemis subjecttotwodifferentperturbations. whereT :Rn Rn n is afull rankfactorizationofthe × → - Unknown constantdisturbancesd=col(d ) Rn. inverseinertiamatrix,that is, i ∈ - Coulombfrictioncapturedby M 1(q)=T(q)T (q), (4) − ⊤ R=diag r ,r ,.,r Rn n, (3) 1 2 n × { }∈ 1 The authors thank Prof. Witold Respondek for this in- withunknown ri 0, i n¯. sightfulremark. ≥ ∈ 2 transforms(1)into (iii) Thereexistsa mappingQ:Rn Rn suchthat → q˙ 0 T(q) Q(q)=T−1(q). (9) = W(q,p) ∇ "p˙# " T⊤(q) J(q,p) R(q)#∇ Remark4.1 Mechanical systems verifying Assump- − − tion 4.1 have been extensively studied in analytical 0 0 + u+ , (5) mechanics and have a deep geometric significance— "T⊤(q)G(q)# "T⊤(q)d# stemming from Theorem 2.36 in [11]. They belong to the class of systems that are partially linearizing via change of coordinates studied in [16]—see that paper withnew HamiltonianW :Rn Rn R forsomeadditionalreferences. × → 1 W(q,p)= p2+V(q), 4.2 Assumptionson friction 2| | the jk element of the skew–symmetricmatrix J : Rn Todesignourrobustadaptiveobserver,besidesAssump- Rn Rn n givenby × tion 4.1, a restriction on the friction coefficients is im- × → posed.Namely,weassumethatthere ares,with s n, ≤ unknown coefficient and decompose the friction matrix J (q,p)= p [(T) ,(T) ], (6) jk − ⊤ j k R(3)as with [, ] the standard Lie bracket [14] and the trans- R=Rk+Ru formed· f·rictionmatrix whereRk,Ruaren ndiagonalmatricescontainingthe × knownandtheunknownfrictioncoefficientsrespectively. R(q):=T (q)RT(q) 0. (7) Asaworkingexampleconsiderthecasen=3ands=2 ⊤ ≥ with Remark3.1 One possible choice of the factorization (4) is the Cholesky factorization [6,8]. But, as will be- Rk =diag 0,r2,0 , Ru =diag r1,0,r3 { } { } comeclearbelow,otherchoicesmayprovemoresuitable forthe solutionofthe problem. Similarly,withanobviousdefinition,wedecomposethe transformedfrictionmatrix(7)into 4 ROBUST OBSERVER FOR A CLASS SYS- R(q)=R (q)+R (q). TEMS WITH FRICTION AND DISTUR- k u BANCES Tostreamlinethepresentationallfrictioncoefficientsare groupedinavectorr =col(r ) Rn withthe unknown Inthissectionwesolvetheproblemofrobustobservation andknowncoefficientsinvectoirs∈r Rsandr Rn s, of momenta in the presence of disturbances and some u ∈ k ∈ − respectively.Thus,forourworkingexample wehave unknown friction coefficients for a class of mechanical systems. r =col(r ,r ,r ), r =r , r =col(r ,r ). 1 2 3 k 2 u 1 3 4.1 Assumptionon M(q)and apreliminary lemma We also define a set of integersκ n¯ that contains the ⊂ indices of the unknown coefficients of r, which in the Assumption4.1 M−1(q) admits a factorization (4) exampleis κ= 1,3 . withafactorT(q)verifying { } Finally,we define amatrixC Rn s suchthat × ∈ T(q) , T(q) =0, i,j n¯. (8) i j ∈ C r =r . (10) h(cid:16) (cid:17) (cid:16) (cid:17) i ⊤ u Clearly,the matrixC verifies: Instrumental for the developments of this paper is the followingresult,whoseproofmaybe foundin[16]. rank C =s. • { } Forj κ,(C) =e . Lemma4.1 The followingstatements areequivalent: • ∈ j κj Inourexample (i) M(q)satisfiesAssumption4.1. (ii) The RiemannsymbolsofM(q)areallzero.2 1 0 C =0 0. 2 Seeequations(6)and(7)of[16]forthedefinitionofthese symbols. 0 1     3 The following assumption and lemma are instrumental 4.3 First robustmomentaobserver forourfuture developments. Proposition1 Considerthe system(1),(2)wherethe Assumption4.2 The i–th row of factor T(q) is inde- inertia matrix M(q) and the friction matrix R verify pendent ofq for i κ.3 Assumptions 4.1 and 4.2. The 2n+s dimensional I&I ∈ adaptivemomenta observer Lemma4.2 Under Assumption 4.2, there exists con- stotarnstzm=atcroilc(ezs)Yj ∈RnRwn×esh,ajve∈ n¯, such that, for all vec- p˙I =−T⊤(q)[∇V −G(q)u−dˆ] i n ∈ ( Y pˆ)rˆ [λQ(q)+R (q)]pˆ i i u k n − − i=1 R (q)z =( Y z )r . (11) X u j j u n Xj=1 r˙uI =( Yi⊤pˆi)(p˙I +λpˆ) i=1 Proof4.1 From(10)itfollowsthat X d˙ =T(q)pˆ I n pˆ=pI +λQ(q) Ru = eie⊤i (e⊤i Cru). (12) 1 s rˆ =r + ( pˆ L pˆ)e Xi=1 u uI 2λ ⊤ i i i=1 X Usingthe definitionofRu(q)we get dˆ=dI +q n pˆ =T−⊤(q)pˆ R (q)z=T (q) e e (e Cr ) T(q)z, u ⊤ i ⊤i ⊤i u n "Xi=1 # wgiivtehntihne(c9o)n,sYtiantRnn××sn,miatrn¯icgeisveLni igniv(e1n4)byan(d15λ),>Q0(qa) ∈ ∈ = T (q)e e T(q)ze Cr freeparameter,ensuresboundedness ofallsignalsand ⊤ i ⊤i ⊤i u i=1 X lim[pˆ(t) p(t)]=0. (16) n n t − →∞ = T (q)e e T(q) e z e Cr . (13)  ⊤ i ⊤i  j j ⊤i u forallinitialconditions (q(0),p(0)) Rn Rn. Xi=1 Xj=1 ∈ ×   Proof4.2 Let the observation and parameter estima- Hence,(11)followsswappingthe sums anddefining tionerrorsbe definedas n p˜=pˆ p Y := T (q)e e T(q)e e C j ⊤ i ⊤i j ⊤i − r˜ =rˆ r (17) Xi=1 u u− u = L e e C, j n¯ (14) d˜=dˆ d. (18) i j ⊤i ∈ − X Following the I&I adaptive observer procedure [1] we withmatricesL definedas i propose to generate the estimates as the sum of a pro- portionalandanintegralterm,thatis, L :=T (q)e e T(q), i n¯ (15) i ⊤ i ⊤i ∈ pˆ=p +p (q) I P rˆ =r +r (pˆ) (19) ItonlyremainstoprovethatthematricesYj andLiare u uI uP constant. Towards this end we refer to (14) and notice dˆ=d +d (q), (20) I P that,inviewofAssumption4.2,theterme T(q)iscon- ⊤i stantfori κwhiletheterme C isan1 szerovector wherethe mappings ∈ ⊤i × fori / κ.Completingthe proof. ∈ p :Rn Rn P → Remark4.2 As indicated in Remark 2.1, except for r :Rn Rs uP → the case when M (and, consequently, the factor T) are d :Rn Rn, P constant, to satisfy Assumption 4.2 we have to assume → thatsomeoftheelementsofr areknown.SeeSection6 andtheobserverstatesp ,d Rn andr Rswillbe forsomephysicalexamples. definedbelow.4 I I ∈ uI ∈ 3 Consequently,theunknownfrictioncoefficientsarelocated 4 The reason for the particular selection of the arguments in theserows. oftheproportional termswill becomeclear below. 4 First,westudythedynamicbehaviorofp˜andcompute yields d˜˙= d T(q)p˜. (24) p˜˙ =p˙ + p T(q)p+T (q)[ V G(q)u] −∇ P I ∇ P ⊤ ∇ − We will now analyze the stability of the error model +[Rk(q)+Ru(q)](pˆ p˜) T⊤(q)(dˆ d˜), (22),(23)and(24)withtheaidoftheproperLyapunov − − − functioncandidate where we have invoked Assumption 4.1 that ensures— via(6)and(8)—thatJ(q,p)=0,andused(17)toobtain V(p˜,d˜,r˜ )= 1(p˜2+ d˜2+ r˜ 2). (25) thetermsinthesecondrow.Invoking(11)wecanwrite u 2 | | | | | u| n Takingits time-derivativewe obtain R (q)pˆ=( Y pˆ)r . u i i u i=1 n X V˙ = p˜ R(q)+λI p˜ p˜ ( Y pˆ)r˜ T (q)d˜ ⊤ n ⊤ i i u ⊤ − − − Hence,proposing h i (cid:2) Xi=1 (cid:3) λr˜ r +d˜ d T(q) p˜. (26) p˙I = pPT(q)pˆ T⊤(q)[ V G(q)u] − u⊤∇ uP ⊤∇ P −∇n − ∇ − (cid:2) (cid:3) Clearly,ifthemappingsr (pˆ)andd (q)solvethepar- Y pˆ rˆ R (q)pˆ+T (q)dˆ, (21) uP P i i u k ⊤ tialdifferentialequations(PDEs) − − (cid:16)Xi=1 (cid:17) n yields 1 r = ( Y pˆ) ∇ uP −λ i⊤ i (27) i=1 n X p˜˙ = [R(q)+ qpPT(q)]p˜ ( Yipˆi)r˜u+T⊤(q)d˜ ∇dP =In, − ∇ − i=1 n X onegets = [R(q)+λI ]p˜ ( Y pˆ)r˜ +T (q)d˜, (22) n i i u ⊤ − − Xi=1 V˙ =−p˜⊤[R(q)+λIn]p˜≤−λ|p˜|2. (28) whereto obtainthe secondequationswe haveselected From (25), (28) we conclude that p˜ and 2 d˜,r˜ . Doing some standard sig∈naLl ch∩asLin∞g it is u pP(q)=λQ(q), straig∈htfLor∞wardto provefromherethat(16)holds. withQ(q)givenin(9). Motivatedbytheconclusionaboveletusnowstudythe PDEs(27).Thesecondonehasthetrivialsolutiond = P Now,the time derivativeofr˜u is givenas q. Regarding the first one, it is clear that the elements ofthe mappingr (pˆ)mustbe ofthe quadraticform r˜˙ =r˙ + r pˆ˙ uP u uI ∇ uP =r˙ + r [p˙ + p T(q)p] 1 =r˙uI +∇ruP[p˙I +∇λ(pˆP p˜)]. (ruP(pˆ))i = 2λpˆ⊤Lipˆ, i∈s¯, uI ∇ uP I − Hence,choosing with constant, symmetric matrices Li Rn×n. Replac- ∈ ingthe expressionaboveinthe PDE (27)yields r˙ = r (p˙ +λpˆ), uI −∇ uP I pˆ L ⊤ 1 yields . n r˜˙u =−λ∇ruPp˜. (23)  .. =− Yi⊤pˆi. Finally,the time derivativeofd˜is givenas pˆ⊤Ls Xi=1     d˜˙=d˙ + d T(q)p Thatleadus tothe solution I P ∇ =d˙ + d T(q)(pˆ p˜). I P ∇ − L⊤1ej ... L⊤sej =−Yj, j ∈n¯. (29) Hence,choosing h i d˙ = d T(q)pˆ, It only remains to show that the resulting matrices L I P i −∇ 5 aresymmetric.From(29)weget whosesolutionis notobvious. −L⊤j =− L⊤j e1 L⊤j e2 ... L⊤j en 5 ROBUST OBSERVER FOR GENERAL h i PERTURBED MECHANICAL SYSTEMS = Y e Y e ... Y e 1 j 2 j n j WITH KNOWNFRICTION h i Clearly,the matrixL is symmetric ifandonly if j InthissectionweredesigntheI&Ispeedobserverof[13], see also [2], to ensure its global convergence in spite of e Y =e Y , i,k n¯, i=k. ⊤i k ⊤k i ∀ ∈ 6 the presence of the unknown disturbances d and known frictionforcesinallcoordinates. This factcanbe easilyverifiedusing (14) Proposition2 Consider the system (1), (2) with n e⊤kYi=e⊤k T⊤(q)eje⊤j T(q)eie⊤j C known frictionmatrixR.Thereexistsmoothmappings j=1 Xn A:R4n R 0 Rn Rn R4n+1 =e⊤i T⊤(q)eje⊤j T(q)eke⊤j C B:R4n×R≥0×Rn× Rn→ j=1 × ≥ × → X =e⊤i Yk. suchthatthe interconnectionof (1),(2)with X˙ =A(X,q,u) Replacing all the derivations above in p˙ , d˙ and r˙ (31) I I uI pˆ =B(X,q), givesthe equationsgivenin the propositioncompleting the proof. where X R4n R , pˆ Rn, ensures (16) holds for 0 Remark4.3 If Assumption 4.1 is not imposed a term allinitial∈conditi×ons≥ ∈ J(q,p)p appears in the error equation (22) and (23). Eventhoughthistermisquadraticintheunknownstate (q(0),p(0),X(0)) Rn Rn R4n R . 0 p, the properties of J(q,p) can be used to handle this ∈ × × × ≥ term in the first error equations—this is done in the Thisimpliesthat,inspiteofthepresenceoftheunknown secondobserverinthenextsection.However,thereisno disturbances d, (31) is a globally convergent momenta obviouswaytocreateasuitableerrortermforthesecond observerforthemechanicalsystemwithfriction(1),(2). errorequationstymingtherelaxationofAssumption4.1. Remark4.4 If the matrices Y are not constant the i Proof5.1 Theconstructionoftheobserverfollowsvery first PDE in (27) does not admit a solution, hence As- closely the one reported in [13] with the only difference sumption 4.2 is required. It can be shown that making of the inclusion of an adaptation law for the unknown r function ofq doesnotsolvethe problem,because a uP disturbanceparametersd.However,forthesakeofcom- quadraticfunction ofpˆwillappearinV˙. pleteness,a detailedderivationofallthe steps isgiven. Remark4.5 As showninProposition6of[16]the dy- Define the estimationerrors namicsofmechanicalsystemssatisfyingAssumption4.1 expressedinthe coordinates(Q,p)takethe form p˜=pˆ p − (32) Q˙ =p d˜=dˆ−d. p˙ =−R˜(Q)p−T˜⊤(Q)[∇V˜(Q)−G˜(Q)u+d], (30) Following the I&I adaptive observer procedure [1] we proposeto generatethe estimates as where (˜)(Q) := ()(QI(Q)), with QI : Rn Rn a left inverse·of Q(q), th·at is, Q(QI(z)) = z for→all z Rn. pˆ:= p +p (q,q|,|p) ∈ I P Althoughthe constructionofanobserverfor(30)when (33) the friction is knownis straightforward,the case of un- dˆ:= dI +dP(q,r) knownfrictionisfarfromtrivial.ApplyingtheI&Ipro- cedure used in Proposition 1 leads, for the definition of dP(q), to aPDE ofthe form where the mappings pP : Rn Rn Rn Rn and d Rn,andthe observerstate×s d ×Rn,p→ Rn and P I I S(Q)=T˜(Q), r ∈R aredefined suchthat(16)hold∈s. ∈ ∇ ∈ 6 We,therefore,studythedynamicbehaviorofp˜andcom- Now, since the term in brackets in (38) is equal to zero pute if|p=pˆandq|=q,there existmappings p˜˙ =p˙I +∇qpPq˙+∇q|pPq|˙ +∇|ppP|p˙− ∆q,∆p :Rn×Rn×Rn →Rn×n J(q,p)p+T (q)[ V G(q)u]+R(q)p T (q)d. ⊤ ⊤ − ∇ − − verifying In[2]ithasbeenshownthatthemappingJ(q,p)defined ∆ (q,|p,0)=0, ∆ (q,|p,0)=0, (39) in(6)verifiesthe followingproperties: q p andsuchthat (P.i) J(q,p)is linearinthe secondargument,thatis (q,pˆ) (q|,|p)=∆ (q,q|,e )+∆ (q,|p,e ), (40) J(q,α1p+α2p¯)=α1J(q,p)+α2J(q,p¯) H −H q q p p where forallq,p,p¯ Rn,andα ,α R. (P.ii) Thereexistsam∈appingJ¯:R1n 2R∈n Rn×n satisfy- eq :=q|−q, ep :=|p−pˆ. (41) × → ing J(q,p)p¯=J¯(q,p¯)p. Substituting (36),(38)and(40)in(35),yields Hence,proposing p˜˙ =[J(q,p) ψI R]p˜ n − − p˙ := p q|˙ p |p˙ +J(q,pˆ)pˆ R(q)pˆ + ∆q(q,q|,eq)+∆p(q,|p,ep) T(q)p˜+T⊤(q)d˜. I q| P |p P −∇ −∇ − − (cid:16) (cid:17) T(q)⊤(q) V +v qpPT(q)pˆ+T⊤(q)dˆ, Themappings∆ ,∆ playtheroleofdisturbancesthat − ∇ −∇ q p (34) are dominated with a dynamic scaling and a proper choiceoftheobserverdynamics.For,definethedynam- togetherwithProperties(P.i) and(P.ii) yields icallyscaledoff–the–manifoldcoordinate p˜˙ =[J(q,p)+J¯(q,pˆ) R(q) qpPT(q)]p˜+T⊤(q)d˜. η = 1p˜, (42) − −∇ (35) r Itis clearthatif the mappingp solvesthe PDE P where r is a scaling factor to be defined. The dynamic qpP =[ψIn+J¯(q,pˆ)]T−1(q), behaviorofη is givenby ∇ 1 r˙ withψ >0adesignconstant,thep˜–dynamicsreducesto η˙ =(J R ψI)η+(∆q+∆p)Tη+ T⊤d˜ η, (43) − − r −r p˜˙ =[J(q,p) ψIn R(q)]p˜+T⊤(q)d˜. where, for brevity, the arguments of the mappings are − − omitted. Recalling that J(q,p) is skew–symmetric and R(q) 0 ≥ the unperturbed part of the error dynamics above, i.e. Mimicking[2]selectthe dynamics ofq|,|pas whend˜=0,is exponentiallystable. q|˙ =T(q)pˆ ψ e 1 q Similarly to [13], to avoid the solution of the PDE, the − |p˙ = T (q) V +v+J(q,pˆ)pˆ Rpˆ (44) dynamic scaling technique is used. Towards this end, ⊤ − ∇ − define the mapping ψ e +T (q)dˆ 2 p ⊤ − H(q,pˆ):=[ψIn+J¯(q,pˆ)]T−1(q). (36) where ψ1,ψ2 are some positive functions of the state definedlater.Using (44),togetherwith(41),weget anddefine p as P e˙ =T(q)ηr ψ e q 1 q − (45) pP(q,q|,|p):=H(q|,|p)q. (37) e˙p =∇qpPT(q)ηr−ψ2ep. Thechoiceaboveyields qpP = (q|,|p),whichmaybe Moreover,selectthe dynamics ofr as ∇ H writtenas ψ r r˙ = (r 1)+ ( ∆ T 2+ ∆ T 2), r(0) 1, (46) qpP = (q,pˆ) [ (q,pˆ) (q|,|p)]. (38) −4 − ψ k p k k q k ≥ ∇ H − H −H 7 with the matrix induced 2–norm.At this point we whichclearlysolvesthe PDE k·k makethe importantobservationthatthe set 1 r R:r 1 r qdP(q,r)=0. { ∈ ≥ } r − ∇ isinvariantforthedynamics(46).Hence,r(t) 1, t ≥ ∀ ≥ Itonlyremainsto study the termr˜r˙,whichisgivenby 0. Onother hand,taking the time-derivativeofd˜,weget r˜r˙ = ψr˜2+r˜r( ∆ T 2+ ∆ T 2). p q −4 ψ k k k k d˜˙=d˙ + d T(q)p+ d r˙ I ∇q P ∇r P Now, (39) ensures the existence of mappings ∆¯ , ∆¯ : =d˙I +∇qdP(q,r)T(q)(pˆ−rη)+∇rdPr˙ Rn Rn Rn Rn×n suchthat q p × × → andchoosing ∆ (q,|p,e ) ∆¯ (q,|p,e ) e q q q q q k k≤k k| | d˙I =−∇qdPT(q)pˆ−∇rdPr˙, (47) k∆p(q,|p,ep)k≤k∆¯p(q,|p,ep)k|ep|. the d˜–dynamicstakethe form Hence d˜˙= r qdPT(q)η (48) ∆pT 2+ ∆qT 2 T 2 ( ∆¯p 2 ep 2+ ∆¯q 2 eq 2). − ∇ k k k k ≤k k | k k | | | k | | Setting Wenowanalyzetheerrorsystem(42),(45),(46),(48)— with the coordinate r˜= (r 1). For, define the proper Lyapunovfunctioncandidat−e. ψ3 =κ rr˜ ψ = T 2 ∆¯ 2+κ V(η,e ,e ,r˜,z ):= 1 η 2+ e 2+ e 2+r˜2+ d˜2 . 4 4(1+ψ3)k k k qk q p a q p 2 | | | | | | | | rr˜ (cid:16) (4(cid:17)9) ψ5 = T 2 ∆¯p 2+κ, 4(1+ψ )k k k k Takingits time-derivativeweobtain 3 onegets ψ 1 V˙ 1 η 2 ψ r2 T(q) 2 e 2 1 q ≤− 4 − | | − − 2 k k | | (cid:18) (cid:19) (cid:18) (cid:19) V˙ κ(η 2+ e 2+ e 2+r˜2] (52) ψ 1r2 p 2 T(q) 2 e 2+r˜r˙+ ≤− | | | q| | p| 2 q P p − − 2 k∇ k k k | | (cid:18) (cid:19) forsomepositiveconstantκ. 1 +d˜⊤ r qdP T(q)η r − ∇ (cid:18) (cid:19) The proof is completed invoking the arguments of [13], selectingthe observerstateas Clearly,ifweset ψ =4(1+ψ ), ψ = 1r2 T(q) 2+ψ (50) X:=(q|,|p,pI,dI,r−1), 3 1 4 2 k k and defining A(X,q,u) from (34), (44), (46) and (47) and andsetting B(X,q) via(33). 1 ψ = r2 p 2 T(q) 2+ψ , 2 q P 5 2 k∇ k k k Remark5.1 Itisclearfromtheproofthatthekeystep where ψ ,ψ ,ψ are positive functions of the state de- 3 4 5 to reject the disturbances is to make the proportional finedbelow,one gets term of the parameter estimator, d a function of the P V˙ ψ η 2 ψ e 2 ψ e 2+r˜r˙ dynamicscalingfactorr, see(51). 3 4 q 5 p ≤− | | − | | − | | 1 +d˜ r d (q,r) T(q)η. ⊤ q P r − ∇ 6 PHYSICAL EXAMPLES (cid:18) (cid:19) To eliminate the cross term appearing in the last term Inthissectionwepresentthreephysicalmechanicalsys- ofthe righthandsideaboveweselect tems that satisfy the conditions of Proposition 1. Con- 1 sequently,robustadaptivespeedobservationispossible dP(q,r)= r2q, (51) forthem. 8 6.1 Constantinertia matrix andthedefinitionofallconstantsmaybe foundin[16]. TheCholeskyfactorizationisgivenas In the case of constant inertia matrix Assumption 4.1 is trivially satisfied, because the factor T can be taken 1 0 0 0 to be constant. Assumption 4.2 is also satisfied with √I dim(q) = n and C = In, hence all friction coefficients T(q)= √−1I a12 0 0 , canbe identified.  0 M21 1 S 1 0   − m a3 12 a3  Gsoilvveens(a9n)yiscognivsetannbtyfactor T, the vector field Q(q) that  0 qMm21 a13C12 0 a13   q  andthe vectorfield Q(q)thatsolves(9)is Q(q)=T 1q. − √Iq Finally,from(14)and(15)weget 1  a2(q1+q2)  n Q(q)= . M1 Yj = T⊤(q)eie⊤i T(q)eje⊤i j ∈n¯ −a2 m2C12+a3q3 Xi=1  a qM21S +a q  Li =[(T)i]⊤(T)i, i∈n¯. − 2q m 12 3 4 AmatrixC thatsatisfiesAssumption4.2is 6.2 Planarredundantmanipulatorwithoneelasticde- greeof freedom I 2 C = . "02 2# This is a 4-dof underactuated mechanical system de- × pictedin1.Theinverseinertiamatrixis givenby Hence, we can consider as unknown the frictions in the elasticcoordinater andthe revolutejointr . 1 2 Finally, q4 m 1 0 0 0 Y = I 1⊤  1 a2 0 0 L I −√I   q2 0 0 0 0 Y = 2⊤  a2 a2 0 0 q1 −√I 2 M  1 0  I 0 2 2 L1 ="0 0# ×  q3  02 2 02 2  × ×  Fig.1.Planarredundantmanipulatorwithoneelasticdegree   1 a2 of freedom. I −√I 0 2 2 L2 =−√a2I a22  ×  1I −I1 0 0  02×2  02×2   M−1(q)=∗ a122 + I1 −m1ℓS12 m1ℓC12, 6.3 2D-Spider cranegantrycart ∗ ∗ a123 0   1  ∗ ∗ ∗ a23  This is a 3-dof underactuated mechanical system de-   pictedinFig.2.The inertiamatrixis wherewedefined m +m 0 mL C S :=sin(q +q ), C :=cos(q +q ) r 3 3 12 1 2 12 1 2 M(q)= m +m mL S , √Mmℓ ∗ r 3 3 a2 := √m+M, a3 :=√M +m,  ∗ ∗ mL23    9 Fy Fromthe definitionofT(q)in(53)itis clearthat (xr, xy) mr C⊤ = 0 0 1 h i F x satisfiesAssumption4.2.Hence,we canconsiderasun- knownthe frictionparameterr . 3 Y q 3 L3 Finally,from(14)and(15)we get X m Y1⊤ = 0 0 c2 , h i 0 0 0 Fig. 2.2D-Spidercrane gantrycart L1 =0 0 0 . withinverse 0 0 c2   mr+mC32 mC3S3 C3   (mr+m)mr (mr+m)mr L−3mr We show several simulations of the proposed observer. M−1(q)= ∗ m(mr+rm+m−)mmCr32 −mSr3L3  Ttrhoel isnypsutetsm, thhaasttihs,eutw=ocfoolr(cFes,sFho)wanndincFonigs.ta2natsincpount-  ∗ ∗ mmrrL+23mm  matrixGofthe form x y   where,to simplify the notation,wehavedefined 1 0 G=0 1. S :=sin(q ),C :=cos(q ), 3 3 3 3 0 0   and the definition of all constants may be found in [9].   AnuppertriangularfactorizationofM 1(q)isgivenas Theparametersaretakenasmr =0.5kg forringmass, − m=1kgforpayloadmassandL =0.5mforthecable 3 length. We fix the control inputs as F = 1.535cos(t) x a 0 −bC3 and Fy = 7.67sin(t). The disturbances are taken as d = col(0.1,0.2,0.2) and the friction coefficients r = T(q)=0 a bS , (53) 3 − col(0,0,0.5),with r being unknown. 3 0 0 c      The transient behavior of the error signals p˜,r˜ and d˜ 3 wherewedefined the constants with the tuning parameter λ = 0.8 and different initial conditionsofd ,r andP areshowninFig.3andFig.4. I 3I I Asseenfromthefigures,besidestheconvergencetozero 1 1 m +m r a:= ,b:= ,c:= . ofthemomentaestimatepredictedbythetheory,wealso √m +m cL m mL2m r 3 r s 3 r observethattheestimatedparametersconvergetotheir truevalue—assessingthefactthatthesignalschosenfor We can check that the columns of T(q) satisfy (8) and the simulationarepersistentlyexciting. thus the system verifies Assumption 1. Taking the in- verseofT(q)weget To evaluate the effect ofthe tuning parameterλ onthe transient behavior we also show in Fig.5 and Fig.6 the transientbehavioroftheerrorsignalsfordifferentvalues 1 0 aL mC a 3 3 ofλ. T−1(q)=0 a1 aL3mS3, 0 0 1  Finally to illustrate the robustness of the adaptive ob-  c  server,wecarriedouta simulationconsideringthatthe   inputdisturbanced issubjecttostepchanges.Thetra- FromtheequationaboveitisclearthatamappingQ(q) 1 jectories of d (t) and its estimation, depicted in Fig. 7, thatsolves(9)is 1 clearlyillustratethetrackingcapabilityoftheproposed observer. 1q +aL mS a 1 3 3 Remark6.1 Itisinterestingtonotethatthestandard Q(q)= a1q2−aL3mC3. (lower triangular) Cholesky factorization of M−1(q)  1cq3  doesnotsatisfy (8).   10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.