ebook img

Two-Dimensional Change Detection Methods: Remote Sensing Applications PDF

77 Pages·2012·3.881 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Two-Dimensional Change Detection Methods: Remote Sensing Applications

SpringerBriefs in Computer Science Series Editors Stan Zdonik Peng Ning Shashi Shekhar Jonathan Katz Xindong Wu Lakhmi C. Jain David Padua Xuemin Shen Borko Furht V. S. Subrahmanian Martial Hebert Katsushi Ikeuchi Bruno Siciliano For furthervolumes: http://www.springer.com/series/10028 _ Murat Ilsever Cem Ünsalan • Two-Dimensional Change Detection Methods Remote Sensing Applications 123 Murat I_lsever CemÜnsalan Department of Computer Engineering Electrical andElectronics Engineering Yeditepe University Yeditepe University Ag˘ustosYerle(cid:2)simi26 Ag˘ustosYerle(cid:2)simi26 34755Kayisdagi 34755Kayisdagi Istanbul Istanbul Turkey Turkey ISSN 2191-5768 ISSN 2191-5776 (electronic) ISBN 978-1-4471-4254-6 ISBN 978-1-4471-4255-3 (eBook) DOI 10.1007/978-1-4471-4255-3 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012940953 (cid:2)CemÜnsalan2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Sequential images captured from a region may be used to detect changes there. Thistechniquemaybeusedindifferentfieldssuchasvideosurveillance,medical imaging, and remote sensing. Especially in remote sensing, change detection is used in land use and cover analysis, forest or vegetation inspection, and flood monitoring. Although manual change detectionis anoption, the time required for itcanbeprohibitive.Itisalsohighlysubjectivedependingontheexpertiseofthe inspector.Hence,theneedforautomatedmethodsforsuchanalysistasksemerged. Thisbookisaboutsuchchangedetectionmethodsfromsatelliteimages.Ourfocus is on changes in urban regions. The layout of the book is as follows. Westartwithabriefreviewofchangedetectionmethodsspecializedforremote sensing applications. While the first Earth observation satellites were equipped with 30-100 m resolution sensors; modern ones can capture images up to 0.5 m resolution.Thisalsoledtotheevolutionofchangedetectionmethodsforsatellite images. Early methods were generally pixel based. As the detail in the image increased,moresophisticatedapproachesemerged(suchasfeaturebasedmethods) for change detection. Next, we consider pixel based change detection.We summarize well-known methodssuchas:imagedifferencing,imageratioing,imageregression,andchange vector analysis. We introduce median filtering based background subtraction for satellite images. We also propose a novel pixel based change detection method based on fuzzy logic. To benefit from color and multispectral information, we explore several methods such as PCA, KTT, vegetation index differencing, time dependent vegetationindices,andcolorinvariants.Sincethesemethodsdependonalinearor a nonlinear color space transformation, we labeled them as such. Naturally, they can only be applied to the dataset having color or multispectral information. We also considered texture based descriptors for change detection. Here, we benefit from the gray level co-occurrence matrix. We extracted four texture descriptorsfromittobeusedforchangedetection.Wealsobenefitfromentropyto summarize the texture. v vi Preface Different from previous approaches, we introduced a change detection frame- work using structure information. Here, we extract the structure in an image by edge detection, gradient magnitude based support regions, matched filtering, and local features. Graph formalism also helped us to summarize the structure in the image. Finally, we introduced fusion of change detection methods to improve the performance. Since different change detection methods summarize the change information in different ways, they can be fused to get a better performance. Therefore,weconsideredthedecisionlevelfusionbasedonbinarylogic.Wealso developed a fusion method based on association. We statistically evaluated the performance of the mentioned change detection methods. On a large dataset, we obtained very promising results. Especially, the change detection performance after fusion is noteworthy. Thebriefsummaryaboveindicatesthatthisbookmaybeusefulforautomated change detection studies. It summarizes and evaluates the existing methods on changedetection.Italsoproposesseveralnovelmethodsforsatelliteimagebased changedetection.Therefore,theinterestedreadermaybenefitfrombothcategories to solve his or her research problems. Istanbul, Turkey, May 2012 Murat I_lsever Cem Ünsalan Acknowledgments The authors gratefully acknowledge the financial support of The Scientific and Technological Research Council of Turkey (TUBITAK), in the framing and execution of this work through project number 110E302. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Literature Review on Change Detection in Satellite Images . . . . 1 1.2 Layout of the Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pixel-Based Change Detection Methods. . . . . . . . . . . . . . . . . . . . . 7 2.1 Image Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Image Rationing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Image Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Change Vector Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Median Filtering-Based Background Formation. . . . . . . . . . . . . 16 2.6 Pixelwise Fuzzy XOR Operator. . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Transformation-Based Change Detection Methods . . . . . . . . . . . . 23 3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Kauth-Thomas Transformation . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Vegetation Index Differencing . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Time-Dependent Vegetation Indices. . . . . . . . . . . . . . . . . . . . . 29 3.5 Color Invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Texture Analysis Based Change Detection Methods. . . . . . . . . . . . 35 4.1 Gray Level Co-occurrence Matrix. . . . . . . . . . . . . . . . . . . . . . 35 4.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Structure-Based Change Detection Methods . . . . . . . . . . . . . . . . . 41 5.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Gradient-Magnitude-Based Support Regions. . . . . . . . . . . . . . . 42 ix x Contents 5.3 Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4 Mean Shift Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5 Local Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.6 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.7 Shadow Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Fusion of Change Detection Methods . . . . . . . . . . . . . . . . . . . . . . 53 6.1 Fusion Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Category Level Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 Inter-Category Level Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.1 The Data Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.2 Performance Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.2.1 Pixel-Based Change Detection Methods. . . . . . . . . . . . . 61 7.2.2 Transformation Based Change Detection Methods . . . . . 62 7.2.3 Texture-Based Change Detection Methods. . . . . . . . . . . 62 7.2.4 Comparison of Thresholding Algorithms . . . . . . . . . . . . 63 7.2.5 Structure-Based Change Detection Methods. . . . . . . . . . 65 7.2.6 Fusion of Change Detection Methods . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8 Final Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 1 Introduction Abstract Changedetectionistheprocessofidentifyingdifferencesinaregionby comparingitsimagestakenatdifferenttimes.Itfindsapplicationsinseveralfields such as video surveillance, medical imaging, and remote sensing (using satellite imagery).Severalchangedetectionapplicationsusingsatelliteimagesareintheareas oflanduseandcoveranalysis,forestorvegetationinspection,andfloodmonitoring. Especiallyforremotesensingapplications,manuallylabelingandinspectingchanges isacumbersometask.Also,manualinspectionispronetoerrorsandhighlysubjective dependingontheexpertiseoftheinspector. · Keywords Changedetection Literaturereview 1.1 LiteratureReviewonChangeDetection inSatelliteImages Westartbygivingasurveyofchangedetectionreviewarticlesintheliterature.In thefollowingsections,weexploretheexistingmethodsindetail.Inthissection,we benefitfromthesesurveyarticlesbytheircomparativeresultsandabriefsummary oftheadvantageanddisadvantageofeachmethodintheliterature. In satellite image based change detection applications, the resolution is one of the most important factors. While the first earth observation satellites (such as LANDSAT)wereequippedwith30–100meterresolutionsensors;modernonescan captureimagesupto0.5meterresolution.Thisalsoledtotheevolutionofchange detection methods for satellite images. Early methods were generally pixel based. Asthedetailintheimageincreased,moresophisticatedapproachesemerged(such asfeaturebasedmethods)forchangedetection.Therefore,initialsurveypapersonly focusedonpixelbasedmethods. Singh [1] summarized several change detection methods such as image differ- encing, image regression, image ratioing, vegetation index differencing, Principal Component Analysis (PCA), post-classification comparison, and change vector M.˙IlseverandC.Ünsalan,Two-DimensionalChangeDetectionMethods, 1 SpringerBriefsinComputerScience,DOI:10.1007/978-1-4471-4255-3_1, ©CemÜnsalan2012

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.