ebook img

Twisted Alexander polynomials of hyperbolic knots PDF

0.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Twisted Alexander polynomials of hyperbolic knots

TWISTEDALEXANDERPOLYNOMIALSOFHYPERBOLICKNOTS NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON 2 1 0 ABSTRACT. WestudyatwistedAlexanderpolynomialnaturallyassociatedto 2 ahyperbolicknotinanintegerhomology3-sphereviaaliftoftheholonomy n representationtoSL(2,C). ItisanunambiguoussymmetricLaurentpolyno- a mialwhosecoefficientslieinthetracefieldoftheknot. Itcontainsinforma- J tionaboutgenus,fibering,andchirality,andmoreoverispowerfulenoughto 9 sometimesdetectmutation. 1 Wecalculatedthisinvariantnumericallyforall313,209hyperbolicknotsin S3withatmost15crossings,andfoundthatinallcasesitgaveasharpbound ] onthegenusoftheknotanddeterminedbothfiberingandchirality. T WealsostudyhowsuchtwistedAlexanderpolynomialsvaryasonemoves G aroundinanirreduciblecomponentX0oftheSL(2,C)-charactervarietyofthe h. knotgroup. Weshowhowtounderstandallofthesepolynomialsatoncein t termsofapolynomialwhosecoefficientslieinthefunctionfieldofX0. We a usethistohelpexplainsomeofthepatternsobservedforknotsinS3,and m explore a potentialrelationshipbetween thisuniversalpolynomialandthe [ Culler-Shalentheoryofsurfacesassociatedtoidealpoints. 3 v 5 4 0 CONTENTS 3 1. Introduction 2 . 8 1.1. Basicproperties 3 0 1.4. Topologicalinformation:genusandfibering 4 1 1 1.6. Experimentalresults 4 : 1.8. Topologicalinformation:Chiralityandmutation 5 v i 1.9. Adjointtorsionpolynomial 5 X 1.10. Charactervarieties 5 r a 1.14. Otherremarksandopenproblems 6 2. Twistedinvariantsof3–manifolds 7 2.1. Torsionofbasedchaincomplexes 7 2.2. Twistedhomology 7 2.3. Eulerstructures,homologyorientationsandtwistedtorsionofCW complexes 8 2.5. Twistedtorsionof3-manifolds 9 2.6. Twistedtorsionpolynomialofaknot 9 2.8. TheSL(2,F)torsionpolynomialofaknot 10 2.12. CalculationoftorsionpolynomialsusingFoxcalculus 11 2.20. ConnectiontoWada’sinvariant 14 3. Twistedtorsionofcycliccovers 15 4. Torsionpolynomialsofhyperbolicknots 17 1 2 NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON 4.1. ThediscreteandfaithfulSL(2,C)representations 18 4.3. Thehyperbolictorsionpolynomial 18 5. Example:TheConwayandKinoshita–Terasakaknots 20 5.2. Theadjointrepresentation 22 6. Knotswithatmost15crossings 22 6.1. Genus 22 6.2. Fibering 23 6.3. Chirality 23 6.4. KnotswiththesameT 23 K 6.5. Otherpatterns 24 6.6. Adjointpolynomial 24 6.7. Computationaldetails 25 7. Twistedtorsionandthecharactervarietyofaknot 25 7.3. Thedistinguishedcomponent 27 7.6. 2-bridgeknots 28 8. Charactervarietyexamples 29 8.1. Example:m003 29 8.2. Example:m006 30 8.4. m037 31 8.5. Theroleofidealpoints. 31 8.6. Idealpointsofm006 31 8.7. Idealpointsofm037 32 8.8. Generalpictureforidealpoints 32 References 34 1. INTRODUCTION A fundamentalinvariant of a knot K in an integral homology 3-sphere Y is itsAlexanderpolynomial∆ . While∆ containsinformationaboutgenusand K K fibering,itisdeterminedbythemaximalmetabelianquotientofthefundamen- talgroupofthecomplementM Y \K,andsothistopologicalinformationhas = clear limits. In 1990, Lin introduced the twistedAlexander polynomial associ- atedto K anda representation α: π (M) GL(n,F), where F is a field. These 1 → twistedAlexanderpolynomialsalsocontaininformationaboutgenusandfiber- ingandhavebeenstudiedbymanyauthors(seethesurvey[FV3]).Muchofthis work has focused on those α which factor through a finite quotient of π (M), 1 whichiscloselyrelatedtostudyingtheordinaryAlexanderpolynomialinfinite coversofM. Incontrast,westudyhereatwistedAlexanderpolynomialassoci- atedtoarepresentationcomingfromhyperbolicgeometry. SupposethatK ishyperbolic,i.e.thecomplement M hasacomplete hyper- bolicmetricoffinitevolume,andconsidertheassociatedholonomyrepresen- tationα: π (M) Isom (H3). SinceIsom (H3) PSL(2,C),therearetwosim- 1 + + ∼ → = ple ways toget a linear representation so we can consider thetwisted Alexan- der polynomial: compose α with the adjoint representation to get π (M) 1 → TWISTEDALEXANDERPOLYNOMIALSOFHYPERBOLICKNOTS 3 Aut(sl C) SL(3,C),oralternativelyliftαtoarepresentationπ (M) SL(2,C). 2 1 ≤ → TheformerapproachisthefocusoftherecentpaperofDuboisandYamaguchi [DY];thelattermethodiswhatweuseheretodefineaninvariantT (t) C[t 1] K ± ∈ calledthehyperbolictorsionpolynomial. The hyperbolic torsion polynomial T is surprisingly little studied. To our K knowledgeithasonlypreviouslybeenlookedatfor2-bridgeknotsin[Mor,KM1, HM,SW].Hereweshowthatitcontainsagreatdealoftopologicalinformation. In fact, we show thatT determinesgenus andfibering for all 313,209 hyper- K bolicknotsinS3withatmost15crossings,andweconjecturethisisthecasefor allknotsinS3. 1.1. Basic properties. More broadly, we consider here knots in Z -homology 2 3-spheres. The ambient manifold Y containing the knot K will always be ori- ented,notjust orientable,andT dependsonthatorientation. Following Tu- K raev,weformulateT asaReidemeister-Milnortorsionasthisreducesitsambi- K guity;inthatsetting,weworkwiththecompactcoreofM,namelytheknotex- teriorX : Y \int(N(K))(seeSection2fordetails).Byfixingcertainconventions = for lifting the holonomy representation α: π (X) PSL(2,C) to α: π (X) 1 1 → → SL(2,C), we construct in Section 4 a well-defined symmetric polynomial T K ∈ C[t 1].Thefirsttheoremsummarizesitsbasicproperties: ± 1.2.Theorem. LetK beahyperbolicknotinanorientedZ -homology3-sphere. 2 ThenT hasthefollowingproperties: K (a) T isanunambiguouselementofC[t 1]whichsatisfiesT (t 1) T (t). K ± K − K = ItdoesnotdependonanorientationofK. (b) ThecoefficientsofT lieinthetracefieldofK.IfK hasintegraltraces, K thecoefficientsofT arealgebraicintegers. K (c) T (ξ)isnon-zeroforanyrootofunityξ.Inparticular,T 0. K K 6= (d) IfK denotesthemirrorimageofK,thenT (t) T (t),wherethe ∗ K K ∗ = coefficientsofthelatterpolynomialarethecomplexconjugatesofthose ofT . K (e) IfK isamphichiralthenT isarealpolynomial. K (f) ThevaluesT (1)andT ( 1)aremutationinvariant. K K − Moreover,T bothdeterminesandisdeterminedbyasequenceofC-valued K torsions of finite cyclic covers of X. Specifically, let X be the m–fold cyclic m covercomingfromthefreeabelianizationofH (X;Z). Fortherestrictionα of 1 m αtoπ (X ),weconsiderthecorrespondingC-valuedtorsionτ(X ,α ).Astan- 1 m m m dardargumentshowsthatT determinesalltheτ(X ,α )(seeTheorem3.1). K m m More interestingly, the converse holds: the torsions τ(X ,α ) determine T m m K (seeTheorem4.5). ThislatterresultfollowsfromworkofDavidFried[Fri](see alsoHillar[Hil])andthatofMenal–FerrerandPorti[MFP1]. 1.3. Remark. Conjecturally, the torsions τ(X ,α ) can be expressed as ana- m m lytic torsions and as Ruelle zeta functions defined using the lengths of prime geodesics. See Ray–Singer[RS], Cheeger [Che1, Che2], Müller [Mu1] and Park 4 NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON [Par]fordetailsandbackgroundmaterial. Wehopethatthispointofviewwill behelpfulinthefurtherstudyofT . K Thetorsionsτ(X ,α )areinterestinginvariantsin theirown right. Forex- m m ample, Menal–Ferrer and Porti [MFP1] showed that τ(X ,α ) is non–zero for m m any m. Furthermore, Porti [Por1] showed that τ(X ,α ) τ(X,α) T (1) is 1 1 K = = not obviously related to hyperbolic volume. More precisely, using a variation on [Por2, Théorème 4.17] one can show that there exists a sequence of knots K whosevolumesconvergetoapositiverealnumber,butthenumbersT (1) n Kn convergetozero.See[Por2,MFP1,MFP2]forfurtherresults. 1.4. Topological information: genus and fibering. We define x(K) to be the Thurston norm of a generator of H (X,∂X;Z) Z; if K is null-homologous in 2 ∼ = Y, then x(K) 2 genus(K) 1, wheregenus(K)istheleast genusofallSeifert = · − surfacesboundingK.Also,wesaythatK isfiberedifX fibersoverthecircle. AkeypropertyoftheordinaryAlexanderpolynomial∆ isthat K x(K) deg(∆ ) 1. K ≥ − When K is fibered, this is an equality and moreover the lead coefficient of ∆ K is1(here,wenormalize∆ sothattheleadcoefficientispositive). Aswithany K twistedAlexander/torsionpolynomial,wegetsimilarinformationoutofT : K 1.5.Theorem. LetK beaknotinanorientedZ -homologysphere.Then 2 1 x(K) deg(T ). K ≥ 2 IfK isfibered,thisisanequalityandT ismonic,i.e.hasleadcoefficient1. K Theorem1.5isanimmediateconsequencethedefinitionsbelowandof[FK1, Theorem1.1](forthegenusbound)andoftheworkofGoda,KitanoandMori- fuji[GKM](forthefiberedcase);seealsoCha[Cha],KitanoandMorifuji[KM2], Pajitnov[Paj],Kitayama[Kit2],[FK1]and[FV3,Theorem6.2]. 1.6. Experimentalresults. Thecalculationsin[Cha,GKM,FK1]gaveevidence thatwhenonecanfreelychoosetherepresentationα,thetwistedtorsionpoly- nomialisverysuccessful atdetectingboth x(K)andnon-fiberedknots. More- over[FV1]showsthatcollectivelythetwistedtorsionpolynomialsofrepresenta- tionscomingfromhomomorphismstofinitegroupsdeterminewhetheraknot isfibered. However, it isnotknown if alltwistedtorsion polynomials together alwaysdetectx(K). Insteadofconsideringmanydifferentrepresentationsasintheworkjustdis- cussed,wefocushereonasingle,albeitcanonical,representation.Despitethis, we find that T alone is a very powerful invariant. In Section 6, we describe K computationsshowingthattheboundonx(K)issharpforall313,209hyperbolic knotswithatmost15crossings;incontrasttheboundfrom∆ isnotsharpfor K 2.8%oftheseknots. Moreover,amongsuchknotsT wasmoniconlywhenthe K knotwasfibered,whereas4.0%oftheseknotshavemonic∆ butaren’tfibered. K (Here we computed T numerically to a precision of 250 decimal places, see K Section6.7fordetails.) TWISTEDALEXANDERPOLYNOMIALSOFHYPERBOLICKNOTS 5 Givenallthisdata,wearecompelledtoproposethefollowing,eventhoughon itsfaceitfeelsquiteimplausible,giventhegeneralsquishynatureofAlexander- typepolynomials. 1.7.Conjecture. ForahyperbolicknotK inS3,thehyperbolictorsionpolyno- mialT determinesx(K),orequivalentlyitsgenus. Moreover,theknotK is K fiberedifandonlyifT ismonic. K We have not done extensive experiments for knots in manifolds other than S3,butsofarwehavenotencounteredanyexampleswhereT doesn’tcontain K perfectgenusandfiberinginformation. 1.8. Topologicalinformation:Chiralityandmutation. WhenK isanamphichi- ral,T isarealpolynomial(Theorem1.2(e)). Thisturnsouttobeanexcellent K wayto detect chirality. Indeed, among hyperbolic knots in S3 with at most 15 crossings,the353knotswhereT isrealareexactlytheamphichiralknots(Sec- K tion6.3). Also,hyperbolicinvariantsoftendonotdetectmutation,forexamplethevol- ume[Rub],theinvarianttracefield[MR, Corollary5.6.2], andthebirationality type of the geometric component of the character variety [CL, Til1, Til2]. The ordinary Alexander polynomial ∆ is also mutation invariant for knots in S3. K However,x(K)canchangeundermutation,andgiventhatx(K)determinesthe degreeofT forall15crossingknots,itfollowsthatT canchangeundermu- K K tation;wediscussmanysuchexamplesinSection6.4.However,sometimesmu- tationdoespreserveT ,andwedon’tknowofanyexamplesoftwoknotswith K thesameT whicharen’tmutants. K 1.9. Adjointtorsionpolynomial. Aswementionedearlier,thereisanothernat- uralwaytogetatorsionpolynomialfromtheholonomyα: π (M) PSL(2,C), 1 → namelybyconsideringtheadjointrepresentationofPSL(2,C)onitsLiealgebra. The corresponding torsion polynomial was studied by Dubois andYamaguchi [DY], partlybuilding onwork of Porti[Por2]. Werefertothisinvarianthereas theadjointtorsionpolynomialanddenoteitTadj. Wealsonumericallycalcu- K latedthisinvariantforallknotswithatmost15crossings. Unlikewhatwefound forT ,thedegreeofTadj wasnot determinedbythegenusfor8,252ofthese K K knots. Moreover,wefound12knotswherethegenusboundfromTadj wasnot K sharpevenafteraccountingforthefactthatx(K)isnecessarilyanoddinteger. Thedifferingbehaviorsofthesetwopolynomialsseemsverymysterioustous; understanding what’s behind it might shed light on Conjecture 1.7. See Sec- tions5.2and6.6forthedetailsonwhatwefoundforTadj. K 1.10. Charactervarieties. Sofar,wehavefocusedonthetwistedtorsionpoly- nomialof(aliftof)theholonomyrepresentationofthehyperbolicstructureon M. However,thisrepresentationisalwayspartofacomplexcurveofrepresen- tationsπ (M) SL(2,C),anditisnaturaltostudyhowthetorsionpolynomial 1 → changes as we vary the representation. In Sections 7 and 8, we describe how 6 NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON tounderstandallofthesetorsionpolynomialsatonce,andusethistohelpex- plainsomeofthepatternsobservedinSection6.Forthespecialcaseof2-bridge knots, Kim and Morifuji [Mor, KM1] had previously studied how the torsion polynomialvarieswiththerepresentation,andourresultshereextendsomeof theirworktomoregeneralknots. ConsiderthecharactervarietyX(K): Hom π (M),SL(2,C) //SL(2,C),which 1 = isanaffinealgebraicvarietyoverC.Weshowin¡Section7thate¢achχ X(K)has anassociatedtorsionpolynomialT χ.TheseTχvaryinanunderstan∈dableway, K K intermsofapolynomialwithcoefficientsintheringofregularfunctionsC[X ]: 0 1.11.Theorem. LetX beanirreduciblecomponentofX(K)whichcontainsthe 0 characterofanirreduciblerepresentation.ThereisauniqueTKX0∈C[X0][t±1]so thatforallχ∈X0onehasTKχ(t)=TKX0(χ)(t).Moreover,TKX0isitselfthetorsion polynomialofacertainrepresentationπ (M) SL(2,F),andthushasallthe 1 → usualproperties(symmetry,genusbound,etc.). 1.12.Corollary. LetK beaknotinanintegralhomology3-sphere.Then (a) Theset χ X(K) deg(T χ) 2x(K) isZariskiopen. ∈ K = (b) Theset©χ X(K) ¯Tχismonic isZªariskiclosed. ∈ ¯ K © ¯ ª It is naturalto focus on¯the component X of X(K) which contains the (lift 0 of)theholonomyrepresentationofthehyperbolicstructure,whichwecallthe distinguishedcomponent.InthiscaseX isanalgebraiccurve,andweshowthe 0 followingconjectureisimpliedbyConjecture1.7. 1.13.Conjecture. LetK beahyperbolicknotinS3,andX bethedistinguished 0 componentofitscharactervariety.Then2x(K) deg(TX0)andTX0ismonicif = K K andonlyifK isfibered. Attheveryleast,Conjecture1.13istrueformany2-bridgeknotsaswediscuss in Section 7.6. We also give several explicit examples of TX0 in Section 8 and K usethesetoexploreapossible avenueforbringingtheCuller-Shalentheoryof surfacesassociatedtoidealpointsofX(K)tobearonConjecture1.13. 1.14. Otherremarksandopenproblems. Forsimplicity,werestrictedourselves heretothestudyofknots,especiallythoseinS3.However,weexpectthatmany of the results and conjectures are valid for more general 3-manifolds. In the broadersettings, theappropriatequestioniswhetherthetwistedtorsionpoly- nomialdetectstheThurstonnormandfiberedclasses(see[FK1,FK2]and[FV2] formoredetails). Weconcludethisintroductionwithafewquestionsandopenproblems: (a) DoesT determinethevolumeofthecomplementofK?Somecalcula- K tionalevidenceisgivenin[FJ]andinSection6.4inthispaper. (b) IftwoknotsinS3havethesameT ,aretheynecessarilymutants? See K Section6.4formoreonthis. (c) DoestheinvariantT containinformationaboutsymmetriesoftheknot K besidesinformationonchirality? TWISTEDALEXANDERPOLYNOMIALSOFHYPERBOLICKNOTS 7 (d) DoesthereexistahyperbolicknotwithT (1) 1? K = (e) IfT isarealpolynomial,isK necessarilyamphichiral? K (f) Foranamphichiralknot,isthetopcoefficientofT alwayspositive? K (g) Forfiberedknots,whyisthesecondcoefficientofT sooftenreal?This K coefficient is the sum of the eigenvalues of the monodromy acting on thetwistedhomologyofthefiber.SeeSection6.5formore. (h) Why is T ( 1) T (1) for 99.99% of the knots considered in Sec- K K | − | > | | tion6.5? Acknowledgments. WethankJérômeDubois,TaeheeKim,TakahiroKitayama, Vladimir Markovic, Jinsung Park, Joan Porti, DanSilver, AlexanderStoimenow, SusanWilliamsandAlexandruZaharescuforinterestingconversationsandhelp- fulsuggestions.WeareparticularlygratefultoJoanPortiforsharinghisexpertise andearlydraftsof[MFP1,MFP2]withus. Wealsothanktherefereeforhelpful comments.DunfieldwaspartiallysupportedbyUSNSFgrantDMS-0707136. 2. TWISTED INVARIANTS OF3–MANIFOLDS In this section, we review torsions of twisted homology groups and explain how they are used to define the twisted torsion polynomial of a knot together witharepresentationofitsfundamentalgrouptoSL(2,C). Wethensummarize the basic properties of these torsion polynomials, including how to calculate them. 2.1. Torsionofbasedchaincomplexes. LetC bea finitechaincomplex over ∗ afieldF. SupposethateachchaingroupC isequippedwithanorderedbasis i c andthateachhomology group H (C )isalsoequippedwithanorderedba- i i ∗ sis h . Thenthereis anassociated torsioninvariant τ(C ,c ,h ) F : F\{0} i × ∗ ∗ ∗ ∈ = asdescribedinthevariousexcellentexpositions[Mil,Tur3,Tur4,Nic]. Wewill followtheconventionofTuraev, whichisthemultiplicativeinverseofMilnor’s invariant.IfthecomplexC isacyclic,thenwewillwriteτ(C ,c ): τ(C ,c , ). ∗ ∗ ∗ = ∗ ∗ ; 2.2. Twistedhomology. Fortherestofthissection,fixafiniteCW–complex X andsetπ: π (X).Considerarepresentationα: π GL(V),whereV isafinite- 1 = → dimensionalvectorspaceoverF. WecanthusviewV asaleftZ[π]–module. To define the twisted homology groups Hα(X;V), consider the universalcover X ∗ of X. Regardingπasthegroupofdecktransformationsof X turnsthecellular e chaincomplexC (X): C (X;Z)intoa leftZ[π]–module. WethengiveC (X) arightZ[π]–mod∗ulest=ruct∗ureviac g : g 1 c forc C (Xe)andg π,w∗hich e e · = − · ∈ ∗ ∈ e allowsustoconsiderthetensorproduct e Cα(X;V): C (X) V. Z[π] ∗ = ∗ ⊗ NowCα(X;V)isafinitechaincomplexofveectorspaces,andwedefineHα(X;V) tobeit∗shomology. ∗ We call two representations α: π GL(V) and β: π GL(W) conjugate if → → thereexistsanisomorphism Ψ: V W such thatα(g) Ψ 1 β(g) Ψforall − → = ◦ ◦ g π.NotethatsuchaΨinducesanisomorphismofHα(X;V)withHβ(X;W). ∈ ∗ ∗ 8 NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON 2.3. Eulerstructures,homologyorientationsandtwistedtorsionofCWcom- plexes. To define the twisted torsion, we first need to introduce certain addi- tionalstructureson which it depends. (In our final application, most of these willcomeoutinthewash.)First,fixanorientationofeachcellofX.Thenchoose anorderingofthecellsof X sowecanenumeratethemasc ;onlytherelative j orderofcellsofthesamedimensionwillberelevant,butitisnotationallycon- venienttohaveonlyonesubscript. AnEulerliftforX associatestoeachcellc ofX acellc˜ ofX whichcoversit. j j Ifc˜ isanotherEulerlift,thenthereareuniqueg πsothatc˜ g c˜ . Wesay ′j j ∈ e′j = j· j thesetwoEulerliftsareequivalentif g(j−1)dim(cj) representsthetrivialelementinH1(X;Z). Yj An equivalence class of Euler lifts is called an Eulerstructureon X. The set of EulerstructuresonX,denotedEul(X),admitsacanonicalfreetransitiveaction by H (X;Z); see[Tur2,Tur3,Tur4,FKK]formoreontheseEulerstructures. Fi- 1 nally, ahomologyorientationfor X isjust anorientationoftheR-vectorspace H (X;R). ∗ Nowwecandefinethetorsionτ(X,α,e,ω)associatedto X,arepresentation α,anEulerstructuree,andahomologyorientationω.IfHα(X;V) 0,wedefine τ(X,α,e,ω): 0, andso now assume Hα(X;V) 0. Up to∗sign, th6=etorsion we seekwillbet=hatofthetwistedcellularc∗hainco=mplexCα(X;V)withrespectto the following ordered basis. Let {v } be any basis of V,∗and {c˜ } any Euler lift k j representinge. Orderthebasis{c˜ v }forCα(X;V)lexicographically, i.e.c˜ j k j v c˜ v if either j j or bot⊗h j j an∗d k k . We thus have a base⊗d k j k ′ ′ ′ < ′⊗ ′ < = < acycliccomplexCα(X;V)andwecanconsider ∗ τ(Cα(X;V),c v ) F×. ∗ ∗⊗ ∗ ∈ When dim(V) is even, this torsion is in fact independent of all the choices in- volved, butwhen dim(V) isodd we needtoaugmentit as follows toremove a signambiguity. Pickanorderedbasish forH (X;R)representingourhomologyorientation i ∗ ω.SincewehaveorderedthecellsofX,wecanconsiderthetorsion τ C (X;R),c ,h R×. ∗ ∗ ∗ ∈ ¡ ¢ We define β (X) i dim H (X;R) and γ (X) i dim C (X;R) , and i = k 0 k i = k 0 k thensetN(X) iβPi(X=) γi(X¡).Follow¢ing[FKK],whicPhg=enerali¡zestheid¢easof = · Turaev[Tur1,TuPr2],wenowdefine τ(X,α,e,ω): = dim(V) ( 1)N(X)·dim(V) τ Cα(X;V),c v sign τ C (X;R),c ,h . − · ¡ ∗ ∗⊗ ∗¢· ³ ¡ ∗ ∗ ∗¢´ TWISTEDALEXANDERPOLYNOMIALSOFHYPERBOLICKNOTS 9 A straightforward calculation using the basic properties of torsion shows that thisinvariantdoesnotdependonanyofthechoicesinvolved,i.e.itisindepen- dentoftheorderingandorientationofthecellsof X,thechoiceofrepresenta- tivesfore andω,andtheparticularbasisforV. Similarelementaryarguments prove the following lemma. Here ω denotes theopposite homology orienta- − tiontoω,andnotethat(det α):π FfactorsthroughH (X;Z). 1 ◦ → 2.4.Lemma. Ifβisconjugatetoα,thengivenh H (X;Z)andǫ { 1,1},one 1 ∈ ∈ − has τ(X,β,h e,ǫ ω) ǫdim(V) (det α)(h) −1 τ(X,α,e,ω). · · = · ◦ · ¡ ¢ 2.5. Twisted torsion of 3-manifolds. Let N be a 3-manifold whose boundary is empty or consists of tori. We first recall some facts about Spinc-structures on N; see [Tur4, Section XI.1] for details. The set Spinc(N) of such structures admits a free and transitive action by H (N;Z). Moreover, there exists a map 1 c : Spinc(N) H (N;Z)whichhasthepropertythatc (h s) 2h c (s)forany 1 1 1 1 h H (N;Z)a→nds Spinc(N). · = + 1 ∈ ∈ Now consider a triangulation X of N. By [Tur4, Section XI] there exists a canonicalbijectionSpinc(N) Eul(X)whichisequivariantwithrespecttothe → actions by H (N;Z) H (X;Z). Given a representation α: π (N) GL(V), an 1 1 1 elements Spinc(N)=,andahomologyorientationωforN,wedefin→e ∈ τ(N,α,s,ω): τ(X,α,e,ω) = wheree istheEulerstructureonX correspondingtos. Itfollowsfromthework ofTuraev[Tur1,Tur2]thatτ(N,α,s,ω)isindependentofthechoiceoftriangula- tionandhencewell-defined.Seealso[FKK]formoredetailsaboutτ(N,α,s,ω). 2.6. Twistedtorsionpolynomialofaknot. LetK beaknotinarationalhomol- ogy3-sphereY. Throughout,wewriteX : Y \int(N(K))fortheknotexterior, K = whichisacompactmanifoldwithtorusboundary. Wedefineanorientationof K to be a choice of orientedmeridian µ ; if Y is oriented, instead of just ori- K entable,thisisequivalenttotheusualnotion. SupposenowthatK isoriented. Let π : π (X ) and take φ : π Z to be the unique epimorphism where K 1 K K K = → φ(µ ) 0.Thereisacanonicalhomologyorientationω forX asfollows:take K K K > apointasabasisforH (X ;R)andtake{µ }asthebasisforH (X ;R). Wewill 0 K K 1 K dropK fromthesenotationsiftheknotisunderstoodfromthecontext. Forarepresentationα: π GL(n,R)overacommutativedomainR,wede- → fineatorsionpolynomialasfollows. ConsidertheleftZ[π]–modulestructureon Rn R[t 1] R[t 1]n givenby R ± ∼ ± ⊗ = g (v p): α(g) v tφ(g)p · ⊗ = · ⊗ ¡ ¢ ¡ ¢ for g πand v p Rn R[t 1]. Putdifferently,we getarepresentationα R ± ∈ ⊗ ∈ ⊗ ⊗ φ: π GL(n,R[t 1]). We denote byQ(t) the field of fractions of R[t 1]. The ± ± → representationα φallowsustoviewR[t 1]n andQ(t)n asleftZ[π]–modules. ± Givens Spinc(X⊗)wedefine ∈ τ(K,α,s): τ(X ,α φ,s,ω ) Q(t) K K = ⊗ ∈ 10 NATHANM.DUNFIELD,STEFANFRIEDL,ANDNICHOLASJACKSON tobethetwistedtorsionpolynomialoftheorientedknotK correspondingtothe representationαandtheSpinc-structures. Callingτ(K,α,s)apolynomialeven thoughitisdefinedasarationalfunctionisreasonablegivenTheorem2.11be- low. 2.7.Remark. Thestudyoftwistedpolynomialinvariantsofknotswasintroduced by Lin [Lin]. The invariant τ(K,α,s) can be viewed as a refinedversion of the twisted Alexander polynomial of a knot and of Wada’s invariant. We refer to [Wada,Kit1,FV3]formoreontwistedinvariantsofknotsand3-manifolds. 2.8. The SL(2,F) torsion polynomial of a knot. Our focus in this paper is on 2-dimensional representations, and we now give a variant of τ(K,α,s) which does not depend on s or the orientation of K. Specifically, for an unoriented knotK inaQHSandarepresentationα: π SL(2,F)wedefine → (2.9) Tα: tφ(c1(s)) τ(K,α,s) K = · foranys Spinc(X)andchoiceoforientedmeridianµandshow: ∈ 2.10.Theorem. Forα: π SL(2,F),theinvariantTαisawell-definedelement → K of F(t)whichissymmetric,i.e.Tα(t 1) Tα(t). K − = K WewillcallTα F(t)thetwistedtorsionpolynomialassociatedtoK andα. K ∈ Proof. Thattheright-handsideof(2.9)isindependentofthechoiceofsfollows easily from Lemma 2.4 using the observation that det (α φ)(g) t2φ(g) for ⊗ = g πandthepropertiesofc giveninSection2.5. ¡ ¢ 1 ∈ The choice of meridian µ affectsthe right-handside of (2.9)in twoways: it isusedtodefinethehomology orientationωandthehomomorphismφ: π → Z. Thefirst doesn’t matterbyLemma 2.4, butswitching φto φ is equivalent − toreplacing t with t 1. Hence beingindependentofthechoice of meridianis − equivalenttothefinalclaimthatTαissymmetric. K Now any SL(2,F)-representation preserves the bilinear form on F2 given by (v,w) det(vw).Usingthisobservationitisshownin[FKK,Theorem7.3],gen- 7→ eralizing[HSW,Corollary3.4]andbuildingonworkofTuraev[Tur1,Tur2],that inourcontextwehave τ(K,α,s) t−1 t2φ(c1(s)) τ(K,α,s) = · ¡ ¢ whichestablishesthesymmetryTαandhencethetheorem. (cid:3) K WhileingeneralTα isarationalfunction,itisfrequentlyaLaurentpolyno- K mialorcanbecomputedintermsoftheordinaryAlexanderpolynomial∆ . K 2.11.Theorem. LetK beaknotinaQHSandletα:π SL(2,F)bearepresen- K → tation. (a) Ifαisirreducible,thenT αliesinF[t 1]. K ± (b) Ifαisreducible,thenTα Tβwhereβisthediagonalpartofα,i.e.a K = K diagonalrepresentationwheretr β(g) tr α(g) forallg π. = ∈ ¡ ¢ ¡ ¢

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.