Twin bent functions and Clifford algebras PaulC.Leopardi 5 1 0 2 v o N 1 1 Abstract ThispaperexaminesapairofbentfunctionsonZ2mandtheirrelationship 2 toanecessaryconditionfortheexistenceofanautomorphismofanedge-coloured ] O graphwhosecoloursaredefinedbythepropertiesofacanonicalbasisforthereal C representation of the Clifford algebra Rm,m. Some other necessary conditions are . alsobrieflyexamined. h t a m 1 Introduction [ 2 v Arecentpaper[11]constructsasequenceofedge-colouredgraphsD m(m>1)with 7 two edge colours, and makes the conjecture that for m>1, there is an automor- 7 phism of D that swaps the two edge colours.This conjecture can be refined into m 4 thefollowingquestion. 5 0 Question1.1.Considerthesequenceofedge-colouredgraphsD (m>1)asdefined . m 1 in[11],eachwithredsubgraphD [−1],andbluesubgraphD [1].Forwhichm>1 m m 0 isthereanautomorphismofD thatswapsthesubgraphsD [−1]andD [1]? m m m 5 1 Notethattheexistenceofsuchanautomorphismautomaticallyimpliesthatthe : v subgraphsD [−1]andD [1]areisomorphic. m m i Considering that it is known that D [−1] is a strongly regular graph, a more X m generalquestioncanbeaskedconcerningsuchgraphs. r a Mathematical Sciences Institute, The Australian National University. e-mail: [email protected] 1 2 P.C.Leopardi First,werecalltherelevantdefinition. Definition1.1.[2, 3, 15]. A simple graph G of order v is strongly regular with parameters(v,k,l ,m )if • eachvertexhasdegreek, • eachadjacentpairofverticeshasl commonneighbours,and • eachnonadjacentpairofverticeshasm commonneighbours. Now,themoregeneralquestion. Question1.2.For which parameters (v,k,l ,m ) is there a an edge-coloured graph G onv vertices,withtwo edgecolours,red(withsubgraphG [−1])andblue(with subgraphG [1]),suchthatthesubgraphG [−1]isa stronglyregulargraphwith pa- rameters (v,k,l ,m ), and such that there exists an automorphism of G that swaps G [−1]withG [1]? Remark1.1.Since the existence of such an automorphismimplies thatG [−1] and G [1]areisomorphic,thisimpliesthatG [1]isalsoastronglyregulargraphwiththe sameparametersasG [−1]. Questions1.1and1.2wereasked(inaslightlydifferentform)attheworkshop on“AlgebraicdesigntheorywithHadamardmatrices”inBanffinJuly2014. Furthergeneralizationgivesthefollowingquestions. Question1.3.Given a positive integer c>1, for what parameters(v,k,l ,m ) does thereexistackregulargraphonvverticesthatcanbegivenanedgecolouringwithc colours,suchthattheedgescorrespondingtoeachcolorforma(v,k,l ,m )strongly regulargraph? For what parameters is the c-edge-colouredck regular graph unique up to iso- morphism? Remark1.2.ThisquestionappearsonMathOverflow[9],andispartiallyanswered by Dima Pasechnik and Padraig O´ Catha´in, specifically for the case where the ck regulargraphisthecompletegraphonv=ck+1vertices.Seetherelevantpapers by van Dam [6], van Dam and Muzychuk [7], and O´ Catha´in [13]. These partial answersdonotapplyto the specific case ofQuestion 1.1becausethegraphD is m notacompletegraphwhenm>1. Question1.4.For which parameters (v,k,l ,m ) does the edge-coloured graph G fromQuestion1.3haveanautomorphismthatpermutesthecorrespondingstrongly regularsubgraphs?Whichfinitegroupsoccuraspermutationgroupsinthismanner (i.e. as the group of permutations of strongly regular subgraphs of such an edge- colouredgraph)? ThispaperexaminessomeofthenecessaryconditionsforthegraphD tohave m anautomorphismasperQuestion1.1.Questions1.2to1.4remainopenforfuture investigation. ConsideringthatD [−1]isastronglyregulargraph,thefirstnecessarycondition m is that D [1] is also a strongly regular graph, with the same parameters. This is m provenasTheorem5.2inSection5.Someothernecessaryconditionsareaddressed inSection6. TwinbentfunctionsandCliffordalgebras 3 2 A signedgroup and itsreal monomialrepresentation ThefollowingdefinitionsandresultsappearinthepaperonHadamardmatricesand [11], and are presented here for completeness, since they are used below. Further detailsandproofscanbefoundinthatpaper,unlessotherwisenoted. ThesignedgroupG of order21+p+q is extensionof Z by Zp+q, definedby p,q 2 2 thesignedgrouppresentation G := e (k∈S ) | p,q {k} p,q (cid:28) e2 =−1(k<0), e2 =1(k>0), {k} {k} e e =−e e (j6=k) , {j} {k} {k} {j} (cid:29) whereS :={−q,...,−1,1,...,p}. p,q ThefollowingconstructionoftherealmonomialrepresentationP(G )ofthe m,m groupG isusedin[11]. m,m The2×2orthogonalmatrices . − . 1 E := , E := 1 1 . 2 1 . (cid:20) (cid:21) (cid:20) (cid:21) generate P(G ), the real monomial representation of group G . The cosets of 1,1 1,1 {±I}≡Z inP(G )areorderedusingapairofbits,asfollows. 2 1,1 0↔00↔{±I}, 1↔01↔{±E }, 1 2↔10↔{±E }, 2 3↔11↔{±E E }. 1 2 Form>1,therealmonomialrepresentationP(G )ofthegroupG consists m,m m,m ofmatricesoftheformG ⊗G withG inP(G )andG inP(G ). 1 m−1 1 1,1 m−1 m−1,m−1 Thecosetsof{±I}≡Z inP(G )areorderedbyconcatenationofpairsofbits, 2 m,m whereeachpairofbitsusestheorderingasperP(G ),andthepairsareordered 1,1 asfollows. 0↔00...00↔{±I}, ⊗(m−1) 1↔00...01↔{±I ⊗E }, (2) 1 ⊗(m−1) 2↔00...10↔{±I ⊗E }, (2) 2 ... 22m−1↔11...11↔{±(E E )⊗m}. 1 2 4 P.C.Leopardi (HereI isusedtodistinguishthis2×2unitmatrixfromthe2m×2m unitmatrix (2) I.)Inthispaper,thisorderingiscalledtheKroneckerproductorderingofthecosets of{±I}inP(G ). m,m Werecallhereanumberofwell-knownpropertiesoftherepresentationP(G ). m,m Lemma2.1.ThegroupG anditsrealmonomialrepresentationP(G )satisfy m,m m,m thefollowingproperties. 1. Pairs of elements of G (and therefore P(G )) either commute or anti- m,m m,m commute:forg,h∈G ,eitherhg=ghorhg=−gh. m,m 2. ThematricesE∈P(G )areorthogonal:EET =ETE=I. m,m 3. ThematricesE∈P(G )areeithersymmetricandsquaretogiveIorskewand m,m squaretogive−I:eitherET =E andE2=I orET =−E andE2=−I. Taking the positive signed element of each of the 22m cosets listed above de- finesatransversalof{±I}inP(G )whichisalsoamonomialbasisforthereal m,m representationoftheCliffordalgebraR inKroneckerproductorder.Inthispa- m,m per,wecallthisorderedmonomialbasisthepositivesignedbasisofP(R ).For m,m example, (I,E ,E ,E E ) is the positive signed basis of P(R ). Note: any other 1 2 1 2 1,1 choiceofsignswillgivea differenttransversalof{±I}inP(G ),andhencean m,m equivalentorderedmonomialbasis of P(R ), butwe choosepositivesigns here m,m fordefiniteness. Definition2.1.We define the function g :Z →P(G ) to choose the corre- m 22m m,m sponding basis matrix from the positive signed basis of P(R ), using the Kro- m,m necker product ordering. This ordering also defines a corresponding function on Z2m,whichwealsocallg . 2 m Forexample, g (0)=g (00)=I, g (1)=g (01)=E , 1 1 1 1 1 g (2)=g (10)=E , g (3)=g (11)=E E . 1 1 2 1 1 1 2 3 Two bent functions We nowdefine two functions,s and t on Z2m, andshow thatbothofthese are m m 2 bent.First,recalltherelevantdefinition. Definition3.1.[8,p.74]. ABooleanfunction f :Zm→Z isbentifitsHadamardtransformhasconstant 2 2 magnitude.Specifically: 1. TheSylvesterHadamardmatrixH ,oforder2m,isdefinedby m 1 1 H := , 1 1 − (cid:20) (cid:21) H :=H ⊗H , for m>1. m m−1 1 TwinbentfunctionsandCliffordalgebras 5 2. ForaBooleanfunction f :Zm→Z ,definethevector f by 2 2 f :=[(−1)f[0],(−1)f[1],...,(−1)f[2m−1]]T, wherethevalueof f[i],i∈Z2m isgivenbythevalueof f onthebinarydigitsof i. 3. Intermsofthesetwodefinitions,theBooleanfunction f :Zm→Z isbentif 2 2 H f =C[1,...,1]T. m (cid:12) (cid:12) forsomeconstantC. (cid:12) (cid:12) The first function, s is defined and shown to be bent in [11]. We repeat the m definitionhere. Definition3.2.Weusethebasiselementselectionfunctiong ofDefinition2.1to m definethesign-of-squarefunctions :Z2m→Z as m 2 2 1↔g (i)2=−I s (i):= m m (0↔gm(i)2=I, foralliinZ2m. 2 Remark3.1.Property3fromLemma2.1ensuresthats iswelldefined.Also,since m eachg (i)isorthogonal,s (i)=1ifandonlyifg (i)isskew. m m m From the property of Kronecker products that (A⊗B)T =AT ⊗BT, it can be shown thats can also be calculated fromi∈Z2m as the parity of the numberof m 2 occurrencesofthebitpair01ini,i.e.s (i)=1ifandonlyifthenumberof01pairs m isodd.Alternatively,fori∈Z ,s (i)=1ifandonlyifthenumberof1digitsin 22m m thebase4representationofiisodd. Thefollowinglemmaisprovenin[11]. Lemma3.1.Thefunctions isabentfunctiononZ2m. m 2 Thebasiselementselectionfunctiong alsogivesrisetoasecondfunction,t m m onZ . 22m 6 P.C.Leopardi Definition3.3.Wedefinethenon-diagonal-symmetryfunctiont onZ andZ2m m 22m 2 asfollows. ForiinZ2: 2 1 ifi=10, sothatg (i)=±E , t (i):= 1 2 1 (0 otherwise. ForiinZ2m−2: 2 t (00⊙i):=t (i), m m−1 t (01⊙i):=s (i), m m−1 t (10⊙i):=s (i)+1, m m−1 t (11⊙i):=t (i). m m−1 where⊙denotesconcatenationofbitvectors,ands isthesign-of-squarefunction, asabove. Itiseasytoverifythatt (i)=1ifandonlyifg (i)issymmetricbutnotdiagonal. m m This can be checked directly for t . For m >1 it results from properties of the 1 Kronecker product of square matrices, specifically that (A⊗B)T =AT ⊗BT, and thatA⊗BisdiagonalifandonlyifbothAandBarediagonal. Thefirstmainresultofthispaperisthefollowing. Theorem3.1.Thefunctiont isabentfunctiononZ2m. m 2 The proof of Theorem3.1 uses the followingresult, due to Tokareva[16], and stemmingfromtheworkofCanteaut,Charpinandothers[4,TheoremV.4][5,The- orem2].Theresultreliesonthefollowingdefinition. Definition3.4.Forabentfunction f onZmthedualfunction f isgivenby 2 (H [f]) =:2m/2(−1)f(i). e m i e Lemma3.2.[16,Theorem1]Ifabinaryfunction f onZ2mcanbedecomposedinto 2 fourfunctions f ,f ,f ,f onZ2m−2 as 0 1 2 3 2 f(00⊙i)=: f (i), f(01⊙i)=: f (i), 0 1 f(10⊙i)=: f (i), f(11⊙i)=: f (i), 2 3 whereallfourfunctionsarebent,withdualfunctionssuchthat f +f +f +f =1, 0 1 2 3 then f isbent. e e e e ProofofTheorem3.1.InLemma3.2,set f = f :=t ,f =s ,f =s + 0 3 m−1 1 m−1 2 m−1 1.Clearly, f = f .Also, f = f +1,sinceH [f ]=−H [f ].Therefore f + 0 3 2 1 m−1 2 m−1 1 0 f + f + f =1. Thus, these four functionssatisfy the premise of Lemma 3.2, as 1 2 3 longasbothes e andt e areebent. e m−1 m−1 e e e TwinbentfunctionsandCliffordalgebras 7 Itis knownthats is bentforall m. Itis easy to show thatt is bent,directly m 1 fromitsdefinition.Thereforet isbent. ⊓⊔ m 4 Bent functions and Hadamarddifference sets The following well known properties of Hadamard difference sets and bent func- tionsarenotedin[11]. Definition4.1.[8,pp.10and13]. Thek-elementsetDisa(v,k,l ,n)differencesetinanabeliangroupGoforderv ifforeverynon-zeroelementginG,theequationg=d −d hasexactlyl solutions i j (d,d )withd,d inD.Theparametern:=k−l .A(v,k,l ,n)differencesetwith i j i j v=4niscalledaHadamarddifferenceset. Lemma4.1.[8,Remark2.2.7][12,14].AHadamarddifferencesethasparameters oftheform (v,k,l ,n)=(4N2,2N2−N,N2−N,N2) or (4N2,2N2+N,N2+N,N2). Lemma4.2.[8, Theorem6.2.2]The Booleanfunction f :Zm →Z is bentif and 2 2 onlyifD:= f−1(1)isaHadamarddifferenceset. Together,theseproperties,alongwithLemma3.1andTheorem3.1,areusedhere toprovethefollowingresult. Theorem4.1.Thesetss −1(1)andt −1(1)arebothHadamarddifferencesets,with m m thesameparameters (v ,k ,l ,n )=(4m,22m−1−2m−1,22m−2−2m−1,22m−2). m m m m Proof. Both s and t are bent functions, as per Lemma 3.1 and Theorem 3.1 m m respectively.Therefore,byLemma4.2,boths −1(1)andt −1(1)areHadamarddif- m m ferencesets. Inbothcases, therelevantabeliangroupisZ2m, with order4m. Thus 2 inLemma4.1wemustsetN=2m−1toobtainthateither (v ,k ,l ,n )=(4m,22m−1−2m−1,22m−2−2m−1,22m−2)or m m m m (v ,k ,l ,n )=(4m,22m−1+2m−1,22m−2+2m−1,22m−2). m m m m Since s (i)=1 if and only if g (i) is skew, and t (i)=1 if and only if g (i) is m m m m symmetric but not diagonal,not only are these conditionsmutually exclusive,but also,forallm>1,thenumberofiforwhichs (i)=t (i)=0ispositive.Theseare m m theiforwhichg (i)isdiagonal.Thusk =22m−1−2m−1ratherthan22m−1+2m−1. m m Theresultfollowsimmediately. ⊓⊔ As a check, the parametersk can also be calculated directly, using the recursive m definitionsofeachofs andt . m m 8 P.C.Leopardi 5 Bent functions and strongly regulargraphs This section examines the relationship between the bent functionss and t and m m thesubgraphsD [−1]andD [1]fromQuestion1.1. m m First we revise some known properties of Cayley graphs and strongly regular graphs, as noted in the previous paper on Hadamard matrices and Clifford alge- bras[11], includingthe resultof BernasconiandCodenotti[1] onthe relationship betweenbentfunctionsandstronglyregulargraphs. FirstwerecallaspecialcaseofthedefinitionofaCayleygraph. Definition5.1.The Cayley graph of a binary function f :Zm →Z is the undi- 2 2 rectedgraphwithadjacencymatrixF givenbyF = f(g +g ),forsomeordering i,j i j (g ,g ,...)ofZm. 1 2 2 TheresultofBernasconiandCodenotti[1]ontherelationshipbetweenbentfunc- tionsandstronglyregulargraphsisthefollowing. Lemma5.1.[1,Lemma12].TheCayleygraphofabentfunctiononZmisastrongly 2 regulargraphwithl =m . WeusethisresulttoexaminethegraphD .Thefollowingtwodefinitionsappear m inthepreviouspaper[11]andarerepeatedhereforcompleteness. Definition5.2.LetD bethegraphwhoseverticesarethen2=4m canonicalbasis m matrices of the real representation of the Clifford algebra R , with each edge m,m havingoneoftwocolours,−1(red)and1(blue): • MatricesA andA areconnectedbyarededgeiftheyhavedisjointsupportand j k areanti-amicable,i.e.A A−1isskew. j k • Matrices A and A are connected by a blue edge if they have disjoint support j k andareamicable,i.e.A A−1issymmetric. j k • OtherwisethereisnoedgebetweenA andA . j k Wecallthisgraphtherestrictedamicability/anti-amicabilitygraphoftheClifford algebraR ,therestrictionbeingtherequirementthatanedgeonlyexistsforpairs m,m ofmatriceswithdisjointsupport. Definition5.3.ForagraphG withedgescolouredby-1(red)and1(blue),G [−1] denotestheredsubgraphofG ,thegraphcontainingalloftheverticesofG ,andall ofthered(-1)colourededges.Similarly,G [1]denotesthebluesubgraphofG . Thefollowingtheoremispresentedin[11]. Theorem5.1.Forallm>1,thegraphD [−1]isstronglyregular,withparameters m v =4m,k =22m−1−2m−1,l =m =22m−2−2m−1. m m m m Unfortunately, the proof given there is incomplete, proving only that D [−1] is m stronglyregular,withoutshowingwhyk =22m−1−2m−1andl =m =22m−2− m m m 2m−1.Inthissection,werectifythisbyprovingthefollowing. TwinbentfunctionsandCliffordalgebras 9 Theorem5.2.Forallm>1,bothgraphsD [−1]andD [1]isstronglyregular,with m m parametersv =4m,k =22m−1−2m−1,l =m =22m−2−2m−1. m m m m Proof. SinceeachvertexofD isacanonicalbasiselementoftheCliffordalgebra m R ,wecanimposetheKroneckerproductorderingonthevertices,labellingeach m,m vertexAbyg −1(A)∈Z2m.Thelabelk (a,b)ofeachedge(g (a),g (b))ofD m 2 m m m m dependsona+binthefollowingway: k (a,b):=t (a+b)−s (a+b), thatis, m m m −1, s (a+b)=1 (⇔g (a+b)isskew), m m k m(a,b)=0, s m(a+b)=tm(a+b)=0 (⇔gm(a+b)isdiagonal), 1, tm(a+b)=1 (⇔gm(a+b)issymmetricbutnotdiagonal). Thus D [−1] is isomorphic to the Cayley graph of s on Z2m, and D [1] is iso- m m 2 m morphictotheCayleygraphoft onZ2m.Since,byLemma3.1andTheorem3.1, m 2 boths andt arebentfunctionsonZ2m,Lemma5.1impliesthatbothD [−1]and m m 2 m D [1]arestronglyregulargraphs. m It remains to determine the graph parameters. Firstly, v is the number of ver- m tices,whichis4m. SinceD [−1]is regular,we can determinek by examiningonevertex,g (0). m m m The edges (g (0),g (b)) of D [−1] are those for which s (b)= 1, that is, the m m m m edges where b is in the Hadamard difference set s −1(1). Thus, by Theorem 4.1, m k =2N2−N=22m−1−2m−1,whereN=2m−1. m SinceD [−1]isastronglyregulargraph,itholdsthat m (v −k −1)m =k (k −1−l ) m m m m m m [15,p.158]andhence,sincel =m ,wemusthave(v −1)l =k (k −1).We m m m m m m nownotethat k (k −1)=(2N2−N)(2N2−N−1)=(v −1)(22m−2−2m−1), m m m sothatl =m =22m−2−2m−1. m m Runningthroughtheseargumentsagain,withD [1]substitutedforD [−1]and m m t substitutedfors ,yieldsthesameparametersforD [1]. ⊓⊔ m m m Remark5.1.Amoreelementaryderivationofthevalueofl forD [−1]follows. m m There are k (k −1) ordered pairs (a,b) with a6=b and s (a)=s (b)=1. m m m m Sincek (k −1)=(N2−N)(4N2−1),thisgivesexactlyN2−N=22m−2−2m−1 m m orderedpairsforeachofother4m−1verticesofD [−1]. m Also, considering that s −1(1) is a Hadamard difference set, and for c∈Z2m, m 2 c6=0,consideroneofthepairs(a,b)suchthats (a)=s (b)=1andc=a+b. m m Thusb=a+cands (a)=s (a+c)=1.Therefore,thegraphD [−1]contains m m m theedges(g (0),g (a)),(g (0),g (b)),(g (c),g (a)),and(g (c),g (b)). m m m m m m m m 10 P.C.Leopardi Thus, in the graph D [−1], the vertices g (0) and g (c) have the two vertices m m m g (a)and g (b) in common.Thisis truewhetheror notthereis an edgebetween m m g (0) and g (c). The pair (b,a) yields the same four edges. Running through all m m suchpairs(a,b)andusingTheorem4.1again,wesee thatl =m =2N2−N= m m 22m−2−2m−1. 6 Other necessary conditions Thissectionexaminestwoothernecessaryconditionsfortheexistenceofanauto- morphismofD thatswapsD [−1]withD [1].Thefirstconditionfollows. m m m Theorem6.1.If an automorphism q : D → D exists that swaps D [−1] with m m m D [1], then there is an automorphismQ :D →D that also swaps D [−1] with m m m m D [1],leavingg (0)fixed. m m Proof. Forthepurposesofthisproof,assumetheKroneckerproductorderingofthe canonicalbasiselementsofR anddefinetheone-to-onemappingf :Z2m→Z2m m,m 2 2 suchthatq (g (a))=g (f (a))foralla∈Z2m.Theconditionthatq swapsD [−1] m m 2 m withD [1]isequivalenttothecondition m k (f (a)+f (b))=−k (a+b), m m wherek isasdefinedintheproofofTheorem5.2above. m LetF (a):=f (a)+f (0)foralla∈Z2m.ThenF (a)+F (b)=f (a)+f (b)for 2 alla,b∈Z2m,andtherefore 2 k (F (a)+F (b))=k (f (a)+f (b))=−k (a+b). m m m NowdefineQ :D →D suchthatQ (g (a))=g (F (a))foralla∈Z2m. ⊓⊔ m m m m 2 Thesecondconditionissimplytonotethatifq swapsD [−1]withD [1],then m m for any induced subgraph G ⊂D and its image q (G ), the corresponding edges m (A,B)and(q (A),q (B))willalsohaveswappedcolours. These two conditions were used to design a backtracking search algorithm to findanautomorphismthatsatisfiesQuestion1.1orruleoutitsexistence.Twoim- plementationsof the search algorithmwere coded:one using Python,and a faster implementationusing Cython.The sourcecode is available on GitHub [10]. Run- ningthesearchconfirmstheexistenceofanautomorphismform=1,2,and3,but rulesitoutform=4.OnanIntel(cid:13)R CoreTM [email protected],theCython implementationofsearchform=4takesabout15hourstorun. Sincethispaperwassubmitted,theauthorhasfoundasimpleproofthatanauto- morphismsatisfyingQuestion1.1doesnotexistform>4:SeearXiv:1504.02827 [math.CO].