ebook img

Twin bent functions and Clifford algebras PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Twin bent functions and Clifford algebras

Twin bent functions and Clifford algebras PaulC.Leopardi 5 1 0 2 v o N 1 1 Abstract ThispaperexaminesapairofbentfunctionsonZ2mandtheirrelationship 2 toanecessaryconditionfortheexistenceofanautomorphismofanedge-coloured ] O graphwhosecoloursaredefinedbythepropertiesofacanonicalbasisforthereal C representation of the Clifford algebra Rm,m. Some other necessary conditions are . alsobrieflyexamined. h t a m 1 Introduction [ 2 v Arecentpaper[11]constructsasequenceofedge-colouredgraphsD m(m>1)with 7 two edge colours, and makes the conjecture that for m>1, there is an automor- 7 phism of D that swaps the two edge colours.This conjecture can be refined into m 4 thefollowingquestion. 5 0 Question1.1.Considerthesequenceofedge-colouredgraphsD (m>1)asdefined . m 1 in[11],eachwithredsubgraphD [−1],andbluesubgraphD [1].Forwhichm>1 m m 0 isthereanautomorphismofD thatswapsthesubgraphsD [−1]andD [1]? m m m 5 1 Notethattheexistenceofsuchanautomorphismautomaticallyimpliesthatthe : v subgraphsD [−1]andD [1]areisomorphic. m m i Considering that it is known that D [−1] is a strongly regular graph, a more X m generalquestioncanbeaskedconcerningsuchgraphs. r a Mathematical Sciences Institute, The Australian National University. e-mail: [email protected] 1 2 P.C.Leopardi First,werecalltherelevantdefinition. Definition1.1.[2, 3, 15]. A simple graph G of order v is strongly regular with parameters(v,k,l ,m )if • eachvertexhasdegreek, • eachadjacentpairofverticeshasl commonneighbours,and • eachnonadjacentpairofverticeshasm commonneighbours. Now,themoregeneralquestion. Question1.2.For which parameters (v,k,l ,m ) is there a an edge-coloured graph G onv vertices,withtwo edgecolours,red(withsubgraphG [−1])andblue(with subgraphG [1]),suchthatthesubgraphG [−1]isa stronglyregulargraphwith pa- rameters (v,k,l ,m ), and such that there exists an automorphism of G that swaps G [−1]withG [1]? Remark1.1.Since the existence of such an automorphismimplies thatG [−1] and G [1]areisomorphic,thisimpliesthatG [1]isalsoastronglyregulargraphwiththe sameparametersasG [−1]. Questions1.1and1.2wereasked(inaslightlydifferentform)attheworkshop on“AlgebraicdesigntheorywithHadamardmatrices”inBanffinJuly2014. Furthergeneralizationgivesthefollowingquestions. Question1.3.Given a positive integer c>1, for what parameters(v,k,l ,m ) does thereexistackregulargraphonvverticesthatcanbegivenanedgecolouringwithc colours,suchthattheedgescorrespondingtoeachcolorforma(v,k,l ,m )strongly regulargraph? For what parameters is the c-edge-colouredck regular graph unique up to iso- morphism? Remark1.2.ThisquestionappearsonMathOverflow[9],andispartiallyanswered by Dima Pasechnik and Padraig O´ Catha´in, specifically for the case where the ck regulargraphisthecompletegraphonv=ck+1vertices.Seetherelevantpapers by van Dam [6], van Dam and Muzychuk [7], and O´ Catha´in [13]. These partial answersdonotapplyto the specific case ofQuestion 1.1becausethegraphD is m notacompletegraphwhenm>1. Question1.4.For which parameters (v,k,l ,m ) does the edge-coloured graph G fromQuestion1.3haveanautomorphismthatpermutesthecorrespondingstrongly regularsubgraphs?Whichfinitegroupsoccuraspermutationgroupsinthismanner (i.e. as the group of permutations of strongly regular subgraphs of such an edge- colouredgraph)? ThispaperexaminessomeofthenecessaryconditionsforthegraphD tohave m anautomorphismasperQuestion1.1.Questions1.2to1.4remainopenforfuture investigation. ConsideringthatD [−1]isastronglyregulargraph,thefirstnecessarycondition m is that D [1] is also a strongly regular graph, with the same parameters. This is m provenasTheorem5.2inSection5.Someothernecessaryconditionsareaddressed inSection6. TwinbentfunctionsandCliffordalgebras 3 2 A signedgroup and itsreal monomialrepresentation ThefollowingdefinitionsandresultsappearinthepaperonHadamardmatricesand [11], and are presented here for completeness, since they are used below. Further detailsandproofscanbefoundinthatpaper,unlessotherwisenoted. ThesignedgroupG of order21+p+q is extensionof Z by Zp+q, definedby p,q 2 2 thesignedgrouppresentation G := e (k∈S ) | p,q {k} p,q (cid:28) e2 =−1(k<0), e2 =1(k>0), {k} {k} e e =−e e (j6=k) , {j} {k} {k} {j} (cid:29) whereS :={−q,...,−1,1,...,p}. p,q ThefollowingconstructionoftherealmonomialrepresentationP(G )ofthe m,m groupG isusedin[11]. m,m The2×2orthogonalmatrices . − . 1 E := , E := 1 1 . 2 1 . (cid:20) (cid:21) (cid:20) (cid:21) generate P(G ), the real monomial representation of group G . The cosets of 1,1 1,1 {±I}≡Z inP(G )areorderedusingapairofbits,asfollows. 2 1,1 0↔00↔{±I}, 1↔01↔{±E }, 1 2↔10↔{±E }, 2 3↔11↔{±E E }. 1 2 Form>1,therealmonomialrepresentationP(G )ofthegroupG consists m,m m,m ofmatricesoftheformG ⊗G withG inP(G )andG inP(G ). 1 m−1 1 1,1 m−1 m−1,m−1 Thecosetsof{±I}≡Z inP(G )areorderedbyconcatenationofpairsofbits, 2 m,m whereeachpairofbitsusestheorderingasperP(G ),andthepairsareordered 1,1 asfollows. 0↔00...00↔{±I}, ⊗(m−1) 1↔00...01↔{±I ⊗E }, (2) 1 ⊗(m−1) 2↔00...10↔{±I ⊗E }, (2) 2 ... 22m−1↔11...11↔{±(E E )⊗m}. 1 2 4 P.C.Leopardi (HereI isusedtodistinguishthis2×2unitmatrixfromthe2m×2m unitmatrix (2) I.)Inthispaper,thisorderingiscalledtheKroneckerproductorderingofthecosets of{±I}inP(G ). m,m Werecallhereanumberofwell-knownpropertiesoftherepresentationP(G ). m,m Lemma2.1.ThegroupG anditsrealmonomialrepresentationP(G )satisfy m,m m,m thefollowingproperties. 1. Pairs of elements of G (and therefore P(G )) either commute or anti- m,m m,m commute:forg,h∈G ,eitherhg=ghorhg=−gh. m,m 2. ThematricesE∈P(G )areorthogonal:EET =ETE=I. m,m 3. ThematricesE∈P(G )areeithersymmetricandsquaretogiveIorskewand m,m squaretogive−I:eitherET =E andE2=I orET =−E andE2=−I. Taking the positive signed element of each of the 22m cosets listed above de- finesatransversalof{±I}inP(G )whichisalsoamonomialbasisforthereal m,m representationoftheCliffordalgebraR inKroneckerproductorder.Inthispa- m,m per,wecallthisorderedmonomialbasisthepositivesignedbasisofP(R ).For m,m example, (I,E ,E ,E E ) is the positive signed basis of P(R ). Note: any other 1 2 1 2 1,1 choiceofsignswillgivea differenttransversalof{±I}inP(G ),andhencean m,m equivalentorderedmonomialbasis of P(R ), butwe choosepositivesigns here m,m fordefiniteness. Definition2.1.We define the function g :Z →P(G ) to choose the corre- m 22m m,m sponding basis matrix from the positive signed basis of P(R ), using the Kro- m,m necker product ordering. This ordering also defines a corresponding function on Z2m,whichwealsocallg . 2 m Forexample, g (0)=g (00)=I, g (1)=g (01)=E , 1 1 1 1 1 g (2)=g (10)=E , g (3)=g (11)=E E . 1 1 2 1 1 1 2 3 Two bent functions We nowdefine two functions,s and t on Z2m, andshow thatbothofthese are m m 2 bent.First,recalltherelevantdefinition. Definition3.1.[8,p.74]. ABooleanfunction f :Zm→Z isbentifitsHadamardtransformhasconstant 2 2 magnitude.Specifically: 1. TheSylvesterHadamardmatrixH ,oforder2m,isdefinedby m 1 1 H := , 1 1 − (cid:20) (cid:21) H :=H ⊗H , for m>1. m m−1 1 TwinbentfunctionsandCliffordalgebras 5 2. ForaBooleanfunction f :Zm→Z ,definethevector f by 2 2 f :=[(−1)f[0],(−1)f[1],...,(−1)f[2m−1]]T, wherethevalueof f[i],i∈Z2m isgivenbythevalueof f onthebinarydigitsof i. 3. Intermsofthesetwodefinitions,theBooleanfunction f :Zm→Z isbentif 2 2 H f =C[1,...,1]T. m (cid:12) (cid:12) forsomeconstantC. (cid:12) (cid:12) The first function, s is defined and shown to be bent in [11]. We repeat the m definitionhere. Definition3.2.Weusethebasiselementselectionfunctiong ofDefinition2.1to m definethesign-of-squarefunctions :Z2m→Z as m 2 2 1↔g (i)2=−I s (i):= m m (0↔gm(i)2=I, foralliinZ2m. 2 Remark3.1.Property3fromLemma2.1ensuresthats iswelldefined.Also,since m eachg (i)isorthogonal,s (i)=1ifandonlyifg (i)isskew. m m m From the property of Kronecker products that (A⊗B)T =AT ⊗BT, it can be shown thats can also be calculated fromi∈Z2m as the parity of the numberof m 2 occurrencesofthebitpair01ini,i.e.s (i)=1ifandonlyifthenumberof01pairs m isodd.Alternatively,fori∈Z ,s (i)=1ifandonlyifthenumberof1digitsin 22m m thebase4representationofiisodd. Thefollowinglemmaisprovenin[11]. Lemma3.1.Thefunctions isabentfunctiononZ2m. m 2 Thebasiselementselectionfunctiong alsogivesrisetoasecondfunction,t m m onZ . 22m 6 P.C.Leopardi Definition3.3.Wedefinethenon-diagonal-symmetryfunctiont onZ andZ2m m 22m 2 asfollows. ForiinZ2: 2 1 ifi=10, sothatg (i)=±E , t (i):= 1 2 1 (0 otherwise. ForiinZ2m−2: 2 t (00⊙i):=t (i), m m−1 t (01⊙i):=s (i), m m−1 t (10⊙i):=s (i)+1, m m−1 t (11⊙i):=t (i). m m−1 where⊙denotesconcatenationofbitvectors,ands isthesign-of-squarefunction, asabove. Itiseasytoverifythatt (i)=1ifandonlyifg (i)issymmetricbutnotdiagonal. m m This can be checked directly for t . For m >1 it results from properties of the 1 Kronecker product of square matrices, specifically that (A⊗B)T =AT ⊗BT, and thatA⊗BisdiagonalifandonlyifbothAandBarediagonal. Thefirstmainresultofthispaperisthefollowing. Theorem3.1.Thefunctiont isabentfunctiononZ2m. m 2 The proof of Theorem3.1 uses the followingresult, due to Tokareva[16], and stemmingfromtheworkofCanteaut,Charpinandothers[4,TheoremV.4][5,The- orem2].Theresultreliesonthefollowingdefinition. Definition3.4.Forabentfunction f onZmthedualfunction f isgivenby 2 (H [f]) =:2m/2(−1)f(i). e m i e Lemma3.2.[16,Theorem1]Ifabinaryfunction f onZ2mcanbedecomposedinto 2 fourfunctions f ,f ,f ,f onZ2m−2 as 0 1 2 3 2 f(00⊙i)=: f (i), f(01⊙i)=: f (i), 0 1 f(10⊙i)=: f (i), f(11⊙i)=: f (i), 2 3 whereallfourfunctionsarebent,withdualfunctionssuchthat f +f +f +f =1, 0 1 2 3 then f isbent. e e e e ProofofTheorem3.1.InLemma3.2,set f = f :=t ,f =s ,f =s + 0 3 m−1 1 m−1 2 m−1 1.Clearly, f = f .Also, f = f +1,sinceH [f ]=−H [f ].Therefore f + 0 3 2 1 m−1 2 m−1 1 0 f + f + f =1. Thus, these four functionssatisfy the premise of Lemma 3.2, as 1 2 3 longasbothes e andt e areebent. e m−1 m−1 e e e TwinbentfunctionsandCliffordalgebras 7 Itis knownthats is bentforall m. Itis easy to show thatt is bent,directly m 1 fromitsdefinition.Thereforet isbent. ⊓⊔ m 4 Bent functions and Hadamarddifference sets The following well known properties of Hadamard difference sets and bent func- tionsarenotedin[11]. Definition4.1.[8,pp.10and13]. Thek-elementsetDisa(v,k,l ,n)differencesetinanabeliangroupGoforderv ifforeverynon-zeroelementginG,theequationg=d −d hasexactlyl solutions i j (d,d )withd,d inD.Theparametern:=k−l .A(v,k,l ,n)differencesetwith i j i j v=4niscalledaHadamarddifferenceset. Lemma4.1.[8,Remark2.2.7][12,14].AHadamarddifferencesethasparameters oftheform (v,k,l ,n)=(4N2,2N2−N,N2−N,N2) or (4N2,2N2+N,N2+N,N2). Lemma4.2.[8, Theorem6.2.2]The Booleanfunction f :Zm →Z is bentif and 2 2 onlyifD:= f−1(1)isaHadamarddifferenceset. Together,theseproperties,alongwithLemma3.1andTheorem3.1,areusedhere toprovethefollowingresult. Theorem4.1.Thesetss −1(1)andt −1(1)arebothHadamarddifferencesets,with m m thesameparameters (v ,k ,l ,n )=(4m,22m−1−2m−1,22m−2−2m−1,22m−2). m m m m Proof. Both s and t are bent functions, as per Lemma 3.1 and Theorem 3.1 m m respectively.Therefore,byLemma4.2,boths −1(1)andt −1(1)areHadamarddif- m m ferencesets. Inbothcases, therelevantabeliangroupisZ2m, with order4m. Thus 2 inLemma4.1wemustsetN=2m−1toobtainthateither (v ,k ,l ,n )=(4m,22m−1−2m−1,22m−2−2m−1,22m−2)or m m m m (v ,k ,l ,n )=(4m,22m−1+2m−1,22m−2+2m−1,22m−2). m m m m Since s (i)=1 if and only if g (i) is skew, and t (i)=1 if and only if g (i) is m m m m symmetric but not diagonal,not only are these conditionsmutually exclusive,but also,forallm>1,thenumberofiforwhichs (i)=t (i)=0ispositive.Theseare m m theiforwhichg (i)isdiagonal.Thusk =22m−1−2m−1ratherthan22m−1+2m−1. m m Theresultfollowsimmediately. ⊓⊔ As a check, the parametersk can also be calculated directly, using the recursive m definitionsofeachofs andt . m m 8 P.C.Leopardi 5 Bent functions and strongly regulargraphs This section examines the relationship between the bent functionss and t and m m thesubgraphsD [−1]andD [1]fromQuestion1.1. m m First we revise some known properties of Cayley graphs and strongly regular graphs, as noted in the previous paper on Hadamard matrices and Clifford alge- bras[11], includingthe resultof BernasconiandCodenotti[1] onthe relationship betweenbentfunctionsandstronglyregulargraphs. FirstwerecallaspecialcaseofthedefinitionofaCayleygraph. Definition5.1.The Cayley graph of a binary function f :Zm →Z is the undi- 2 2 rectedgraphwithadjacencymatrixF givenbyF = f(g +g ),forsomeordering i,j i j (g ,g ,...)ofZm. 1 2 2 TheresultofBernasconiandCodenotti[1]ontherelationshipbetweenbentfunc- tionsandstronglyregulargraphsisthefollowing. Lemma5.1.[1,Lemma12].TheCayleygraphofabentfunctiononZmisastrongly 2 regulargraphwithl =m . WeusethisresulttoexaminethegraphD .Thefollowingtwodefinitionsappear m inthepreviouspaper[11]andarerepeatedhereforcompleteness. Definition5.2.LetD bethegraphwhoseverticesarethen2=4m canonicalbasis m matrices of the real representation of the Clifford algebra R , with each edge m,m havingoneoftwocolours,−1(red)and1(blue): • MatricesA andA areconnectedbyarededgeiftheyhavedisjointsupportand j k areanti-amicable,i.e.A A−1isskew. j k • Matrices A and A are connected by a blue edge if they have disjoint support j k andareamicable,i.e.A A−1issymmetric. j k • OtherwisethereisnoedgebetweenA andA . j k Wecallthisgraphtherestrictedamicability/anti-amicabilitygraphoftheClifford algebraR ,therestrictionbeingtherequirementthatanedgeonlyexistsforpairs m,m ofmatriceswithdisjointsupport. Definition5.3.ForagraphG withedgescolouredby-1(red)and1(blue),G [−1] denotestheredsubgraphofG ,thegraphcontainingalloftheverticesofG ,andall ofthered(-1)colourededges.Similarly,G [1]denotesthebluesubgraphofG . Thefollowingtheoremispresentedin[11]. Theorem5.1.Forallm>1,thegraphD [−1]isstronglyregular,withparameters m v =4m,k =22m−1−2m−1,l =m =22m−2−2m−1. m m m m Unfortunately, the proof given there is incomplete, proving only that D [−1] is m stronglyregular,withoutshowingwhyk =22m−1−2m−1andl =m =22m−2− m m m 2m−1.Inthissection,werectifythisbyprovingthefollowing. TwinbentfunctionsandCliffordalgebras 9 Theorem5.2.Forallm>1,bothgraphsD [−1]andD [1]isstronglyregular,with m m parametersv =4m,k =22m−1−2m−1,l =m =22m−2−2m−1. m m m m Proof. SinceeachvertexofD isacanonicalbasiselementoftheCliffordalgebra m R ,wecanimposetheKroneckerproductorderingonthevertices,labellingeach m,m vertexAbyg −1(A)∈Z2m.Thelabelk (a,b)ofeachedge(g (a),g (b))ofD m 2 m m m m dependsona+binthefollowingway: k (a,b):=t (a+b)−s (a+b), thatis, m m m −1, s (a+b)=1 (⇔g (a+b)isskew), m m k m(a,b)=0, s m(a+b)=tm(a+b)=0 (⇔gm(a+b)isdiagonal), 1, tm(a+b)=1 (⇔gm(a+b)issymmetricbutnotdiagonal). Thus D [−1] is isomorphic to the Cayley graph of s on Z2m, and D [1] is iso- m m 2 m morphictotheCayleygraphoft onZ2m.Since,byLemma3.1andTheorem3.1, m 2 boths andt arebentfunctionsonZ2m,Lemma5.1impliesthatbothD [−1]and m m 2 m D [1]arestronglyregulargraphs. m It remains to determine the graph parameters. Firstly, v is the number of ver- m tices,whichis4m. SinceD [−1]is regular,we can determinek by examiningonevertex,g (0). m m m The edges (g (0),g (b)) of D [−1] are those for which s (b)= 1, that is, the m m m m edges where b is in the Hadamard difference set s −1(1). Thus, by Theorem 4.1, m k =2N2−N=22m−1−2m−1,whereN=2m−1. m SinceD [−1]isastronglyregulargraph,itholdsthat m (v −k −1)m =k (k −1−l ) m m m m m m [15,p.158]andhence,sincel =m ,wemusthave(v −1)l =k (k −1).We m m m m m m nownotethat k (k −1)=(2N2−N)(2N2−N−1)=(v −1)(22m−2−2m−1), m m m sothatl =m =22m−2−2m−1. m m Runningthroughtheseargumentsagain,withD [1]substitutedforD [−1]and m m t substitutedfors ,yieldsthesameparametersforD [1]. ⊓⊔ m m m Remark5.1.Amoreelementaryderivationofthevalueofl forD [−1]follows. m m There are k (k −1) ordered pairs (a,b) with a6=b and s (a)=s (b)=1. m m m m Sincek (k −1)=(N2−N)(4N2−1),thisgivesexactlyN2−N=22m−2−2m−1 m m orderedpairsforeachofother4m−1verticesofD [−1]. m Also, considering that s −1(1) is a Hadamard difference set, and for c∈Z2m, m 2 c6=0,consideroneofthepairs(a,b)suchthats (a)=s (b)=1andc=a+b. m m Thusb=a+cands (a)=s (a+c)=1.Therefore,thegraphD [−1]contains m m m theedges(g (0),g (a)),(g (0),g (b)),(g (c),g (a)),and(g (c),g (b)). m m m m m m m m 10 P.C.Leopardi Thus, in the graph D [−1], the vertices g (0) and g (c) have the two vertices m m m g (a)and g (b) in common.Thisis truewhetheror notthereis an edgebetween m m g (0) and g (c). The pair (b,a) yields the same four edges. Running through all m m suchpairs(a,b)andusingTheorem4.1again,wesee thatl =m =2N2−N= m m 22m−2−2m−1. 6 Other necessary conditions Thissectionexaminestwoothernecessaryconditionsfortheexistenceofanauto- morphismofD thatswapsD [−1]withD [1].Thefirstconditionfollows. m m m Theorem6.1.If an automorphism q : D → D exists that swaps D [−1] with m m m D [1], then there is an automorphismQ :D →D that also swaps D [−1] with m m m m D [1],leavingg (0)fixed. m m Proof. Forthepurposesofthisproof,assumetheKroneckerproductorderingofthe canonicalbasiselementsofR anddefinetheone-to-onemappingf :Z2m→Z2m m,m 2 2 suchthatq (g (a))=g (f (a))foralla∈Z2m.Theconditionthatq swapsD [−1] m m 2 m withD [1]isequivalenttothecondition m k (f (a)+f (b))=−k (a+b), m m wherek isasdefinedintheproofofTheorem5.2above. m LetF (a):=f (a)+f (0)foralla∈Z2m.ThenF (a)+F (b)=f (a)+f (b)for 2 alla,b∈Z2m,andtherefore 2 k (F (a)+F (b))=k (f (a)+f (b))=−k (a+b). m m m NowdefineQ :D →D suchthatQ (g (a))=g (F (a))foralla∈Z2m. ⊓⊔ m m m m 2 Thesecondconditionissimplytonotethatifq swapsD [−1]withD [1],then m m for any induced subgraph G ⊂D and its image q (G ), the corresponding edges m (A,B)and(q (A),q (B))willalsohaveswappedcolours. These two conditions were used to design a backtracking search algorithm to findanautomorphismthatsatisfiesQuestion1.1orruleoutitsexistence.Twoim- plementationsof the search algorithmwere coded:one using Python,and a faster implementationusing Cython.The sourcecode is available on GitHub [10]. Run- ningthesearchconfirmstheexistenceofanautomorphismform=1,2,and3,but rulesitoutform=4.OnanIntel(cid:13)R CoreTM [email protected],theCython implementationofsearchform=4takesabout15hourstorun. Sincethispaperwassubmitted,theauthorhasfoundasimpleproofthatanauto- morphismsatisfyingQuestion1.1doesnotexistform>4:SeearXiv:1504.02827 [math.CO].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.