Cosimo Bambi Editor Tutorial Guide to X-ray and Gamma-ray Astronomy Data Reduction and Analysis Tutorial Guide to X-ray and Gamma-ray Astronomy Cosimo Bambi Editor Tutorial Guide to X-ray and Gamma-ray Astronomy Data Reduction and Analysis 123 Editor Cosimo Bambi Department ofPhysics FudanUniversity Shanghai, China ISBN978-981-15-6336-2 ISBN978-981-15-6337-9 (eBook) https://doi.org/10.1007/978-981-15-6337-9 ©SpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface X-rayandc-rayastronomy,namely,thestudyofastrophysicalobjectsintheX-ray andc-raybands,beganintheearly1960sandopenedanewwindowforthestudy of violent phenomena in the Universe. In the past 20 years, missions like XMM-Newton,Chandra,NuSTAR,Swift,andFermi,justtocitesomeofthem,have provided a large amount of data to study a number of astrophysical systems. For instance, X-ray and c-ray radiation is emitted by material orbiting in the strong gravity region of black holes and can be used to study the physical properties of these objects as well as their astrophysical environment. The next generation of satellites,likeeXTPandATHENA,promisestoprovideunprecedentedhigh-quality data to investigate a number of open questions about the physics and the astro- physics of the Universe. Despite the importance of X-ray and c-ray astronomy in modern physics and astrophysics, aswell as thenon-small communities working in thisfield, amanual for beginners, as well as a comprehensive reference for researchers, covering the main techniques of X-ray and c-ray data reduction and analysis is missing in the literature.Inmostcases,onehastorefertoonlinematerialspreadovertheweb,and to rely on the help of advisors or colleagues. Theambitionofthepresentbookisthustotrytoprovideacompactpedagogical manual on X-ray and c-ray astronomy, where one can find all the necessary materialstoquicklystarttoworkinthefield,and,inparticular,tostudyblackholes and the physical phenomena occurring in their strong gravity region. The book starts with abrief review on black holes and theemission mechanisms responsible for the generation of X-ray and c-ray radiation. Then we discuss the observational facilities in X-ray and c-ray astronomy, and how they work. The last part of the book is devoted to the discussion of X-ray and c-ray data reduction and analysis. The book should provide the basic tools to be able to write a scientific paper with the material obtained after the analysis of a source. Shanghai, China Cosimo Bambi January 2020 v Contents 1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Cosimo Bambi and Sourabh Nampalliwar 2 Accreting Black Holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Sourabh Nampalliwar and Cosimo Bambi 3 How to Detect X-Rays and Gamma-Rays from Space: Optics and Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Valentina Fioretti and Andrea Bulgarelli 4 Past, Present, and Future X-Ray and Gamma-Ray Missions . . . . . . 119 Andrea Bulgarelli and Matteo Guainazzi 5 From Raw Data to Scientific Products: Images, Light Curves and Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Jiachen Jiang and Dheeraj R. Pasham 6 Basics of Astrostatistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Vinay L. Kashyap 7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 William Alston, Peter Boorman, Andrea Bulgarelli, and Michael Parker vii Contributors William Alston Institute of Astronomy, Cambridge, UK Cosimo Bambi Department of Physics, Fudan University, Shanghai, China Peter Boorman Astronomical Institute, Academy of Sciences, Prague, Czech Republic; Faculty of Physical Sciences and Engineering, Department of Physics & Astronomy, University of Southampton, Southampton, UK Andrea Bulgarelli INAF OAS Bologna, Bologna, Italy Valentina Fioretti INAF OAS Bologna, Bologna, Italy MatteoGuainazzi EuropeanSpaceAgency,ESTEC,Noordwijk,TheNetherlands Jiachen Jiang Department of Astronomy, Tsinghua Univerisity, Beijing, China VinayL.Kashyap CenterforAstrophysics,Harvard&Smithsonian,Cambridge, MA, USA Sourabh Nampalliwar Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, Tübingen, Germany Michael Parker European Space Agency (ESA), European Space Astronomy Center (ESAC), Madrid, Spain Dheeraj R. Pasham MIT Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA, USA ix Chapter 1 Fundamental Concepts CosimoBambiandSourabhNampalliwar 1.1 Introduction Beginningwiththespecialtheoryofrelativityin1905,AlbertEinsteinsoonrealized thatNewton’stheoryofgravityhadtobesuperseded,toharmonizetheequivalence principleandthespecialtheoryofrelativity.Afternumerousinsights,falsealarms, anddeadends,thetheoryofgeneralrelativitywasbornin1915[14].Ittooksome yearsforittotakeoverNewton’stheoryastheleadingframeworkforthedescription ofgravitationaleffectsinourUniverse,andoverthepastcentury,ithasbecomeone ofthebedrocksofmodernphysics. Just a year after its proposition, Karl Schwarzschild was able to find an exact solutioningeneralrelativity,muchtothesurpriseofEinsteinhimself,whoonlyhad approximatesolutionsbythattime.TheSchwarzschildsolution[23]turnedouttobe muchmoreastrophysicallyrelevantthananyonecouldhaveimagined,anddescribes thesimplestclassofblackholes1inEinstein’stheory. Roughly speaking, a black hole is a region in which gravity is so strong that nothing,notevenlight,canescape.Aboundary,knownastheeventhorizon,separates theinterioroftheblackholefromtheexteriorregionandactsasaone-waymembrane: 1Theoriginofthetermblackholeisquiteintriguing.Whileitisnotclearwhousedthetermfirst, itappearedforthefirsttimeinapublicationintheJanuary18,1964issueofScienceNewsLetter. ItwasonareportonameetingoftheAmericanAssociationfortheAdvancementofScienceby journalistAnnEwing.ThetermbecamequicklyverypopularafteritwasusedbyJohnWheelerat alectureinNewYorkin1967. B C.Bambi( ) DepartmentofPhysics,FudanUniversity,2005SonghuRoad, Shanghai200438,China e-mail:[email protected] S.Nampalliwar TheoreticalAstrophysics,Eberhard-KarlsUniversitätTübingen, AufderMorgenstelle10,72076Tübingen,Germany e-mail:[email protected] ©SpringerNatureSingaporePteLtd.2020 1 C.Bambi(ed.),TutorialGuidetoX-rayandGamma-rayAstronomy, https://doi.org/10.1007/978-981-15-6337-9_1 2 C.BambiandS.Nampalliwar particleandradiationcanentertheblackholebutcannotexitfromit.Remarkably,a primitiveconceptofblackholewasalreadydiscussedattheendofthe18thcentury inthecontextofNewtonianmechanicsbyJohnMichellandPierre-SimonLaplace. Thestartingpointwasthecorpusculartheoryoflightdevelopedinthe17thcentury. Herelightismadeofsmallparticlestravelingwithafinitevelocity,sayc.Michell andLaplacenotedthattheescapevelocityfromthesurfaceofabodyofmassMand radius Rexceedscif R < R ,where crit 2G M R = N (1.1) crit c2 and G isNewton’sgravitationalconstant.Ifsuchacompactobjectweretoexist, N itshouldnotbeabletoemitradiationfromitssurfaceandshouldthuslookblack. ThiswastheconclusionofMichellandLaplaceandtheseobjectswerecalleddark stars. TheSchwarzschildtypeblackholesaredescribedbyjustoneparameter,themass, anditisthecharacteristicquantitysettingthesizeofthesystem.Thegravitational radiusofanobjectofmass M isdefinedas (cid:2) (cid:3) G M M r = N =14.77 km . (1.2) g c2 10 M(cid:2) Theassociatedcharacteristictimescaleis (cid:2) (cid:3) r M τ = g =49.23 μs . (1.3) c 10 M(cid:2) Fora10M(cid:2)blackhole,rg ∼15kmandτ ∼50µs.Wecanthusexpectthatphysical phenomenaoccurringaroundasimilarobjectcanhaveavariabilitytimescaleofthe order of 0.1–1ms. For a black hole with M ∼106 M(cid:2), we find rg ∼106 km and τ ∼5s, so physical processes occurring near its gravitational radius can have a variabilitytimescaleoftheorderof10–100s.Forthemostsupermassiveblackholes with M ∼109 M(cid:2),wehaverg ∼109kmandτ ∼1h. Theastrophysicalimplicationsofsuchblackholesolutionswerenottakenvery seriouslyforalongtime.Forexample,influentialscientistslikeArthurEddington argued that “some unknown mechanism” had to prevent the complete collapse of a massive body and the formation of a black hole in the Universe. The situation changedonlyinthe1960swiththeadventofX-rayobservations.YakovZel’dovich and,independently,EdwinSalpeterwerethefirst,in1964,toproposethatquasars were powered by central supermassive black holes [22, 26]. In the early 1970s, ThomasBoltonand,independently,LouiseWebsterandPaulMurdinidentifiedthe X-ray source Cygnus X-1 as the first stellar-mass black hole candidate [10, 25]. TheuncertaintyofthosetimescanbeimaginedbythescientificwagerbetweenKip ThorneandStephenHawking,thelatterclaimingthatCygnusX-1wasinfactnot a black hole. Hawking conceded the bet in 1990. In the past few decades, a large 1 FundamentalConcepts 3 numberofastronomicalobservationshavepointedouttheexistenceofstellar-mass blackholesinsomeX-raybinaries[20]andofsupermassiveblackholesatthecenter of many galaxies [17]. Thanks to X-ray and γ-ray missions like XMM-Newton, Chandra,NuSTAR,Swift,andFermi,inthepast20yearstherehasbeensubstantial progress in the study of these objects. In September 2015, the LIGO experiment detected,forthefirsttime,thegravitationalwavesemittedfromthecoalescenceof twoblackholes[1]. 1.2 BlackHolesinGeneralRelativity In4-dimensionalgeneralrelativity,blackholesarerelativelysimpleobjects,inthe sensethattheyarecompletelycharacterizedbyasmallnumberofparameters:the massM,thespinangularmomentum J,andtheelectriccharge Q.Thisistheresult oftheno-hairtheorem,whichholdsunderspecificassumptions[12,13,16,21].The name“no-hair”referstothefactblackholeshaveonlyasmallnumberoffeatures (hairs).Violationsoftheno-hairtheoremarepossibleinthepresenceofexoticfields, extradimensions,orextensionsofgeneralrelativity. A Schwarzschild black hole is a spherically symmetric, non-rotating, and elec- trically uncharged black hole and is completely characterized by its mass. In the presence of a non-vanishing electric charge, we have a Reissner-Nordström black hole, which is completely specified by two parameters and describes a spherically symmetric and non-rotating black hole of mass M and electric charge Q. A Kerr black hole is an uncharged black hole of mass M and spin angular momentum J. ThegeneralcaseisrepresentedbyaKerr-Newmanblackhole,whichhasamassM, aspinangularmomentum J,andanelectriccharge Q. Astrophysically,blackholesareexpectedtobelongtotheKerrfamily.Afterthe collapse of a massive body and the creation of an event horizon, the gravitational fieldoftheremnantquicklyreducestothatofaKerrblackholebyemittinggravita- tionalwaves[18, 19].Forastrophysicalmacroscopicobjects,theelectricchargeis extremelysmallandcanbeignored[2,4].Thepresenceofanaccretiondiskaround theblackhole,aswellasofstarsorbitingtheblackhole,donotappreciablychange thestronggravityregionaroundthecompactobject[5–7].Astrophysicalblackholes should thus be completely specified by their mass and spin angular momentum. It is often convenient to use the dimensionless spin parameter a∗ instead of J. For a blackholeofmass M andspin J,a∗isdefinedas cJ a∗ = . (1.4) G M2 N Ingeneralrelativity,thechoiceofthecoordinatesystemisarbitrary,andtherefore thenumericalvaluesofthecoordinateshavenophysicalmeaning.Nevertheless,they canoftenprovidethecorrectlengthortimescaleofthesystem.InBoyer–Lindquist coordinates, the typical coordinate system for Kerr black holes, the radius of the