ebook img

Turing Machines with Sublogarithmic Space PDF

126 Pages·1994·2.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turing Machines with Sublogarithmic Space

AndrSzzeejp ietowski TuriMnagc hinweist h SublogaritShpmaicce Spri-nVrgaelegr BerliHne idelbNeerwgY ork LondonP ariTso kyo HongK ongB arcelona Budapest LectNuortieenC s o mpuStceire nce 843 EditbeydG .G ooasn dJ .H artmanis AdvisoBroya rdW:.B raueDr. G rieJs. S toer SeriEedsi tors GerhaGrodo s JurHiasr tmanis UniversKiaUrilts ruhe CornelUln iversity Postfa6c98h 0 DepartmoenfCt o mputeSrc ience Vincen-zPriessnitz1- StraBe 4130U psoHna ll D-7613K1a rlsruGheer,m any IthacNaY, 1 4853U,S A Author AndrzSezje pietowski MathematiIcnaslt ituGtdea,n sUkn iversity Ul.W itaS twosz5a7 ,8 0-95G2d ansPko,l and UntiMla rch1 995: FB 17I-nformaUtniikv,e rsGiHU Piatd erborn Warburgers1t0r0aD,B- e3 309P5a derboGrne,r many CR SubjeCclta ssific(1a 9t9i)1:o F.n1 .1F,. 41. ISBN3 -540-583S5p5r-i6n ger-VBeerrllaiHgne idelbNeerwgY ork ISBN0 -387-583S5p5r-i6n ger-VNeerwlY aogr kB erliHne idelberg CIPd ataap plifeodr Thiwso rki ss ubjetcoct o pyriAglhlrt i.g hatrser e servwehde,t htehrew holoer p art oft he matiesrc ioanlc erned, spetchiref iigchaotlftsl r ya nslarteiporni,n trien-gu,s e ofi llustr,ar teicointsabtriooand,c asrteipnrgo,d ucotnmi iocnr ofiolrim nsa nyo ther way,a nds toraigned atbaa nksD.u plicatoifto hnip su blicaotrip oanr ttsh ereiosf permitotnelduy n detrh ep rovisiooftn hseG ermaCno pyriLgahwto fS eptemb9e,r 1965i,ni tcsu rrevnetr siaonnd,p ermissfioourns em usta lwaybseo btained from Springer-VVeiorllaatgi.ao rnels i abfloepr r osecuutnidoentr h eG ermaCno pyright Law. ©Springer-VBeerrllaHigen i delb1e9r9g4 PrintienGd e rmany Typesetting: Camebryaa -urtehaodry SPIN:1 0475435 45/3140-54-3P2r1i0ntoenda cid-fpraepee r Preface Them aino bjecotfis n vestigoafts ipoancc eo mplextihteyo arrye T urinmga chines witbohu ndeds pac(et hneu mbeorf c elolnst het apues eddu rincogm putatainodn ) languagaecsc eptbeyds uchm achineAsl.t housgohm ei mportant prsotbillelm s remaionp enm,u chw orkh asbe en donea,n dm anye xcitirnegs ulhtasv eb een obtainMeadn.y o ft hesree sulhtosw,e vehra,v ebe en proveudn detrh ea ssumption thatth ea mounotfa vailasbplaeci esa tl ealsotg aritwhimtirhce spetcott h el engotfh thei nput. Int hiboso k hIa vper esenttheekd e yr esuolnts pacceo mplexbiuttcy o,n centrated onp robleWmhsa:t h appenwshe nw e drotph ea ssumptoifoa ntl easlto garithmic spacaen dw hadt ol anguaagcecset pabwliet shu blogaristphamclieoc o lki ke? Them anuscrfioprtt h iboso k wasw rittaettn h eT echniUcnailv ersoifGt dya nsk andG dansUkn iversfirtoym1 99t1o 1 99P2a.r tosf t hem anuscrwieprteu seda s notefso rl ectugrievse antt hesuen iversiIwt ainettos .tha nk thep articiipnat nhtess e coursfeosr t heicrr iticTihsemf .i naclo rrecttioot nhsem anuscrwieprte m ade durinmgy staayt t heU niversoiftP ya derboirn1n 99u4n dearn A lexandveorn HumboldRte searFcehl lowship. I woulldi ktoe expremsys p rofound grtaotP irtoufdeesA s.oWr. M ostowsfkoir hiesn courageamnedan dtv ice. Io wea specidaelb tto a na nonymoruesf erfeoehr i so rh erh elpfcuolm menttos , Mrs.K . Mostowsaknad J .S kurczynsfkoirt heicra reful reatdhieon rgi goifn al versioofnt hem anuscriapntdt, o L .C harlkfoo rh elpimneg w itht ypesettthien g manuscriinTp EtX . PaderbomM,a y 1994 AndrzeSjz epietowski Contents 1 Inrtoduction 1 ... . . . ... . . .... . . . . .... . .. . . . .. . . .. . . . . . . . . .. . BasiNco tions. . . . . . . . . . . 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2.1T uriMnacgh in.e s. . . . . . . . .7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.C2o nfigaunrCdao tmipotunit oa.n . . . . . . 9. . . . . . . . . . . . . . . . . . 2.I3n terniaglu rCao.tn if.o n. . . . . . .1 1. . . . . . . . . . . . . . . . . . . . . . . . . 2.A4l terTnuartMiinancggh in.e s. . . . . . 1.2 . . . . . . . . . . . . . . . . . . . . 2.5S paCcoem ple.x i.t y. . . . . . . .1 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 5. . . . . . . LanguageAsc ceptabwliet hL ogarithmSipca ce 3 3.1T wo ExamLpalneggseuA saco cfe pwtiatbhl. e LogtahrmiSipca c.e . . . . . . . . .1 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.P2e bAbluet oma.t a. . . . . . . . .1 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3N SPAClEongComplLeatnegg eu. a . 18 ( ) . . . . . . . . . . . . . . . . . . Exampleosf L anguageAsc ceptabwliet hS ublogarithmic 4 . . . . . . . . . . . . . .2 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space . 4.1L anguAacgceesp wtiatob(hll eoS gpcnae) . . . . .2 1. . . . . . . . . . . . 4.T2al lLya nggeuAsac ecpbtlawei tShul bogtahrmSiipccae . . 2.4 . . . .2 .7 . . LowerB oundsf orA cceptiNnogn -regulLaarn guages 5 . 5.1L owBeoru nfdroTs w o-yTw uariMnagc hin.e s. . .2 8. . . . . . . . . . 5.2L owBeoru nfdroO sn e-TwuaryMi nacgh in.e s . . . 3.3 . . . . . . . . . 5.3L owBeoru nfdrots h Mei ddMlodeoe fS paCcoem ple.x .i. t 3y.4 SpaceC onstructiFubnlcet ions. . . . . . . 3.7 . . . . . . . . . . . . . . . . . . . 6 . 6.1D efinaintBdias oiPncrs o per.t i.e s. . . . .3 7. . . . . . . . . . . . . . . . . . 6.2F ulSlpaycC eo nrsutctFiubnlcet. i o.n s. . . . 39. . . . . . . . . . . . . . . . 6.3N ondetiesrtmiicnaSlplayCc oeFn usltlryFu ucntcitbiloen 4s2 HaltinPgr opertayn dC losuruen derC omplemetn . . .4 7. . . . . 7 7.1H altPirnogp oeTfru tryiM nacgh iwnietLsho g iatrhomri c GreatSepcrae . . . . . . . . . . .4 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.C2l osure undeorfS tCroDomenptgle ermmeinnti stic ComplCelxasiste.ys . . . . . . . . 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3C losuunrdCeeo rm pleomfSe tnrtNo onngd eterSmpiancies tic ComplCelxsasietasyb ovei tLhogm.a r. . . . . . . . . . . . . . . . . . . 52 . 7.4C losuunrdCeeo rm plefmroBe onutn Ldaendg uAacgceesp table byN ondeterTmuriinMniagsc thii.cn es . 53 . . . . . . . .. . . . . . . . . . . VIIIC ontents 7.5N oncluonsduCerorem pleomfLea nnatgg uAec cepbtya ble WeaklSypc aeB ounTduerdiM nacgh in.e s.. . . .5 5. . . . . . . . . . . . 8 Stronvge rsuWse ak Mode ofS paceC omplexit.y . . .6 1. . . . . . . 8.1W eaakn Sdt ornMgo doefS p aCcoem plferoxF iutlSylp cyae ConrsutctFiubnlcet ions . . . . . .6 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2W eaakn Sdt rCoonmgp lCelxasistaeybs oL voeg ari.t h.m 6 .2 . . 83. Weaakn Sdt rCoonmgp lCelxasistbeyes lL oowgi atrh.m . 6.3 . . 8.4S trMoondgoe fS paCcoem plfeoxRrie tcyio gzniMnagc hi.n e6s6 8.5W eaakn Mdi dMdoldeoe Sfsp aCcoem plaebxoiLvtoeyrg aith6m6 Padding.. . . .. . . .. .. .. ... ... ... ... ..6. 7 .. .. .. .. .. .. . . . . . 9 . . . . . 9.1P addaibnogLv oerg ait.h m. . .. .. .. .. .. 6.7. .. .. .. .. . . . . . . . . 9.2P addbienlgLo owrg ait.h m. . . . . . . 7.0 . . . . . . . . . . . . . . . . . . . . . . Determisntiivce rsuNso ndeterminiTusrtiincg M achines 77 10 10.D1e termvienriNssoumns d etearbmoiLvnoeig samr ithm 77 10.D2e termvienriNssoumnes dt ermbienliLosowmg ar.i t..h m.. 7 8. SpaceH ierarch.y . . . . . . . . . .8 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.11D igaonali.z a.t i.o n. . . . . . . 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 . SpHaicererc ahbye lLoowrg iat.h m . . . . . . . . . . . . . . . . . . . . . . . 82 Closuruen derC oncatenat.io n. . . . . . .8 5. . . . . . . . . . . . . . . . . . . . . . 12 AlternatHiinegr arch.y . . . . . . . . 8.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13.C1o llaopfts hiAenl gt teirHnneigar aracbhoLyvo egi atrh.m .9 0. 13.N2o ncposliolnftag h Ael terHniaetriabnrgec lLhooywg arit9h2m IndependeCnotm plemen.t . . . . . . . .9 5. . . . . . . . . . . . . . . . . . . . . . . . 14 Other ModoeflTu sr ingM achine.s . . . . . .9 9. . . . . . . . . . . . . . . . . . 15 15.T1w o-dimleT nusriiMonancgah i.n e.s . . . . 1.0 0. . . . . . . . . . . . . . . . 1.52I nkTduortiM nacgh in.e s. . . . . . . 1.0 4. . . . . . . . . . . . . . . . . . . . . . . 15.13- peTbubrliMenac gh in.e s. . . . . . . 1.0 7. . . . . . . . . . . . . . . . . . . . . . 15.D4e moTnu riMnacgh in.e s. . . . . . . 1.0 9. . . . . . . . . . . . . . . . . . . . . . . Referenc.es . . . . . . . . . . .1 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SubjecItn dex 13 1 SymbolI ndex 151 Introduction 1. Thimso nogirsaan pi hn vestoiftg haceto imoptnui toapnoawloe fTr u rimnag­ chiwnietsshu blogasrpiaWtcehec m.oi ncs tihdTe·u errmi ancgh miondeie nlt ro­ ducbeySd t eaHranrst,m aannLdie sw(,i9 1s6 w5i)ta th w o-rweaayd,-i onnpluyt tapaena ds epatrwaot-erw eaayd,- wworrikt et ape. tTahpecee lnlusm ber of useodnt hweo rtka pcea,ls lpeadic oseu ,mr e asuorfce o mptuitocanoamlp lexity. Twod efinoifst piacoconems p lheaxvbieet euyns eidnl iterLaeLttn(u ) rb eea. fnuctoinot nhn ea tunruamlb Ae Trusr.im nacgh iissna eti od sbter oLn(ng) l y s:p-abcoeunindfoe c do mptuitooanna niyn pouflte nng,ut shme osr teh aLn( n) spaIctie ss. a itdob ew eakLl(yns )p a-cobeundieffdro e vearcyc eipntpeud t ofl engatht leasactc eopncteoi mnptgui tooanrt rferoea lterTnuraitnign g n, ( machiunsenesosm orteh aLn(n s)p aDcSeP.A CE[LN(SnP)A]C,E []Lo,(r n ) ) ASPACE[Ld(enn)ot]th ceesl asosfl anggeuasac cebpytd eedt ermnionni­stic, dletmeirniosrt iacl,t Le(rnsn)pa atbcioenu-gn Tdureidmn agc hirneessp,e ctively. These acrlceasa slelse dc osmppalccelexas i,sdt eeyst ermnionnidsettiecr,m inis­ tiocra, l terrneastpiencgt,i vely. A grenautm boefpr r oblems scpoancccoeem rpnlisentxgrii eltmlya oipne n. '1\Ten odkton omwu cahb otuhtre e lahtiibpoe ntswdeeetne rmainnndio snt­ic determsipnacicosemt pilcce lxai.sBt suyert se cetnhtehlrayev,b e e esno mvee ry excidteivnegl oipntm hesent tuosdfs y p abcoeu-ncdoemdp utIantt ihboionsos k. wer evtihekewe rye saublotsuspt a ccoem plexciotnyc ebonunttt rh saept ee­ dfpirco ipeeasrn td ptreocohfnr ieqqrueueidisnt h set uodfly a nggeuasac cepted witshuibnl ogasrpiatich.esme,pi. ac bc oeu nbdyea fd nu ctLi(onns) u ch that E(n=) o logonrl iimn��f�0 . ( ) = Turmiancgh wiinsetushb logasrpiadtciheffsm ehirac r fprlotymh owshiech ha ve lorgiathomrgi rce astpeaIrcnt e h.bi osow kes hadlils cmuasnsy exoaftm hspi les faacntd i ltlotu es tporouairwn ept r esbeenlstoo wmo eft hebmr iefly. Classoefls a nggeuasac cewpitteshdui bgnla oriUsupnadicecep ehneda voinl y JL. l;mhaec hmiondeea lntsdh meo doefs paccoem plMeaxnimyto yd.eo lfTs u ring machwiintbehuo ndsepda acreee q iuvalteoen atc h iotfth hseep rab coeu nd fnuctiiseoq nu taol gorre atthealrnoa gritHhemn.ct ehre,e suclotnsc erning lorgiathomrgi rce atearr iesns,p o amsceee n msoed,ie nled pendTehniitsns. o t 1>chaseef ro s ublogasrpiatHchoemw.ie ctv heerar,re ae l msood ienld ependent 1sruelitnts hc eas oefs ublogasrpiaFtcoheerm.x i acm tphlfeenu ,c tlioolgnon gi s 1�lhoew er frboa ocucnedpn toinn-gr leagnuggleuafsraor m andyie ffremnotd els ofT urimnagc hainnde moofsd peascc oem plexity. Manrye stuhlattsf rohl oolgda roirgtr hemasitpcea arcrn eeo vta lfrios dul bog­ ::!. :a.ristphamFcioecer. x ampilTeh:ea lntaetrhiinegr afrroS cPhAyC E[L(n)] ()

Description:
This comprehensive monograph investigates the computational power of Turing machines with sublogarithmic space. The studies are devoted to the Turing machine model introduced by Stearns, Hartmanis, and Lewis (1965) with a two-way read-only input tape and a separate two-way read-write work tape. The
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.