ebook img

Turbulence in a three-dimensional deflagration model for Type Ia supernovae: I. Scaling properties PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turbulence in a three-dimensional deflagration model for Type Ia supernovae: I. Scaling properties

DRAFTVERSIONJANUARY27,2009 PreprinttypesetusingLATEXstyleemulateapjv.03/07/07 TURBULENCEINATHREE-DIMENSIONALDEFLAGRATIONMODELFOR TYPEIASUPERNOVAE:I.SCALINGPROPERTIES F.CIARALDI-SCHOOLMANN,W.SCHMIDT,J.C.NIEMEYER, LehrstuhlfürAstronomieundAstrophysik,UniversitätWürzburg,AmHubland,D-97074Würzburg,Germany F.K.RÖPKEANDW.HILLEBRANDT Max-Planck-InstitutfürAstrophysik,Karl-Schwarzschild-Str.1,D-85741Garching,Germany DraftversionJanuary27,2009 9 ABSTRACT 0 We analyze the statistical properties of the turbulent velocity field in the deflagration model for Type Ia 0 supernovae. In particular, we consider the question of whether turbulence is isotropic and consistent with 2 the Kolmogorov theory at small length scales. Using numerical data from a high-resolution simulation of a n thermonuclearsupernovaexplosion(Röpkeetal., 2007), spectraoftheturbulenceenergyandvelocitystruc- a ture functions are computed. We show that the turbulent velocity field is isotropic at small length scales and J follows a scaling law that is consistent with the Kolmogorov theory until most of the nuclear fuel is burned. 7 At length scales greater than a certain characteristic scale that agrees with the prediction of Niemeyer and 2 Woosley(1997),turbulencebecomesanisotropic. Here,theradialvelocityfluctuationsfollowthescalinglaw oftheRayleigh-Taylorinstability,whereastheangularcomponentstillobeysKolmogorovscaling. Inthelate ] phase of the explosion, this characteristic scale drops below the numerical resolution of the simulation. The R analysisconfirmsthatasubgrid-scalemodelfortheunresolvedturbulenceenergyisrequiredfortheconsistent S calculationoftheflamespeedindeflagrationmodelsofTypeIasupernovae,andthattheassumptionofisotropy . h onthesescalesisappropriate. p Subjectheadings:hydrodynamics—instabilities—methods:statistical—turbulence—Supernovae:general - o tr 1. INTRODUCTION pernova explosions1 has been the subject of a lively debate. s Oneschoolofthoughtholdstheviewthattheeffectiveprop- a The mechanism of thermonuclear explosions of white agationspeedintheflameletregimewouldnaturallybegiven [ dwarf(WD)stars,givingrisetoTypeIasupernovae(SNeIa) isstillnotunderstoodinfulldetail.Forthreereasons,akeyto by the velocity scale vRT((cid:96))∝(geff(cid:96))1/2 associated with the 1 thisproblemistheunderstandingofturbulentthermonuclear Rayleigh-Taylor(RT)instabilityinducedbybuoyancyinthe v 4 combustioninthedeflagrationphase—thephaseofsubsonic gravitationalfieldgeffforanylengthscale(cid:96)(Sharp1984). As flame propagation which commences the explosion process. asubgridscalemodel((cid:96)=∆,where∆isthenumericalcutoff 5 First,itisrequiredforthecorrectmodelingoftheflameprop- length), this scaling relation is easily implemented and ap- 2 4 agation in the deflagration model of SNe Ia (see Hillebrandt pears to be motivated by the basic physics of thermonuclear . & Niemeyer 2000, for a review of SN Ia explosion scenar- combustion in Type Ia supernovae (Gamezo et al. 2003). In 1 ios). Second, in alternative models, burning starts out in the opposition to this view, Niemeyer & Hillebrandt (1995) and 0 deflagration mode, and this is an essential ingredient to the Niemeyer&Kerstein(1997)arguedthatinevitablyturbulent 9 overall explosion process. Third, turbulence in the deflagra- velocityfluctuationsv(cid:48)((cid:96))aredominatedbytheturbulentcas- 0 tion phase sets the conditions for a possible deflagration-to- cade at length scales (cid:96) small compared to the scale of en- : v detonation transition (DDT) in the delayed detonation sce- ergyinjectionbytheRTinstabilityand,hence,shouldfollow i nario (Röpke 2007; Woosley 2007). The necessary insight the Kolmogorov scaling v(cid:48)((cid:96))∝(cid:96)1/3. Niemeyer & Woosley X intothedetailsoftheturbulentcombustionprocess,however, (1997)estimatedthetransitionlength(cid:96) betweentheRT- K/RT ar ishamperedbythefactthatfull-starsimulationsofthermonu- dominatedlengthscales(the“largescales”(cid:96)(cid:38)(cid:96)K/RT)andthe clearsupernovaexplosionscannotresolvethestructureofthe regimeoftheturbulentcascade(the“smallscales”(cid:96)(cid:46)(cid:96) ) K/RT deflagration flame. At the large scales accessible to simula- to be of the order 10km. Since the cutoff length ∆ in con- tions, the flame propagation is determined by flame instabil- temporarynumericalsimulationiscomparabletoorlessthan itiesandturbulence. Theseeffectssignificantlyboosttheef- (cid:96) ,itfollowsthatasubgridscale(SGS)modelforthecon- K/RT fective burning speed and, in the pure deflagration model of sistentcalculationoftheturbulentflamespeedhastobebased SNeIa,leadtotheflameaccelerationrequiredtoexplodethe ontheturbulenceenergyassociatedwiththelengthscale∆, WD (Reinecke et al. 2002; Gamezo et al. 2003). In order to whichisdeterminedbythethedynamicsoftheturbulentcas- describe the flame propagation in such simulations, the in- cade. Such an SGS model was proposed by Niemeyer & teractionoftheflamewithturbulentvelocityfluctuationshas Hillebrandt (1995) and further developed by Schmidt et al. tobemodeled. Thesemodelingapproachesyieldaneffective (2006). It is not clear a priori that the turbulence to be cap- flamepropagationspeedonthenumericallyresolvedscales— turedbytheSGSansatzisofKolmogorov-typeandtherefore theso-calledturbulentburningspeed. theapproachofSchmidtetal.(2006)isnotbasedonthisas- Theproblemofcalculatingthisturbulentflamepropagation sumption. However,Kolmogorovscalingisanobviouspossi- speedin three-dimensionalsimulationsofthermonuclear su- 1Forareview,seeRöpke&Schmidt(2008). 2 F.Ciaraldi-Schoolmannetal. bilitythathastobeconsidered. creteradiir: i The best way to gain insight into the properties of turbu- lenceinthedeflagrationstageistoanalyzeitdirectlyinhigh- 1 (cid:88)Ni v¯(r)= · v(r j)·e (r j), (1) resolutionsimulationsofthedeflagrationmodel. Heretheef- i N i r i i j=1 fects of gravity and spherical expansion of the background are naturally accounted for. In this paper, we present such where r2 =i∆2(t) is an integer multiple of the squared size i an a posteriori analysis of turbulence based on data from a ∆(t)ofthegridcellsattimet. Thesumisoverallcellsinthe recent numerical simulation (Röpke et al. 2007) which was cubic grid that are located at the distance r from the center, i carriedoutonaverylargegrid(10243 cells). Thecharacter- andN isthecorrespondingnumberofcells. Theunitvector i istics of this deflagration model as well as derived synthetic in radial direction at the position r j of the j-th cell in the i- i observables are in reasonable agreement with the observa- thshellisdenotedbye (r j). Usingthisestimate,wesubtract r i tions of dimmer (but still normal) observed SNe Ia (Röpke thesphericallyaveragedcomponentv¯(r)fromtheoriginalve- i et al. 2007). Therefore, our analysis is based on data from a locityfield. Inthefollowing,itisunderstoodthatthesymbol modelthatisexpectedtogivearealisticpictureofturbulence vreferstothefluctuatingpartofthevelocityfield. inSNeIa. Thefailureofthepuredeflagrationscenariotore- SincetheRT-Instabilityevolvesinthedirectionofgravity, produce the brighter end of the SN Ia sample does not limit weperformallcomputationswithvelocitycomponentsparal- the significance of our results as in all alternative scenarios lelandperpendiculartothegravitationalfield. Thesecompo- currently under discussion a similar deflagration phase initi- nentscorrespondtotheradialandangulardirections,because atestheexplosionandsetsthestageforthelaterevolution. thegravitationalfieldisassumedtobesphericallysymmetric In the simulation analyzed here, the co-moving grid tech- inthesimulation. Thus,wedefinev :=v e ,wheree =r/r (cid:107) r r r nique introduced by Röpke (2005) allowed for a very small and v =v·e , and v :=v−v . The corresponding energy r r ⊥ (cid:107) initial cutoff length ∆∼1km in the inner regions of the ex- spectrumfunctionsareobtainedbyintegratingthekineticen- ploding white dwarf. Although ∆ was gradually increased ergyperunitmassoverspheresofradiusk inFourierspace: in the course of the simulation, it was possible to investi- gatethebehaviourofturbulentvelocityfluctuationsatlength E (k)= 1(cid:72) dΩ k2|ˆv (k)|2, (2a) scales(cid:96)∼10kmbymeansofcomputingkineticenergyspec- (cid:107) 2 k (cid:107) trumfunctionsofthevelocityfieldinsubdomainsselectedby E⊥(k)= 12(cid:72) dΩkk2|ˆv⊥(k)|2, (2b) an appropriate window function. The results indicated Kol- whereˆv (k)andˆv (k)aretheFouriertransformsofthelon- mogorov scaling (Röpke et al. 2007). In this article, we re- (cid:107) ⊥ gitudinal and transversal velocity components, respectively. fine this analysis by decomposing the velocity field into ra- For developed turbulence, it is expected that the the energy dial and angular components. In addition, we subtract the spectrumfunctionsfollowpowerlaws,E(k)∝k−β,inthein- spherically averaged radial velocity in order to separate the ertial subrange of wave numbers. A disadvantage of Fourier velocity fluctuations from the mean radial expansion of the transformsisthatthecontributionsfromsmallwavenumbers white dwarf. For both components of the fluctuating veloc- aredistortedbythenon-periodicboundariesofthecomputa- ity field, a Fourier analysis is carried out to compute kinetic tional domain. For this reason, we apply Gaussian window energyspectraandtoinvestigatepossibleanisotropies. Since functionstothedatasetsasdescribedinRöpkeetal.(2007). Fouriertransformsaredistortedbythenon-periodicboundary Sincethedatawindowingcorrespondstoahigh-passfilterin ofthecomputationaldomain,wecalculatestructurefunctions Fourier space, the range of the energy spectra is constrained ofthefluctuatingvelocityfieldtoobtainreliableestimatesof tohigherwavenumbers. the scaling properties for the whole dynamical range of the In contrast to the energy spectra, structure functions are simulation. two-pointvelocitycorrelationfunctionscomputedinposition The methodology of our analysis is explained in detail in space. WhiletheFouriertransformsareperformedinCarte- thefollowingsection.AswillbeshowninSection3,RTscal- siancoordinatesystems,weusesphericalcoordinatesforthe ing is found for the radial fluctuating velocity component at computationofstructurefunctions,whichisconvenienttode- length scales greater than (cid:96) , whereas Kolmogorov scal- K/RT fine directions parallel and perpendicular to gravity. More- ingappliesforsmallerlengthscales. Incloseagreementwith over, the computation can be constrained to the interiors of the prediction by Niemeyer & Woosley (1997), the numeri- spherescontainingacertainamountofburnedmatter. Wede- cally determined value of (cid:96) is about 15km after the on- K/RT finetheradialvelocityincrementbythedifferenceofv ,i.e., setoftheexplosion. Theangularvelocitycomponent,onthe (cid:107) thevelocitycomponentinthedirectionofgravity,attwodif- other hand, closely follows the Kolmogorov scaling law at ferentpositionsr andr , all length scales. Furthermore, the velocity fluctuations are 1 2 nearlyisotropicatlengthscalessmallerthan(cid:96)K/RT. Inthelast δvrad=v(cid:107)(r2)−v(cid:107)(r1) (3a) section,wediscusspossiblecaveatsofouranalysisandcom- The angular velocity increment is defined by the difference mentontheimplicationsfornumericalsimulationsofTypeIa of the velocities projected in the directions perpendicular to supernovae. gravity,ie., δv =v (r )−v (r ) (3b) ang ⊥ 2 ⊥ 1 Note that these increments do not correspond to longitu- 2. ANALYSISOFTHETURBULENTVELOCITYFIELD dinalandtransversalvelocityincrements, becausetheveloc- For the statistical analysis of turbulence, we have to take itycomponentsaregenerallynotparallelorperpendicularto intoaccountthatthevelocityfieldisasuperpositionofturbu- the spatial separation r −r . However, we think that the 2 1 lentvelocityfluctuationsandthebulkexpansionofthewhite above definitions of velocity increments are better suited to dwarf. Toestimatethebulkexpansion,weaveragetheradial the physics of RT-driven turbulence in thermonuclear super- component of the velocity field over spherical shells of dis- novae. Our proposition is corroborated by the the scaling Turbulenceina3DdeflagrationmodelfortypeIaSNe: I.Scalingproperties 3 propertiesofthestructurefunctionsthatwillbepresentedin steeper (β ≈1.71), but close to a Kolmogorov spectrum for thefollowingSection. thewholerangeofwavenumbers. Theseresultswerecorrob- The radial and angular structure functions of order p are oratedbythecomputationofsecond-orderstructurefunctions definedbytheaveragesoftheradialandangularvelocityin- with much higher accuracy (see section 3.2). We also note crementstothepower p,respectively: thattheKolmogorovscalingforhigherwavenumbersagrees with the findings of Röpke et al. (2007), where turbulence energy spectra were computed without splitting the velocity S ((cid:96))=(cid:104)|δv |p(cid:105), (4a) p,rad rad field. This is in accordance with the expectation that the ra- Sp,ang((cid:96))=(cid:104)|δvang|p(cid:105), (4b) dial expansion will mostly affect low wave numbers modes. Att =1.0 seconds, on the other hand, the longitudinal spec- where the length scale (cid:96):=|r −r |. There is a large range 2 1 trumhasanexponentβ≈1.97overtheentirerangeofwave of length scales which encompasses the turbulent interior of numbers. In contrast, the transverse spectrum is much shal- theexplodingWD.Forfullydevelopedturbulencethestruc- ture functions are given by power laws Sp,rad((cid:96))∝(cid:96)ζp,rad and lower.Theexponentβ=2correspondstoRTscaling,because Sp,ang((cid:96))∝(cid:96)ζp,ang,whereζp,radandζp,angarecharacteristicscal- Eth(ek)v∝elokc−i2tyimcpolmiepsoδnve(n(cid:96)t)∝in(cid:96)t1h/e2.dCiroencstieoqnueonftlgyr,aivtiatpypiesardsotmhai-t ing exponents. If we further assume isotropy, ζ (cid:39)ζ , p,rad p,ang nated by the RT instability even at the smallest numerically and ζ = p/3 according to the theoretical analysis by Kol- p resolvedscalesinthelatephaseoftheexplosion,whileKol- mogorov (1941). In particular, it follows that the turbulent mogorovscalingisfoundforthevelocitycomponentperpen- velocityfluctuationv(cid:48)((cid:96))∝(cid:96)1/3. Fortheturbulentflowdriven diculartogravity. bythe RTinstability, ontheotherhand, v(cid:48)((cid:96))∝(cid:96)1/2 (Davies &Taylor1950)correspondingtoζ =p/2. p For the numerical computation of the structure functions, 3.2. Velocitystructurefunctions one has to take a sufficient large number of sample points For the computation of the structure functions following that are distributed with uniform probability within a spher- equation(4a)and(4b),wechoseasphericalregioninwhich icalregionofprescribedradiusinordertoachieveconverged 90% of the material was burned. This choice of the re- statistics. This was achieved by a Monte-Carlo-type algo- gionresultedfromtherequirementofencompassingthebulk rithm, where the total number of sample points was varied of turbulence at a given time, while excluding the outer, and,thereby,convergencewasestablished. non-turbulent regions of the white dwarf. Fig. 2 shows In order to analyze the isotropy of the velocity field close double-logarithmic plots of the radial (solid curve) and an- totheflame,weperformedcalculationsinsmallboxesinter- gular (dashed curve) structure functions of second order at sected by the flame. The algorithm is based on the analysis different times. In all cases up to t = 0.7 seconds, a scal- performed by Zingale et al. (2005). To simplify the calcula- ingexponentζ closeto2/3isfoundfortherangeoflength 2 tion,theboxisplacedalongacoordinateaxis,inourcasethe scales(cid:96)(cid:46)10km. Moreover,S ((cid:96))≈S ((cid:96)),whichindi- p,rad p,ang z-axis, which defines the local direction of gravity. For each catesisotropyatsmalllengthscales. Forlargerlengthscales, cell within the box, the velocity difference δv between the ontheotherhand,theradialstructurefunctionsS ((cid:96))obey p,rad localvelocityandthevelocityatthecenteroftheboxiscal- a scaling law with an exponent ζ ≈1, whereas S ((cid:96)) 2,rad p,ang culated. Then projected contours of the velocity differences stillfollowsKolmogorovscaling. Fromζ ≈1, itfollows 2,rad inFourierspacecanbeconstructed,byintegratingδˆv(k)over thatv(cid:48)((cid:96))∝(cid:96)1/2. Asoutlinedinsection2,thiscorrespondsto (cid:113) circlesofradiusk = k2+k2 inplanesperpendiculartothe RTscaling. Forthisreason,thechangeofslopeoftheradial ρ x y structurefunctionindicatesatransitionfromtheinertial-range z-componentofk. Thisprocedurewasappliedforseveralpo- turbulencecascadetotheregimeofRTinstabilitiesatalength sitions of the box center corresponding to different fractions scale (cid:96) approaching ≈14km in the course of the explo- ofburnedmatterinthebox. K/RT sion. Thus, our analysis confirms the estimate by Niemeyer 3. RESULTS &Woosley(1997). Asaresultoftheoverallexpansionofthe co-movinggrid,thetransitionlengthdropsbelowthenumer- 3.1. Energyspectra ical resolution of the simulation after ∼ 0.7 to 1.0 seconds. We plot the energy spectra as functions of the normalized The time evolution of (cid:96) is further illustrated in Fig. 3, K/RT wave number k = 512∆ (t)k/π for 16 ≤ k ≤ 512, where wherethesecondorderstructurefunctionsareplottedforall n 0 n ∆ (t)isthesizeofthecellsintheuniformpartofthegridat data sets, for which (cid:96) is numerically resolved. While in 0 K/RT timet.Wehave∆ (t)=2.93and14.69kmattimest=0.5and Fig.2therangeoflengthscalesisadjustedtothesizeofthe 0 1.0 seconds, respectively. Note that wave numbers k <32 co-movinggrid,afixedrangeoflengthscalesisusedinFig.3. n are obscured by data windowing (see Section 2). The com- Additionally, the typical mass density in the vicinity of the putedenergyspectrumfunctionsat0.5secondsareshownas flamefrontisspecifiedforeachinstantoftime. Inagreement black curves in Fig. 1 (a). The thin gray lines corresponds withFig.1ofNiemeyer&Woosley(1997),Fig.2and3show to power-law fits and the dashed line indicates the expected that (cid:96) becomessmaller withdecreasing density(and ad- K/RT spectrumaccordingtotheKolmogorovtheorywithanexpo- vancingtime). Remarkably,itappearsthat(cid:96) approaches K/RT nentβ=5/3. Forthelongitudinalspectrumfunction,wefind an asymptotic value, but we cannot investigate this behavior β≈1.64forhighwavenumbers,whichisingoodagreement for t >0.8 seconds. To obtain more properties of (cid:96) ad- K/RT withtheKolmogorovtheory. Thelongitudinalspectrumpos- ditional high-resolved numerical simulations are needed, in sibly stiffens toward lower wave numbers, but the accuracy which(cid:96) canbetrackedforalongertime. K/RT of the computed spectra does not allow for a conclusive re- InFigure4,thestructurefunctionsuptothesixthorderare sult. We exclude the lower part of wavenumbers from the plottedfort =0.5,0.6and0.7seconds. Asonecanseefrom fit, because the slope becomes steeper than a Kolmogorov the scaling exponents listed in Figure 3, ζ is close to unity 3 spectrum for k (cid:46)64. The transversal spectrum is slightly fortheangularstructurefunctionsandfortheradialstructure n 4 F.Ciaraldi-Schoolmannetal. (a) t=0.5seconds (b) t=1.0seconds FIG.1.—Longitudinal(1)andtransversal(2)energyspectrumfunction(blackcurve)att=0.5(a)andt=1.0(b)secondsincomparisonwiththeKolmogorov energyspectrum(dashedline). (a) t=0.3seconds (b) t=0.4seconds (c) t=0.5seconds (d) t=0.6seconds (e) t=0.7seconds (f) t=1.0seconds FIG.2.—Radial(solidcurve)andangular(dashedcurve)2nd-orderstructurefunctionwiththedeterminedtransitionlengthscale. functionsinthesubrange(cid:96)<(cid:96) . Thisresultisconsistent tal significance of relative scaling exponents. But it has not K/RT withtheKolmogorovtheory(seeFrisch1995).For(cid:96)>(cid:96) , been noticed before that RT-driven velocity fluctuations ex- K/RT on the other hand, ζ ≈1.5. Remarkably, it appears that hibit statistical properties that are equivalent to the proper- 3,rad for all p≤6 the slopes of the radial structure functions are tiesofisotropic,inertial-rangeturbulenceintermsofrelative steeperbyafactorof1.5atlengthscalesgreaterthan(cid:96) . scalings. It is known that the calculation of higher-order ex- K/RT ThissuggeststhattheratioZ :=ζ /ζ isapproximatelyequal ponents becomes increasingly uncertain due to sampling er- p p 3 for S ((cid:96)<(cid:96) ) and S ((cid:96)>(cid:96) ). Indeed, the rel- rors (Frisch 1995). For this reason, we do not consider the p,rad K/RT p,rad K/RT ative scaling exponents of the radial structure functions in relativelyhighdiscrepanciesbetweentheresultsfor p≥5to both subranges are quite close (see Table 1). There are the- be significant. Comparing the relative scaling exponents of oretical arguments (Dubrulle 1994) as well as numerical in- theradialandtheangularstructurefunctionsinthesubrange vestigations (Benzi et al. 1993) in support of the fundamen- (cid:96)>(cid:96)K/RT, on the other hand, we find very good agreement. Turbulenceina3DdeflagrationmodelfortypeIaSNe: I.Scalingproperties 5 TABLE1 RELATIVESCALINGEXPONENTSZpATTHREEDIFFERENTINSTANTSOFTIME t[s] p=1 p=2 p=3 p=4 p=5 p=6 0.5 0.344±0.016 0.676±0.027 1.0±0.037 1.309±0.050 1.597±0.058 1.860±0.068 Zp,radfor(cid:96)<(cid:96)K/RT 0.6 0.341±0.016 0.676±0.030 1.0±0.046 1.304±0.057 1.593±0.071 1.850±0.082 0.7 0.347±0.019 0.676±0.029 1.0±0.038 1.302±0.052 1.584±0.060 1.842±0.074 0.5 0.339±0.009 0.674±0.015 1.0±0.021 1.315±0.027 1.615±0.033 1.900±0.038 Zp,radfor(cid:96)>(cid:96)K/RT 0.6 0.338±0.011 0.674±0.019 1.0±0.027 1.316±0.033 1.613±0.042 1.896±0.050 0.7 0.338±0.011 0.674±0.019 1.0±0.027 1.315±0.035 1.615±0.043 1.898±0.050 0.5 0.336±0.008 0.670±0.016 1.0±0.024 1.323±0.034 1.636±0.042 1.920±0.050 Zp,ang 0.6 0.335±0.013 0.668±0.018 1.0±0.026 1.319±0.034 1.625±0.045 1.919±0.050 0.7 0.335±0.009 0.670±0.016 1.0±0.022 1.323±0.030 1.635±0.035 1.934±0.041 spectrum functions and structure functions of second order werecomputed. Theresultsofthisstudyareasfollows: 1. The velocity fluctuations in the radial direction, i. e., the direction of gravity, follow Kolmogorov scaling at length scales smaller than a certain transition length (cid:96) ∼10km.Onlyatlengthscalesgreaterthan(cid:96) , K/RT K/RT the radial velocity fluctuations are dominated by the scalinglawoftheRayleigh-Taylorinstability. Thisbe- haviourwaspredictedbyNiemeyer&Woosley(1997). 2. Thevelocityfluctuationsinangulardirections,i.e.,per- pendicular to gravity, obey Kolmogorov scaling over theentirerangeofnumericallyresolvedlengthscales. 3. For (cid:96)(cid:46)(cid:96) , the magnitudes of the radial and angu- K/RT lar velocity fluctuations are nearly equal. For this rea- son, small-scale turbulence appears to be statistically isotropic. FIG.3.—2ndorderradialstructurefunctionswiththetransitionlength(big dots)andcorrespondingdensityontheflamefront. 4. Fourier analysis of the velocity fluctuations in a small regionneartheflamesurfaceallowsforslightresidual Wewillconcentrateonthesescalingexponentsinthefollow- anisotropiesatthesmallestresolvedscales. ing. Asregardstheinterpretationofourresults,apossiblecause 3.3. Localisotropyofthevelocityfluctuations forconcernisthatKolmogorovscalingintheradialdirection ThecontourlinesoftheFourier-transformedvelocityfield is only found for a relatively narrow range of length scales at 0.5 seconds inside a box as described in Section 2 are greater than the numerical cutoff length. It is known that plotted in Fig 5. The box is positioned such that 50% of these scales are affected by numerical dissipation and, par- the enclosed matter is burned. The thick dashed line indi- ticularly,bythebottleneckeffect(Schmidtetal.2006). Thus, cate the wave number 2π/(cid:96)K/RT corresponding to the transi- theflatteningoftheturbulenceenergyspectrummightbear- tion length obtained from the calculation of the radial struc- tificial. However,inthiscase,nosignificantflatteningshould turefunctions. Forsmallerwavenumbers(i.e.,(cid:96)(cid:38)(cid:96)RT),the be observed for the corresponding structure functions which contours of δˆv(k) are clearly anisotropic. One can see that are much less affected by the bottleneck effect. The scal- a given velocity difference in the z-direction spans a smaller ing laws implied by the radial energy spectra and structure range of wave numbers than in the directions perpendicular functions are fully consistent at small length scales and the to the z-axis. This corresponds to a steeper slope of the ve- transversalspectrashownoflatteningatall. Inconsequence, locity fluctuations in the radial direction, which is approxi- we are confident that the scaling laws are genuine. A possi- mately given by the z-direction. Toward higher wave num- bleexplanationfortheabsenceofthebottleneckeffectisthat bers ((cid:96)(cid:46)(cid:96)RT), the anisotropy of the contours decreases, but turbulence does not reach a statistically stationary state in a wedonotfindperfectisotropy. Thismightindicateresidual supernovaexplosion. small-scaleanisotropyinthevicinityoftheflamefront,which YetanotherissueisthatKolmogorovscalingmightbeen- can be caused by the intermittency of turbulence. However, forced by the subgrid scale model that was used in the sim- itcouldalsobeaspuriouseffectduetothemisalignmentbe- ulation. However, other than the RT-based models used by tweenthez-axisandtheradialdirectionatoff-centerpositions Gamezo et al. (2003), this SGS model does neither presume withinthebox. anygivenscalingofturbulencenordoesitimprintsuchascal- ingonthenumericallyresolvedflow. Apotentialproblemfor 4. CONCLUSION theSGSmodelisthepossiblelackofisotropyneartheflame We investigated the scaling properties of turbulence in a surface.However,thereiscertainlynopronouncedanisotropy high-resolution simulation of a Type Ia supernova based on atthesmallestresolvedscalesif∆ (t)<(cid:96) ,andstatistical 0 K/RT thepuredeflagrationmodel(Röpkeetal.2007). Bothenergy isotropyisfoundforthebulkofturbulentregions.Onlyinthe 6 F.Ciaraldi-Schoolmannetal. (a) t=0.5seconds,radial (b) t=0.6seconds,radial (c) t=0.7seconds,radial (d) t=0.5seconds,angular (e) t=0.6seconds,angular (f) t=0.7seconds,angular FIG.4.—Radialandangularstructurefunctionuptothesixthorderwiththecorrespondingscalingexponents.Fortheradialstructurefunctions,thetransition lengthfromKolmogorovtoRayleigh-Taylorscaling(cid:96) isindicated. K/RT transitionisexpectedtooccur(Gamezoetal.2005;Röpke& Niemeyer 2007). Apart from that, the production of turbu- lence energy by unresolved buoyancy effects is heuristically included in the SGS model. In conclusion, the SGS turbu- lence energy model by Schmidt et al. (2006) applies to the majorpartoftheexplosiveburninginthedeflagrationphase of a Type Ia supernova explosion, but there is no regime for whichapureRT-scalingmodelholds. After settling the issue of turbulence scaling in the defla- gration phase of a Type Ia supernova in the present article, wementionthattheoccurrenceofdeflagration-to-detonation transitionscanbeconstrainedonthebasisofthedeflagration model. FortheDDTmechanismtooperate,strongturbulence isnecessaryinlatephasesoftheburning(e.g.Woosley2007). Röpke(2007)foundthatthismayindeedberealizedindefla- grationmodelsofSNeIawithlow(butnotvanishing)prob- ability. In order to better quantify this intermittency effect, higher-orderstructurefunctionshavetobecomputed. Fitting intermittency models to the numerically determined scaling exponents (as proposed by Pan et al. 2008), the probability FIG. 5.— ContourplotsoftheFourier-transformedvelocitydifferences ofstrongturbulentvelocityfluctuationsatanyinstantoftime insideasmallboxintersectedbytheflamefrontat0.5seconds. canbeestimated. Thisanalysiswillbepresentedinafuture publication. late phase of the explosion, when the transition length (cid:96) K/RT becomes smaller than the numerical resolution and the re- solvedsmall-scaleturbulencedefinitelybecomesanisotropic, the notion of SGS turbulence energy cannot be strictly jus- The research of F.K.R. is supported through the Emmy tified. One should note, however, that this point more or NoetherProgramoftheGermanResearchFoundation(DFG; lesscoincideswiththetimewhenadeflagration-to-detonation RO3676/1-1). REFERENCES Benzi,R.,Ciliberto,S.,Tripiccione,R.,Baudet,C.,Massaioli,F.,&Succi, Davies,R.M.,&Taylor,G.1950,Proc.Roy.Soc.LondonA,200,375 S.1993,Phys.Rev.E,48,29 Turbulenceina3DdeflagrationmodelfortypeIaSNe: I.Scalingproperties 7 Dubrulle,B.1994,Phys.Rev.Lett.,73,959 Röpke,F.K.,Hillebrandt,W.,Schmidt,W.,Niemeyer,J.C.,Blinnikov,S.I., Frisch,U.1995,Turbulence.ThelegacyofA.N.Kolmogorov(Cambridge: &Mazzali,P.A.2007,ApJ,668,1132 CambridgeUniversityPress,|c1995) Röpke,F.K.,&Niemeyer,J.C.2007,A&A,464,683 Gamezo,V.N.,Khokhlov,A.M.,&Oran,E.S.2005,ApJ,623,337 Röpke, F. K., & Schmidt, W. 2008, Lecture Notes in Physics, Vol. 756, Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y., & Turbulentcombustioninthermonuclearsupernovae(Springer),255–289 Rosenberg,R.O.2003,Science,299,77 Schmidt,W.,Hillebrandt,W.,&Niemeyer,J.C.2006,Comp.Fluids.,35, Hillebrandt,W.,&Niemeyer,J.C.2000,ARA&A,38,191 353 Kolmogorov,A.1941,AkademiiaNaukSSSRDoklady,30,301 Schmidt,W.,Niemeyer,J.C.,&Hillebrandt,W.2006,A&A,450,265 Niemeyer,J.C.,&Hillebrandt,W.1995,ApJ,452,769 Sharp,D.H.1984,PhysicaDNonlinearPhenomena,12,3 Niemeyer,J.C.,&Kerstein,A.R.1997,NewAstronomy,2,239 Woosley,S.E.2007,ApJ,668,1109 Niemeyer,J.C.,&Woosley,S.E.1997,ApJ,475,740 Zingale,M.,Woosley,S.E.,Rendleman,C.A.,Day,M.S.,&Bell,J.B. Pan,L.,Wheeler,J.C.,&Scalo,J.2008,ApJ,681,470 2005,ApJ,632,1021 Reinecke,M.,Hillebrandt,W.,&Niemeyer,J.C.2002,A&A,391,1167 Röpke,F.K.2005,A&A,432,969 Röpke,F.K.2007,ApJ,668,1103

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.