ebook img

Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems PDF

319 Pages·2016·13.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems

Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems Nadezda Petrova To cite this version: Nadezda Petrova. Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems. Modeling and Simulation. Ecole polytechnique X, 2015. English. ￿NNT: ￿. ￿tel-01113856￿ HAL Id: tel-01113856 https://pastel.archives-ouvertes.fr/tel-01113856 Submitted on 6 Feb 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thesis presented to obtain the degree of DOCTOR OF THE ECOLE POLYTECHNIQUE Specialization: Applied Mathematics by Nadezda PETROVA Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems Defended on 16 January 2015 in front of the jury: Dr. Arnaud MURA ISAE-ENSMA Referee ¨ ´ Dr. Serge SIMOENS LMFA, Ecole Centrale de Lyon Referee ´ Prof. Gregoire ALLAIRE CMAP, Ecole Polytechnique Examiner Dr. Nicolas BERTIER ONERA/DEFA Examiner Dr. Pascal BRUEL LMA, Universit´e de Pau Examiner Prof. Andrei LIPATNIKOV Chalmers, Sweden Examiner Dr. Olivier SOULARD CEA/DAM Examiner Prof. Vladimir SABELNIKOV ONERA/DEFA Supervisor Thesis prepared at ONERA/DEFA To my family 4 Acknowledgments I wish to express my sincere gratitude to my thesis director Vladimir Sabelnikov for the honor he gave me by accepting my candidacy for the present work, sharing his expert knowledge of the combustion models and comprehensive guidance during my PhD project. I express my special thanks to Nicolas Bertier for his invitation to participate in FTC project in a difficult situation where we had not yet obtained significant advances on the original Monte-Carlo topic, and for his subsequent help with the architecture of CEDRE code. I remain indebted to Olivier Soulard for his great idea for solving SPDEs. I would like to thank him and Roland Duclous for the opportunity to take part in turbulence modeling project during CIRM summer school. I would like to thank a lot Arnaud Mura and Serge Simoens, for accepting to take part in the jury as referees, and for their detailed and insightful reviews of my manuscript. Many thanks to Gregoire Allaire, Pascal Bruel, Andrei Lipatnikov for the careful examination of the present work. I would like to thank all the members of the jury for hard and interesting questions, resulted in a fruitful in-depth discussion following the defense. I am very thankful to Philippe Grenard, Lionel Matuszewski, Thomas Le Pichon, Dmitry Davidenko, Aymeric Boucher and Yann Moule, and all the DEFA team for their readiness to help and professionalism. I would like to thank all my colleagues for all they gave me during these three years. I thank Igor Favorskiy for useful advice on IT aspects. 5 Abstract Modeling the turbulence-chemistry interaction is a key point in the numerical sim- ulation of the combustion in the air-breathing engines. The present work is devoted to adaptation and integration of the different turbulent combustion models into the ONERA industrial code CFD package for diphasic reactive flows (CEDRE). The first part of the thesis is focused on the quasi-linear hyperbolic stochastic partial differential equations (SPDEs) which are statistically equivalent to a transport equation for the joint velocity-scalars probability density function (PDF). It is shown that in order to preserve the equivalence between the SPDEs and the transport equation for the joint velocity-scalarsPDF,multivaluedsolutionsoftheSPDEsshouldbetakenintoaccount. AnewstochasticmethodtosolvetheSPDEs, recentlyproposedbyO.Soulard[Emako- Letizia2014],isconsideredandvalidatedonone-dimensionaltest-cases. Itisshownthat this method is able to recover the multivalued solutions of the SPDEs in the statistical sense. The numerical solution of the SPDEs is time consuming, therefore the second part of the thesis is concerned with a flamelet tabulated chemistry (FTC) and an extended partially stirred reactor (EPaSR) models. In the framework of CEDRE CFD software the FTC approach is updated, presuming that the distribution is given by a 𝛽-PDF. TheadaptationoftheLES/EPaSRmodel[SabelnikovFureby2013]totheRANSandits integrationintoCEDREaredone. TheEPaSRandtheFTCwiththepresumed𝛽-PDF are validated against experimental data [MagreMoreau1988] on a configuration of a backward-facing step combustor. It is shown that the RANS/EPaSR calculation yields the best agreement with the experiment compared to other considered approaches. Keywords: stochastic partial differential equations, probability density function, multivalued solution, extended partially stirred reactor, flamelet tabulated chemistry model 6 R´esum´e La mod´elisation de l’interaction turbulence-chimie est un point cl´e dans la si- mulation num´erique des ´ecoulements r´eactifs turbulents. Cette th`ese est consacr´ee `a l’adaptation et l’int´egration de diff´erents mod`eles de combustion turbulente dans le code d’´ecoulements diphasiques r´eactifs pour l’´energ´etique (CEDRE) de l’ONERA. La premi`ere partie de la th`ese est d´edi´ee `a l’´etude des ´equations quasi-lin´eaires hy- perboliques stochastiques aux d´eriv´ees partielles (SPDEs) qui sont statistiquement ´equivalentes `a une ´equation de transport pour la fonction de densit´e de probabilit´e (PDF) jointe vitesse-scalaires. Il est d´emontr´e que pour pr´eserver l’´equivalence entre les SPDEsetl’´equationdetransportpourlaPDFjointevitesse-scalaires,lessolutionsmul- tivalu´ees des SPDEs doiventˆetre prises en compte. Une nouvelle m´ethode stochastique pour r´esoudre les SPDEs, r´ecemment propos´ee par O. Soulard [EmakoLetizia2014], est ´etudi´ee et valid´ee sur des cas-tests unidimensionnels. Il est montr´e que cette m´ethode permet de trouver les solutions multivalu´ees des SPDEs au sens statistique. La r´esolution num´erique des SPDEs ´etant particuli`erement couˆteuse, une seconde voie a ´et´e explor´ee au cours de cette th`ese. Il s’agit, dans la deuxi`eme partie de ce m´emoire,de lamiseenœuvredu mod`ele ”flammelettestabul´eespourlachimie”(FTC) et du mod`ele ”r´eacteur partiellement m´elang´e´etendu” (EPaSR). Avec le code CEDRE, l’approche des FTC est mise `a jour en supposant une distribution de type 𝛽-PDF. L’adaptation LES/EPaSR [SabelnikovFureby2013] pour le RANS et son int´egration dans CEDRE ont ´et´e r´ealis´ees. Les mod`eles EPaSR et ”FTC avec 𝛽-PDF pr´esum´ee” ont ´et´e valid´es par rapport aux donn´ees exp´erimentales [MagreMoreau1988] sur une configuration de flamme stabilis´ee par une marche descendante. Il est montr´e que le calcul RANS/EPaSR donne un meilleur accord avec l’exp´erience que les autres ap- proches ´evalu´ees. Mots cl´es : ´equations aux d´eriv´ees partielles stochastiques, fonction de densit´e de probabilit´e,solutionsmultivalu´ees,r´eacteurpartiellementm´elang´e´etendu,flammelettes tabul´ees pour la chimie Contents Contents 7 List of symbols 11 List of dimensionless numbers 14 List of abbreviations 15 1 Introduction 19 2 Background 23 2.1 Turbulence characteristics 24 2.1.1 Homogeneous isotropic turbulence 25 The Kolmogorov hypothesis 28 2.2 Flame structure 28 2.2.1 Premixed flame 28 Regimes in premixed combustion 29 2.2.2 Non-premixed flame 32 2.3 Navier-Stokes equations for aerothermochemistry 34 2.3.1 Conservation of mass and species 34 2.3.2 Chemical kinetics 35 2.3.3 Conservation of momentum 35 2.3.4 Conservation of total energy 36 2.3.5 State law of an ideal gas 36 2.4 Reynolds averaged Navier-Stokes (RANS) approach 37 2.4.1 Definition of the ensemble average 37 2.4.2 Averaged Navier-Stokes equations 37 2.4.3 Closure of the RANS equations 38 2.4.4 Turbulence models 39 2.5 Large eddy simulation (LES) 40 2.5.1 Closure of the LES equations 40 2.6 General models of turbulent combustion 41 2.6.1 PDF approach 41 Eulerian PDFs 41 Presumed PDF 42 Transported Eulerian PDF 44 7 8 CONTENTS 2.6.2 Partially stirred reactor models 51 Eddy dissipation concept 51 Partially stirred reactor model 53 Extended partially stirred reactor model 56 Unsteady partially stirred reactor model 58 2.6.3 Thickened flame model 59 I New approach to solve SPDEs statistically equivalent to a transport equation for velocity PDF 61 3 Eulerian (Field) Monte Carlo methods for solving the Favre one-time one-point velocity PDF transport equation 63 3.1 Description of the problem 65 3.1.1 One-dimensional model PDF equation 65 3.1.2 One-dimensional SPDEs 68 3.1.3 Equivalence between SPDEs and PDF equation 71 3.2 Stochastic numerical schemes 72 3.2.1 Schemes for partial differential equations 72 Numerical notations for stochastic schemes 74 Numerical stochastic schemes 75 Mean density conservation in stochastic schemes 80 3.2.2 Schemes for stochastic partial differential equations 80 General remarks 82 3.3 Numerical tests 83 3.3.1 Backward step velocity profile 83 Numerical solution 83 3.3.2 Scheme non-dissipativity test 96 PDF 96 PDEs 96 Numerical solution: test 1 97 3.3.3 Statistically homogeneous velocity fluctuations test 106 PDF 106 SPDEs 107 Numerical solution 110 3.3.4 Model PDF equation with non-zero RHS 127 PDF 127 SPDEs 127 Numerical solution 127 3.4 Conclusions 134 3.5 Perspectives 135 CONTENTS 9 II Standard models of turbulent combustion 137 4 Flamelet tabulated chemistry (FTC) model 139 4.1 Original implementation of FTC beta-PDF model in CEDRE 139 4.1.1 Modeling of Favre-averaged progress variable 139 4.1.2 Modeling of Favre variance of progress variable 140 Transport equation 140 Algebraic expression 141 4.1.3 Modeling of Favre-averaged mixture fraction 142 4.1.4 Modeling of Favre variance of mixture fraction 142 Transport equation 142 Algebraic expression 142 4.1.5 Gradient of Favre-averaged progress variable 142 4.1.6 Coupling between tabulated chemistry and CEDRE 142 4.1.7 Presumed beta-PDF 143 4.1.8 Algorithm of beta-PDF integration 143 4.2 Updated FTC beta-PDF model 144 4.2.1 New models for dissipation and source terms 144 4.2.2 Gradient of Favre-averaged progress variable 144 4.2.3 Algorithm of beta-PDF integration 145 4.2.4 Numerical implementation of beta-PDF integration 147 Study of convergence of the semi-analytic beta integration method 148 5 Transported partially stirred reactor (TPaSR) model 151 5.1 Original EPaSR model 151 5.2 TPaSR model: EPaSR adaptation to CEDRE 152 6 Backward-facing step flow 155 6.1 A3C experimental setup 156 6.2 RANS nonreactive backward-facing step flow calculation 157 6.2.1 Computational domain and grid 157 6.2.2 Physical models 158 6.2.3 Boundary conditions 158 6.2.4 Numerical methods 159 6.2.5 Computational strategy 159 6.2.6 Results 162 Recirculation region 162 Favre-averaged velocity 163 RMS velocity fluctuations 165 Turbulent frequency 168 6.2.7 Conclusions 168 6.3 RANS reactive backward-facing step flow calculation 169 6.3.1 Numerical setup 169 6.3.2 Combustion modeling 170 6.3.3 Results 170

Description:
Modeling the turbulence-chemistry interaction is a key point in the numerical sim- ulation of the combustion in the air-breathing engines. The present
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.