ebook img

Turán type inequalities for Krätzel functions PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turán type inequalities for Krätzel functions

File: BJP_Kratzel.tex, printed: 2011-01-14, 1.09 TURA´N TYPE INEQUALITIES FOR KRA¨TZEL FUNCTIONS A´RPA´DBARICZ†, DRAGANAJANKOV,AND TIBOR K. POGA´NY Abstract. Complete monotonicity, Laguerre and Tur´an type inequalities are established for theso-called Kr¨atzel function Zν, defined by ρ ∞ Zρν(u)=Z tν−1e−tρ−utdt, 0 1 where u > 0 and ρ,ν ∈ R. Moreover, we prove the complete monotonicity of a determinant 1 function of which entries involvetheKr¨atzel function. 0 2 n 1. Introduction a J In1941 whilestudyingthezeros ofLegendrepolynomials, theHungarian mathematician Paul 3 Tura´n discovered the following inequality 1 [P (x)]2 > P (x)P (x), ] n n−1 n+1 A where x < 1, n 1,2,... and P stands for the classical Legendre polynomial. This C n | | ∈ { } inequality was publishedbyP.Tura´nonlyin1950in[31]. However, sincethepublicationin1948 . h by G. Szego˝ [30] of the above famous Tura´n inequality for Legendre polynomials, many authors t a have deduced analogous results for classical (orthogonal) polynomials and special functions. In m the last 62 years it has been shown by several researchers that the most important (orthogonal) [ polynomials (e.g. Laguerre, Hermite, Appell, Bernoulli, Jacobi, Jensen, Pollaczek, Lommel, 1 Askey-Wilson, ultraspherical polynomials) and special functions (e.g. Bessel, modified Bessel, v gamma, polygamma, Riemann zeta functions) satisfy a Tura´n inequality. In 1981 one of the 3 PhD students of P. Tura´n, L. Alp´ar [2] in Tura´n’s biography mentioned that the above Tura´n 2 5 inequality had a wide-ranging effect, this inequality was dealt with in more than 60 papers. The 2 Tura´n type inequalities now have a more extensive literature and recently some of the results . 1 have been applied successfully in problems that arise in information theory, economic theory 0 and biophysics. Motivated by these applications, the Tura´n type inequalities have recently 1 come under the spotlight once again and it has been shown that, for example, the Gauss and 1 : Kummer hypergeometric functions, as well as the generalized hypergeometric functions, satisfy v naturally some Tura´n type inequalities. For the most recent papers on this subject we refer to i X [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [17], [21], [19], [29]. For more details see also the r references therein. a Motivated by the above immense research on Tura´n type inequalities, in this paper our aim is to deduce complete monotonicity, lower bounds and Tura´n type inequalities for the so-called Kra¨tzel function, defined below. The Kra¨tzel function is defined for u > 0, ρ R and ν C, ∈ ∈ being such that Re(ν) < 0 for ρ 0, by the integral ≤ ∞ (1.1) Zρν(u) = tν−1e−tρ−utdt. Z0 2000 Mathematics Subject Classification. Primary 33C15, Secondary 26D07. Keywordsandphrases. Kr¨atzelfunctions,ModifiedBesselfunctions,Tur´antypeinequalities,Completemono- tonicity, Vandermondedeterminant, Tur´an determinant, H¨older-Rogers and Chebyshev integral inequality. †TheresearchofA´.BariczwassupportedbytheJ´anosBolyaiResearchScholarshipoftheHungarianAcademy ofSciencesandbytheRomanianNationalAuthorityforScientificResearchCNCSIS-UEFISCSU,projectnumber PN-II-RU-PD388/2010. 1 2 A´.BARICZ,D.JANKOV,T.K.POGA´NY For ρ 1 the function (1.1) was introduced by E. Kra¨tzel [24] as a kernel of the integral ≥ transform ∞ (Kρf)(u) = Zν(ut)f(t)dt, ν ρ Z0 which was applied to the solution of some ordinary differential equations. The study of the Kra¨tzel function (1.1) and the above integral transform were continued by several authors. For example, in [23] the authors deduced explicit forms of Zν in terms of the generalized Wright ρ function, while in [22] the authors obtained the asymptotic behavior of this function at zero and infinity and gave applications to evaluation of integrals involving Zν. Such investigations ρ now are of a great interest in connection with applications, see [22] and [23] and the references therein for more details. We note that the Kra¨tzel function occurs in the study of astrophysical thermonuclear functions, which are derived on the basis of Boltzmann-Gibbs statistical mechan- ics, see [28]. It is also important to note that the Kra¨tzel function Zν is related to the modified 1 Bessel function of the second kind K . More precisely, in view of the formula [4, p. 237] ν (1.2) Kν(u) = 2uν+ν1 ∞t−ν−1e−t−u42tdt Z0 we have that for all u > 0 and ν C ∈ u2 u ν u ν Zν = 2 K (u) =2 K (u) 1 4 2 −ν 2 ν (cid:18) (cid:19) (cid:16) (cid:17) (cid:16) (cid:17) and consequently (1.3) Zν(u) = 2uν/2K (2√u). 1 ν Note that this function is useful in chemical physics. More precisely, the function u 2ν−1Zν(uq2/4) = (q√u)νK (q√u) 7→ 1 ν is related to theHartree-Frock energy andis usedas a basis function for thehelium isoelectronic series. See [15] and [16] for more details. Moreover, the function u 2/π2ν−1Zν(u2/4) = 2/πuνK (u) 7→ 1 ν p p is called in the literature as reduced Bessel function and plays an important role in theoretical chemistry. See [33] and the references therein for more details. This paper is organized as follows: in the next section we present some monotonicity, log- convexity properties, complete monotonicity and lower bounds for the Kra¨tzel function, while in the third section we prove the complete monotonicity of a Tura´n determinant which entries involve the Kra¨tzel function Zν. The main result of the third section is actually a generalization ρ of a Tura´n-type inequality, of which counterpart is a conjecture at the end of this paper. We close these preliminaries with the following definitions, which will be used in the sequel. A function f : (0, ) R is said to be completely monotonic if f has derivatives of all orders ∞ → and satisfies ( 1)mf(m)(u) 0 − ≥ for all u > 0 and m 0,1,... . A function g : (0, ) (0, ) is said to be logarithmically ∈ { } ∞ → ∞ convex, or simply log-convex, if its natural logarithm lng is convex, that is, for all u ,u > 0 1 2 and α [0,1] we have ∈ g(αu +(1 α)u ) [g(u )]α[g(u )]1−α. 1 2 1 2 − ≤ Note that every completely monotonic function is log-convex, see [34, p. 167]. TURA´N TYPE INEQUALITIES FOR KRA¨TZEL FUNCTIONS 3 2. Monotonicity and convexity properties of the Kr¨atzel functions Our first main result reads as follows: Theorem 1. If ν,ρ R and u > 0, then the following assertions are true: ∈ a. The Kr¨atzel function Zν satisfies the recurrence relation ρ (2.1) νZν(u) = ρZν+ρ(u) uZν−1(u). ρ ρ − ρ b. The function u Zν(u) is completely monotonic on (0, ). 7→ ρ ∞ c. The function ν Zν(u) is log-convex on R. 7→ ρ d. The function u Zν(u) is log-convex on (0, ). 7→ ρ ∞ e. For n 1,2,... the following Laguerre type inequality holds ∈ { } (2.2) Zν(u) (n) 2 Zν(u) (n−1) Zν(u) (n+1). ρ ≤ ρ ρ h i f. Suppose that ρ > 0.(cid:2)Then t(cid:3)he follow(cid:2)ing ine(cid:3)quality(cid:2) holds(cid:3) (2.3) Zρ−ν(u) ≥ 2u21−νΓ(ν)K1(2√u) provided that ν 1. Moreover, if 0 < ν 1, then the above inequality is reversed. In ≥ ≤ particular, the inequality (2.4) uν−1K (u) 2ν−1Γ(ν)K (u) ν 1 ≥ is valid for all ν 1. If 0 < ν 1, then the above inequality is reversed. In the above ≥ ≤ inequality equality holds if u tends to zero or ν = 1. We note here that similar result to that of (2.4) was proved by M.E.H. Ismail [18]. More precisely, M.E.H. Ismail proved among others that for all u > 0 and ν > 1/2 the inequality (2.5) uνK (u)eu > 2ν−1Γ(ν) ν is valid and it is sharp as u 0. It should be mentioned here that for ν 1 the inequality (2.4) → ≥ is better than (2.5) since for all ν 1 and u > 0 we have ≥ uνK (u) 2ν−1Γ(ν)uK (u) > 2ν−1Γ(ν)e−u. ν 1 ≥ Observethatinfact(2.5)andthelater inequalityfollow fromthefact(see[25])thatthefunction u uνeuK (u) ν 7→ isstrictly increasingon(0, )forallν > 1/2andconsequently forallu > 0wehaveueuK (u) > 1 ∞ 1. Here we used tacitly that when ν > 0 is fixed and u tends to zero, the asymptotic relation uνK (u) 2ν−1Γ(ν) ν ∼ holds. Proof of Theorem 1. a. By using (1.3) and the recurrence relation [32, p. 79] 2ν K (u) K (u) = K (u) ν−1 ν+1 ν − − u we obtain uZν−1(u) Zν+1(u) = νZν(u). 1 − 1 − 1 We note that the above recurrence relation can be verified also by using integration by parts as follows ∞ νZ1ν(u) = e−t−ut νtν−1 dt Z0∞(cid:16) u(cid:17)(cid:0) (cid:1) = 1 e−t−ut tνdt − t2 Z0 (cid:16) (cid:17)(cid:16) (cid:17) = Zν+1(u) uZν−1(u). 1 − 1 4 A´.BARICZ,D.JANKOV,T.K.POGA´NY Moreover, by using the same idea we immediately have ∞ νZρν(u) = e−tρ−ut νtν−1 dt Z0∞(cid:16) (cid:17)u(cid:0) (cid:1) = ρtρ−1 e−tρ−ut tνdt − t2 Z0 (cid:16) (cid:17)(cid:16) (cid:17) = ρZν+ρ(u) uZν−1(u). ρ − ρ b. The change of variable 1/t = s in (1.1) yields ∞ (2.6) Zν(u) = s−ν−1e−s−ρ e−usds, ρ Z0 (cid:16) (cid:17) i.e. the Kra¨tzel function Zν is the Laplace transform of the function s s−ν−1e−s−ρ. This ρ 7→ in view of the Bernstein-Widder theorem (see [34]) implies that the function u Zν(u) is 7→ ρ completely monotonic, i.e. for all n 0,1,... , ν,ρ R and u > 0 we have ∈{ } ∈ ( 1)n Zν(u) (n) > 0. − ρ We note that this can be verified also direc(cid:2)tly by u(cid:3)sing that for all n 0,1,... , ν,ρ R and ∈ { } ∈ u > 0 (2.7) Zν(u) (n) = ( 1)nZν−n(u), ρ − ρ which follows via mathematical in(cid:2)duction(cid:3) easily from (1.1) or (2.6). c. Recall the H¨older-Rogers inequality [27, p. 54], that is, b b 1/p b 1/q (2.8) f(t)g(t)dt f(t)pdt g(t)qdt , | | ≤ | | | | Za (cid:20)Za (cid:21) (cid:20)Za (cid:21) wherep > 1,1/p+1/q = 1,f andg arerealfunctionsdefinedon[a,b]and f p, g q areintegrable | | | | functions on [a,b]. Using (1.1) and (2.8) we obtain that ∞ Zραν1+(1−α)ν2(u) = tαν1+(1−α)ν2−1e−tρ−utdt Z0 ∞ = tα(ν1−1)+(1−α)(ν2−1)e−tρ−utdt Z0 = ∞ tν1−1e−tρ−ut α tν2−1e−tρ−ut 1−αdt Z0 (cid:16) (cid:17) (cid:16) (cid:17) ∞ α ∞ 1−α tν1−1e−tρ−utdt tν2−1e−tρ−utdt ≤ (cid:20)Z0 (cid:21) (cid:20)Z0 (cid:21) = Zν1(u) α Zν2(u) 1−α ρ ρ holds for all α ∈ [0,1], ν1,ν2,ρ ∈ R(cid:2) and u(cid:3)>(cid:2)0, i.e. t(cid:3)he function ν 7→ Zρν(u) is log-convex on R. d. This follows from the fact that the integrand in (1.1) or (2.6) is a log-linear function of u and by using the H¨older-Rogers inequality (2.8) we have that ∞ Zρν(αu1 +(1−α)u2)= tν−1e−tρ−1t(αu1+(1−α)u2)dt Z0 = ∞ tν−1e−tρ−ut1 α tν−1e−tρ−ut2 1−αdt Z0 (cid:16) (cid:17) (cid:16) (cid:17) ∞ α ∞ 1−α tν−1e−tρ−ut1dt tν−1e−tρ−ut2dt ≤ (cid:20)Z0 (cid:21) (cid:20)Z0 (cid:21) = Zν(u ) α Zν(u ) 1−α ρ 1 ρ 2 holds for all α ∈ [0,1], ν,ρ ∈ R and(cid:2) u1,u2(cid:3)>(cid:2)0, i.e. t(cid:3)he function u 7→ Zρν(u) is log-convex on (0, ). ∞ TURA´N TYPE INEQUALITIES FOR KRA¨TZEL FUNCTIONS 5 Alternatively, we may use part b of this theorem. More precisely, it is known that every completely monotonic function is log-convex (see [34, p. 167]), and then in view of part b the Kra¨tzel function Zν is log-convex on (0, ). Moreover, as a third proof we may use part c of ρ ∞ this theorem. Namely, since the function ν Zν(u) is log-convex, it follows that the following Tura´n type inequality holds for all ν ,ν ,ρ 7→R aρnd u > 0 1 2 ∈ ν1+ν2 2 (2.9) Z 2 (u) Zν1(u)Zν2(u). ρ ≤ ρ ρ (cid:20) (cid:21) Now, let choose ν = ν 2 and ν =ν, then we obtain the Tura´n type inequality 1 2 − fν(u) = Zν−1(u) 2 Zν−2(u)Zν(u) 0, ρ ρ − ρ ρ ≤ which is valid for all ν,ρ R and u(cid:2)> 0. This(cid:3) in turn together with (2.7) implies that ∈ Zν(u) ′ ′ Zν−1(u) ′ fν(u) ρ ρ ρ = = 0, "(cid:2)Zρν(u)(cid:3) # −" Zρν(u) # − Zρν(u) 2 ≥ i.e. the function u Zν(u) ′/Zν(u) is increasing on (0, (cid:2) ) for(cid:3)all ν,ρ R. 7→ ρ ρ ∞ ∈ e. This follows also from part c of this theorem. More precisely, in view of (2.7) the Laguerre (cid:2) (cid:3) type inequality (2.2) is equivalent to the Tura´n type inequality Zν−n(u) 2 Zν−n−1(u)Zν−n+1(u), ρ ≤ ρ ρ which clearly follows from (2.9(cid:2)) by cho(cid:3)osing ν1 = ν n 1 and ν2 = ν n+1. f. Let us recall the Chebyshev integral inequality−[27,−p. 40]: If f,g : [−a,b] R are integrable functions, both increasing or both decreasing and p : [a,b] R is a positive i→ntegrable function, → then b b b b (2.10) p(t)f(t)dt p(t)g(t)dt p(t)dt p(t)f(t)g(t)dt. ≤ Za Za Za Za Note that if one of the functions f or g is decreasing and the other is increasing, then (2.10) is reversed. We shall use this inequality. For this by using (2.6) let us write Z−ν(u) as ρ ∞ Z−ν(u) = e−uttν−1e−t−ρdt ρ Z0 and let p(t)= e−ut, f(t)= tν−1 and g(t) = e−t−ρ. Clearly f is increasing (decreasing) on (0, ) if and only if ν 1 (ν 1). Since g′(t)/g(t) = ρt−ρ−1, it follows that g is increasing if and o∞nly ≥ ≤ if ρ > 0. Moreover, ∞ ∞ 1 p(t)dt = e−utdt = u Z0 Z0 and ∞ ∞ ∞ p(t)f(t)dt= e−uttν−1dt = u−ν e−ssν−1ds= u−νΓ(ν). Z0 Z0 Z0 Similarly, integration by parts and (2.6) imply ∞p(t)g(t)dt = ∞e−ute−t−ρdt= ρ ∞t−ρ−1e−t−ρe−utdt= ρZρ(u). u u ρ Z0 Z0 Z0 Now, by choosing ν = 0 in (2.1), and using (1.3) we obtain that ρZρ(u) = uZ−1(u) = 2√uK (2√u) ρ 1 1 and appealing to the Chebyshev integral inequality (2.10) the proof of the inequality (2.3) is done. Finally, observe that by using the relation [32, p. 79] K (u) = K (u) we obtain easily ν −ν (2.11) Z−ν(u) = u−νZν(u), 1 1 and if we let ρ= 1 in (2.3), then by using (2.11) we immediately obtain (2.4), and with this the proof is complete. (cid:3) 6 A´.BARICZ,D.JANKOV,T.K.POGA´NY 3. Tur´an type inequalities for Kr¨atzel functions Let us consider now the Tura´n type inequality (3.1) Zν(u) 2 Zν−ρ(u)Zν+ρ(u) < 0, ρ − ρ ρ which holds for all ν,ρ R and(cid:2)u > 0.(cid:3)This inequality is actually a particular case of part c of ∈ Theorem 1. More precisely, by choosing ν = ν ρ and ν = ν +ρ in (2.9) the proof of (3.1) is 1 2 − done. However, we give here an alternative proof. Just observe that 1 ∞ ∞ Zρν(u) 2−Zρν−ρ(u)Zρν+ρ(u) = 2 (ts)ν−1e−tρ−sρ−u(1t+s1)[2−(t/s)ρ−(s/t)ρ]dtds Z0 Z0 (cid:2) (cid:3) and by using the elementary inequality (t/s)ρ + (s/t)ρ 2, the integrand becomes negative, ≥ which proves (3.1). Moreover the above integral representation yields the following complete monotonicity result: the function u7→ ZZρν−ν(ρu(u)) ZZνρ+ν(ρu(u)) = 12 ∞ ∞(ts)ν−1e−tρ−sρ−u(1t+1s)[(t/s)ρ+(s/t)ρ−2]dtds (cid:12) ρ ρ (cid:12) Z0 Z0 (cid:12) (cid:12) is not on(cid:12)(cid:12)ly positive, but even c(cid:12)(cid:12)ompletely monotonic on (0, ) for all ν,ρ R. The next result is ∞ ∈ an analogue of [19, Theorem 2.1] for the Tura´n determinant of Kra¨tzel functions and provides a generalization of the above result and of part b of Theorem 1. Note that in view of (1.3) the following result in particular for ρ= 1 gives better Tura´n type inequalities for the modified Bessel function of the second kind K than [19, Theorem 2.5]. For more details, compare the ν first Tura´n type inequality in [19, Remark 2.6] with the right-hand side of (3.3) below. Theorem 2. If ν,ρ R and n 1,2,... , then the function ∈ ∈ { } Zν−ρ(u) Zν(u) ... Zν+(n−1)ρ(u) ρ ρ ρ Zν(u) Zν+ρ(u) ... Zν+nρ(u) u Aν (u) = (cid:12)(cid:12) ρ. ρ . ρ . (cid:12)(cid:12) 7→ ρ,n (cid:12) .. .. .. (cid:12) (cid:12) (cid:12) (cid:12) ν+(n−1)ρ ν+nρ ν+(2n−1)ρ (cid:12) (cid:12) Zρ (u) Zρ (u) ... Zρ (u) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) is completely monotonic on (0,(cid:12) ). (cid:12) (cid:12) (cid:12) ∞ Proof. By using (1.1) we have Zν−ρ(u) Zν(u) ... Zν+(n−1)ρ(u) ρ ρ ρ Zν(u) Zν+ρ(u) ... Zν+nρ(u) Aνρ,n(u) =(cid:12)(cid:12)(cid:12) ρ... ρ ... ρ ... (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) ν+(n−1)ρ ν+nρ ν+(2n−1)ρ (cid:12) (cid:12) Zρ (u) Zρ (u) ... Zρ (u) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12) tν−ρ−1 tν−1 ... tν+(n−1)ρ(cid:12)(cid:12)−1 (cid:12) 0 0 0 (cid:12) =Z[0,∞)n+1(cid:12)(cid:12)(cid:12)(cid:12) t1ν...−1 tν1+...ρ−1 ... t1ν+n...ρ−1 (cid:12)(cid:12)(cid:12)(cid:12)j=n0e−tρj−tujdt0dt1...dtn (cid:12) ν+(n−1)ρ−1 ν+nρ−1 ν+(2n−1)ρ−1 (cid:12)Y (cid:12) tn tn ... tn (cid:12) (cid:12) (cid:12) (cid:12)(cid:12) tν−ρ−1 tν−1 ... tν+(n−1)ρ−1 (cid:12)(cid:12) (cid:12) σ(0) σ(0) σ(0) (cid:12) = (cid:12)(cid:12)(cid:12) tσν.−(11) tνσ+(1.ρ)−1 ... tσν+(1n.)ρ−1 (cid:12)(cid:12)(cid:12) n e−tρj−tujdt0dt1...dtn, . . . Z[0,∞)n+1(cid:12)(cid:12) . . . (cid:12)(cid:12)jY=0 (cid:12) ν+(n−1)ρ−1 ν+nρ−1 ν+(2n−1)ρ−1 (cid:12) t t ... t (cid:12) σ(n) σ(n) σ(n) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) TURA´N TYPE INEQUALITIES FOR KRA¨TZEL FUNCTIONS 7 where σ is a permutation on 0,1,...,n . Now, let sgn(σ) be denote the sign of σ and S be n { } the symmetric group on n symbols. Then we obtain t0 tρ ... tnρ 0 0 0 Aνρ,n(u) = (cid:12)(cid:12) t..ρ1 t21..ρ ... t(1n+..1)ρ (cid:12)(cid:12)sgn(σ) n tνj−ρ−1e−tρj−tujdt0dt1...dtn Z[0,∞)n+1(cid:12)(cid:12)(cid:12) tn.ρ t(n+.1)ρ ... t2.nρ (cid:12)(cid:12)(cid:12) jY=0 (cid:12) n n n (cid:12) (cid:12) (cid:12) ρ nρ (cid:12) 1 t ... t (cid:12) = (cid:12)(cid:12)(cid:12) 1.. t..ρ10 ... tn10..ρ (cid:12)(cid:12)sgn(σ) t00(cid:12)tρ1...tnnρ n tνj−ρ−1e−tρj−tuj dt0dt1...dtn Z[0,∞)n+1(cid:12)(cid:12)(cid:12) 1. t.ρn ... tnn.ρ (cid:12)(cid:12)(cid:12) (cid:0) (cid:1)jY=0(cid:18) (cid:19) (cid:12) (cid:12) (cid:12) ρ (cid:12) nρ (cid:12) 1 t0 .(cid:12).. t0 = (n+1 1)! Z(cid:12)[0,∞)n+1(cid:12)(cid:12)(cid:12)(cid:12) 1... t...ρρ1 .(cid:12).. tnn1...ρρ (cid:12)(cid:12)(cid:12)(cid:12)jY=n0(cid:18)tνj−ρ−1e−tρj−tuj(cid:19) (cid:12) 1 tn ... tn (cid:12) (cid:12) (cid:12) sgn(σ)tσ(0(cid:12)(cid:12))(tρ)σ(1)...(tρ)σ(n)(cid:12)(cid:12)dt dt ...dt × 0 (cid:12) 1 n (cid:12) 0 1 n σ∈XSn+1 n = 1 tρ tρ tν−ρ−1e−tρj−tuj (n+1)! j − i j Z[0,∞)n+11≤iY<j≤n(cid:16) (cid:17)jY=0(cid:18) (cid:19) sgn(σ)tσ(0)(tρ)σ(1)...(tρ)σ(n)dt dt ...dt × 0 1 n 0 1 n σ∈XSn+1 n = (n+1 1)! tρj −tρi 2 tνj−ρ−1e−tρj−tuj dt0dt1...dtn, Z[0,∞)n+11≤iY<j≤n(cid:16) (cid:17) jY=0(cid:18) (cid:19) where we used that by Leibniz’s formula the Vandermonde determinant can be written as ρ nρ 1 t ... t 0 0 ρ nρ 1 t ... t (cid:12)(cid:12)(cid:12) ... ...1 1... (cid:12)(cid:12)(cid:12)= sgn(σ)tσ0(0)(tρ1)σ(1)...(tρn)σ(n) = tρj −tρi . (cid:12) ρ nρ (cid:12) σ∈XSn+1 1≤iY<j≤n(cid:16) (cid:17) (cid:12) 1 tn ... tn (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Summar(cid:12)izing (cid:12) (cid:12) (cid:12) n Aνρ,n(u) = (n+11)! e−jP=0(cid:18)tρj+tuj(cid:19) tρj −tρi 2 n tνj−ρ−1dt0dt1...dtn Z[0,∞)n+1 1≤iY<j≤n(cid:16) (cid:17) jY=0 and then for all ν,ρ R, u > 0 and m 0,1,... we obtain ∈ ∈ { } m n 0< (−1)m Aνρ,n(u) (m) = (n+11)!  n t1 e−jP=0(cid:18)tρj+tuj(cid:19) Z[0,∞)n+1 j=0 j (cid:2) (cid:3) X   n 2 ρ ρ ν−ρ−1 t t t dt dt ...dt , × j − i j 0 1 n 1≤iY<j≤n(cid:16) (cid:17) jY=0 which completes the proof. (cid:3) Now, let us consider the function Φν :(0, ) R, defined by ρ ∞ → ν−ρ ν+ρ Z (u)Z (u) Φν(u) = 1 ρ ρ . ρ − Zν(u) 2 ρ (cid:2) (cid:3) 8 A´.BARICZ,D.JANKOV,T.K.POGA´NY Recall the asymptotic expansion (see [22, 24]) Zν(u) ανu22(νρ−+1ρ)e−βρuρ+ρ1, ρ ∼ ρ where ανρ = ρ2+π1ρ1−22(νρ++11) and βρ = (1+1/ρ)ρρ+11, r which holds for large values of u and fixed ρ > 0, ν R. By using the above asymptotic relation ∈ we obtain that lim Φν(u) = 0, which shows that in (3.1) the constant 0 is the best possible. u→∞ ρ Moreover, based on numerical experiments we believe, but are unable to prove the following conjecture. Conjecture. Ifν > ρ > 0,thenthefunctionΦν isstrictlyincreasing on(0, ),andconsequently ρ ∞ the following Tura´n type inequality holds (3.2) ρ/(ρ ν) Zν(u) 2 < Zν(u) 2 Zν−ρ(u)Zν+ρ(u). − ρ ρ − ρ ρ Note that for ν,ρ > 0 fixed if(cid:2)u tends(cid:3) to z(cid:2)ero, th(cid:3)en the asymptotic relation (see [22, 24]) ρZν(u) Γ(ν/ρ) ρ ∼ is valid. Using this relation we obtain Γ(ν/ρ 1)Γ(ν/ρ+1) lim Φν(u) = 1 − = ρ/(ρ ν) u→0 ρ − Γ2(ν/ρ) − for all ν > ρ > 0, which shows that in (3.2) the constant ρ/(ρ ν) is the best possible. − It is worthwhile to note here that in fact the inequality (3.2) is motivated by the follow- ing result. If the above conjecture were be true then (3.2) together with (3.1) would yield a generalization of (3.3), since for ρ= 1 the inequalities (3.2) and (3.1) reduce to (3.3). Theorem 3. Let K be the modified Bessel function of the second kind. Then the following ν Tura´n type inequalities hold for all ν > 1 and u > 0 (3.3) 1/(1 ν)[K (u)]2 < [K (u)]2 K (u)K (u) < 0. ν ν ν−1 ν+1 − − Moreover, the right-hand side of (3.3) holds true for all ν R. These inequalities are sharp in ∈ the sense that the constants 1/(1 ν) and 0 are the best possible. − For the sake of completeness it should be mentioned that the right-hand side of (3.3) was first proved by M.E.H. Ismail and M.E. Muldoon [20], and later by A. Laforgia and P. Natalini [26] and recently was deduced also by A´. Baricz [11, 12] and J. Segura [29], by using different approaches. The left-hand side of (3.3) was deduced very recently by using completely different methods by A´. Baricz [12] and J. Segura [29]. See also [13] for more details on (3.3). Note that the left-hand side of (3.3) provides actually an upper bound for the effective variance of the generalized Gaussian distribution. More precisely, in [1] the authors used (without proof) the inequality 0< v < 1/(µ 1) for µ = ν +4, where eff − K (u)K (u) µ−1 µ+1 v = 1 eff [K (u)]2 − µ is the effective variance of the generalized Gaussian distribution. References [1] M.D.Alexandrov, A.A.Lacis,Anewthree-parametercloud/aerosolparticlesizedistributionbasedonthe generalized inverse Gaussian density function, Appl. Math. Comput. 116 (2000) 153-165. [2] L. Alpa´r,In memory of Paul Tur´an, J. Number Theory 13 (1981) 271–278. [3] H. Alzer, G. Felder, A Tur´an-type inequality for the gamma function, J. Math. Anal. Appl. 350(2009) 276–282. [4] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. [5] A´. Baricz, Functional inequalities for Galu´e’s generalized modified Bessel functions, J. Math. Inequal. 1(2) (2007) 183–193. TURA´N TYPE INEQUALITIES FOR KRA¨TZEL FUNCTIONS 9 [6] A´.Baricz,Tur´antypeinequalitiesforgeneralizedcompleteellipticintegrals,Math.Z.256(4)(2007)895–911. [7] A´. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26(3) (2008) 279–293. [8] A´. Baricz, Tur´an type inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 136(9) (2008) 3223–3229. [9] A´.Baricz,Mills’ratio: Monotonicitypatternsandfunctionalinequalities,J.Math.Anal.Appl.340(2)(2008) 1362–1370. [10] A´. Baricz,On a product of modified Bessel functions, Proc. Amer. Math. Soc. 137(1) (2009) 189–193. [11] A´. Baricz,Tur´an typeinequalities for some probability densityfunctions, Studia Sci. Math. Hungar. 47(2) (2010) 175–189. [12] A´. Baricz, Tur´an type inequalities for modified Bessel functions, Bull. Aust. Math. Soc. 82(2) (2010) 254– 264. [13] A´. Baricz, S. Ponnusamy, On Tur´an typeinequalities for modified Bessel functions, arXiv:1010.3346v1. [14] R.W. Barnard, M.B. Gordy and K.C. Richards, A note on Tur´an type and mean inequalities for the Kummer function, J. Math. Anal. Appl. 349(1) (2009) 259–263. [15] D.M. Bishop, B.E. Schneider,Comparison of SCF and kν functions for thehelium series, J. Math. Phys. 11 (1970) 2711–2713. [16] D.M. Bishop, B.E. Schneider, An integral transform trial function for helium-like systems, Chem. Phys. Lett. 6(6) (1970) 566–568. [17] D.K. Dimitrov, V.P. Kostov, Sharp Tur´an inequalities via very hyperbolic polynomials, J. Math. Anal. Appl. 376 (2011) 385–392. [18] M.E.H. Ismail,Completemonotonicity of modifiedBessel functions, Proc. Amer. Math. Soc.108(2) (1990) 353–361. [19] M.E.H.Ismail,A.Laforgia,Monotonicitypropertiesofdeterminantsofspecialfunctions,Constr.Approx. 26 (2007) 1–9. [20] M.E.H. Ismail, M.E. Muldoon,Monotonicity ofthezerosof across-product ofBessel functions, SIAM J. Math. Anal. 9(4) (1978) 759-767. [21] D. Karp, S.M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, J. Math. Anal. Appl. 364 (2010) 384–394. [22] A.A. Kilbas, L. Rodr´ıguez-Germa´, M. Saigo, R.K. Saxena, J.J. Trujillo, The Kr¨atzel function and evaluation of integrals, Comput. Math. Appl. 59(5) (2010) 1790–1800. [23] A.A. Kilbas, R. Saxena, J.J. Trujillo, Kr¨atzel function as the function of hypergeometric type, Frac. Calc. Appl. Anal. 9(2) (2006) 109–131. [24] E. Kra¨tzel, Integral transformations of Bessel type, in: Generalized Functions and Operational Calculus, Proc. Conf. Varna 1975, Bulg. Acad.Sci, Sofia, 1979, 148–155. [25] A. Laforgia, Bounds for modified Bessel functions, J. Computat. Appl. Math. 34(3) (1991) 263-267. [26] A.Laforgia,P.Natalini,OnsomeTur´an-typeinequalities,J.Inequal.Appl.2006(2006)ArticleID29828. [27] D.S. Mitrinovic´, Analytic Inequalities, Springer-Verlag, Berlin, 1970. [28] R.K.Saxena,R.Saxena,AnextensionoftheKr¨atzelfunctionandassociatedinverseGaussianprobability distribution occurring in reliability theory,Int. J. Comput. Math. Sci. 3(4) (2009) 189–198. [29] J. Segura, Bounds for ratios of modified Bessel functions and associated Tur´an-typeinequalities, J. Math. Anal. Appl. 374(2) (2011) 516–528. [30] G.Szego˝,OnaninequalityofP.Tur´anconcerningLegendrepolynomials,Bull.Amer.Math. Soc.54(1948) 401–405. [31] P. Tura´n, On thezeros of thepolynomials of Legendre, Cˇasopis Pest. Mat. Fys. 75 (1950) 113–122. [32] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ.Press, Cambridge, 1944. [33] E.J. Weniger,ThestrangehistoryofB functionsorhowtheoreticalchemistsandmathematiciansdo(not) interact, Int. J. Quantum Chem. 109 (2009) 1706–1716. [34] D.V. Widder,The Laplace Transform, Princeton Univ.Press, Princeton, 1941. Department of Economics, Babe¸s-Bolyai University, Cluj-Napoca 400591, Romania E-mail address: [email protected] Dragana Jankov : Department of Mathematics, University of Osijek, 31000 Osijek, Croatia E-mail address: [email protected] Faculty of Maritime Studies, University of Rijeka, Rijeka 51000, Croatia E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.