ebook img

Turaev-Viro invariants, colored Jones polynomials and volume PDF

0.55 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turaev-Viro invariants, colored Jones polynomials and volume

Turaev-Viro invariants, colored Jones polynomials and volume RenaudDetcherry,EfstratiaKalfagianni∗ andTianYang† 7 Abstract 1 0 We obtain a formula for the Turaev-Viro invariants of a link complement in terms of values of 2 the colored Jones polynomial of the link. As an application we give the first examples for which n thevolumeconjectureofChenandthethirdnamedauthor[6]isverified. Namely,weshowthatthe a asymptoticsoftheTuraev-ViroinvariantsoftheFigure-eightknotandtheBorromeanringscomple- J mentdeterminethecorrespondinghyperbolicvolumes.Ourcalculationsalsoexhibitnewphenomena 7 ofasymptoticbehaviorofvaluesofthecoloredJonespolynomialsthatseemnottobepredictedby 2 neithertheKashaev-Murakami-Murakamivolumeconjectureandvariousofitsgeneralizationsnor byZagier’squantummodularityconjecture. WeconjecturethattheasymptoticsoftheTuraev-Viro ] T invariants of any link complement determine the simplicial volume of the link, and verify it for all G knotswithzerosimplicialvolume.Finallyweobservethatoursimplicialvolumeconjectureisstable . underconnectsumandsplitunionsoflinks. h t a m 1 Introduction [ In [32], Turaev and Viro defined a family of 3-manifold invariants as state sums on triangulations of 2 v manifolds. The family is indexed by an integer r, and for each r the invariant depends on a choice of 8 a 2r-th root of unity. In the last couple of decades these invariants have been refined and generalized 1 in many directions and shown to be closely related to the Witten-Reshetikhin-Turaev invariants. (See 8 7 [1, 15, 31, 20] and references therein.) Despite these efforts, the relationship between the Turaev-Viro 0 invariantsandthegeometricstructureson3-manifoldsarisingfromThurston’sgeometrizationpictureis . 1 notunderstood. RecentlyChenandthethirdnamedauthor[6]conjecturedthat,evaluatedatappropriate 0 roots of unity, the asymptotic behavior of the Turaev-Viro invariants of a hyperbolic 3-manifold deter- 7 1 mines the hyperbolic volume of the manifold, and presented compelling experimental evidence to their : v conjecture. i In the presentpaper we focus mostly onthe Turaev-Viro invariants of link complements in S3.Our X mainresultgivesaformulaoftheTuraev-Viroinvariantsofalinkcomplementintermsofvaluesofthe r a coloredJonespolynomialofthelink. Usingtheformulawerigorouslyverifythevolumeconjectureof[6] fortheFigure-eightknotandBorromeanringscomplement. Thesearetothebestoftheauthorsknowl- edgethefirstexamplesofthiskind. Ourcalculationsexhibitnewphenomenaofasymptoticbehaviorof thecoloredJonespolynomialthatdoesnotseemtobepredictedbythevolumeconjectures[14,25,7]or byZagier’squantummodularityconjecture[36]. 1.1 Relationshipbetweenknotinvariants To state our results we need to introduce some notations. For a link L ⊂ S3, let TV (S3(cid:114)L,q) denote r the r-th Turaev-Viro invariant of the link complement evaluated at the root of unity q such that q2 is ∗E.K.issupportedbyNSFGrantDMS-1404754 †T.Y.issupportedbyNSFGrantDMS-1405066 1 primitiveofdegreer.Throughoutthispaper,wewillconsiderthecasethatq = A2,whereAiseithera primitive4r-throotforanyintegerr oraprimitive2r-throotforanyoddintegerr. Weusethenotationi = (i ,...,i )foramulti-integerofncomponents(ann-tupleofintegers)and 1 n usethenotation1 (cid:54) i (cid:54) mtodescribeallsuchmulti-integerswith1 (cid:54) i (cid:54) mforeachk ∈ {1,...,n}. k Given a link L with n components, let J (t) denote the i-th colored Jones polynomial of L whose k- L,i th component is colored by i [19, 17]. If all the components of L are colored by the same integer k i, then we simply denote J (t) by J (t). If L is a knot, then J (t) is the usual i-th colored L,(i,...,i) L,i L,i Jones polynomial. The polynomials are indexed so that J (t) = 1 and J (t) is the ordinary ones L,1 L,2 polynomial,andarenormalizedsothat A2i−A−2i J (t) = [i] = U,i A2−A−2 fortheunknotU,wherebyconventiont = A4.Finallywedefine A2−A−2 A2−A−2 η = √ and η(cid:48) = √ . r −2r r −r Beforestatingourmainresult,letusrecallonceagaintheconventionthatq = A2 andt = A4. Theorem1.1. LetLbealinkinS3 withncomponents. (1) Foranintegerr (cid:62) 3andaprimitive4r-throotofunityA,wehave (cid:88) TV (S3(cid:114)L,q) = η2 |J (t)|2. r r L,i 1(cid:54)i(cid:54)r−1 (2) Foranoddintegerr (cid:62) 3andaprimitive2r-throotofunityA,wehave (cid:88) TV (S3(cid:114)L,q) = 2n−1(η(cid:48))2 |J (t)|2. r r L,i 1(cid:54)i(cid:54)r−1 2 Extending an earlier result of Roberts[28], Beneditti and Petronio[1] showed that the invariants πi TVr(M,er ) of a 3-manifold M with boundary coincide up to a scalar with the Witten-Reshetikhin- Turaev invariants of the double of M. In the proof of Theorem 1.1, we first apply Beneditti-Petronio’s argument to the case that r is odd and A is a primitive 2r-th root, extending this relation to the Turaev- ViroinvariantsandtheSO(3)Reshetikhin-Turaevinvariants[17,3,4]. SeeTheorem3.1. Thentherest of the proof follows from the properties of the Reshetikhin-Turaev topological quantum field theory as establishedbyBlanchet,Habegger,MasbaumandVogel[2,4]. Note that for any primitive r-th root of unity with r (cid:62) 3, the quantities η and η(cid:48) are real and r r non-zero. SinceJ (t) = 1,Theorem1.1immediatelyimpliesthefollowing L,1 Corollary1.2. Foranyr (cid:62) 3,anyrootq = A2 andanylinkLinS3,wehave TV (S3(cid:114)L,q) > 0. r We note that the values of the colored Jones polynomials do not have such a positivity property. In fact, all the values that are involved in the Kashaev volume conjecture[14, 25] are known to vanish for thesplitlinksandtheWhiteheadchains. See[25,34]. AnotherimmediateconsequenceofTheorem1.1isthatlinkswiththesamecoloredJonespolynomi- als have the same Turaev-Viro invariants. In particular, since the colored Jones polynomial is invariant underConwaymutationsandthegenus2mutations[23],weobtainthefollowing. Corollary 1.3. For any r (cid:62) 3, any root q = A2 and any link L in S3, the invariants TV (S3(cid:114)L,q) r remainunchangedunderConwaymutationsandthegenus2mutations. 2 1.2 AsymptoticsofTuraev-ViroandcoloredJoneslinkinvariants We are particularly interested in the large r asymptotics of the invariants TV (S3(cid:114)L,A2) in the case r thateitherA = e2πri forintegersr (cid:62) 3orA = eπri foroddintegersr (cid:62) 3.WiththesechoicesofA,we haveintheformercasethat 2sin(π) η = √ r , r 2r andinthelattercasethat 2sin(2π) η(cid:48) = √ r . r r In[6],Chenandthethirdnamedauthorpresentedcompellingexperimentalevidencetothefollowing Conjecture1.4. [6]Foreveryhyperbolic3-manifoldM,wehave 2π 2πi lim log(TVr(M,e r )) = Vol(M), r→∞ r wherer runsoveralloddintegers. 2πi Conjecture 1.4 impies that TVr(M,e r ) grows exponentially in r. This is particularly surprising πi sincethecorrespondinggrowthofTVr(M,er )isexpected,andinmanycasesknown,tobeonlypoly- nomiallybyWitten’sasymptoticexpansionconjecture[35,13]. Forclosed3-manifolds,thispolynomial growthwasestablishedbyGaroufalidis[8]. Combining[8,Theorem2.2]andtheresultsof[1],onehas that for every 3-manifold M with nonempty boundary, there exist constants C > 0 and N such that |TVr(M,eπri)| (cid:54) CrN.ThistogetherwithTheorem1.1implythefollowing. Corollary1.5. ForanylinkLinS3,thereexistconstantsC > 0andN suchthatforanyintegerr and multi-integeriwith1 (cid:54) i (cid:54) r−1,thevalueofthei-thcoloredJonespolynomialatt = e2rπi satisfies |JL,i(e2rπi)| (cid:54) CrN. 2πi Hence,JL,i(e r )growsatmostpolynomiallyinr. AsamainapplicationofTheorem1.1,weprovidethefirstrigorousevidencestoConjecture1.4. Theorem 1.6. Let L be either the Figure-eight knot or the Borromean rings, and let M be the comple- mentofLinS3.Then 2π 2πi 4π 4πi lim logTVr(M,e r ) = lim log|JL,m(e2m+1)| = Vol(M), r→+∞ r m→+∞ 2m+1 wherer = 2m+1runsoveralloddintegers. 2πi The asymptotic behaviour of the values of JL,m(t) at t = em+12 was not predicted previously by either the original volume conjecture[14, 25] or any of its generalizations [7, 24]. Theorem 1.6 seems to suggest that these values grow exponentially in m with growth rate the hyperbolic volume. This is somewhat surprising because as noted in [9], and also in Corollary 1.5, that for any positive integer l, 2πi JL,m(em+l)growsonlypolynomiallyinm. Question1.7. IsittruethatforanyhyperboliclinkL, 2π 2πi lim log|JL,m(em+12)| = Vol(S3(cid:114)L)? m→+∞ m 3 1.3 Knotswithzerosimplicialvolume Recallthatthesimplicialvolume||L||ofalinkListhesumofthevolumesofthehyperbolicpiecesofthe geometricdecompositionofthelinkcomplement,dividedbythevolumeoftheregularidealhyperbolic tetrahedron. In particular, if the geometric decomposition has no hyperbolic pieces, then ||L|| = 0. As a natural generalization of Conjecture 1.4, one can conjecture that for every link L the asymptotics of TVr(S3(cid:114)L,e2rπi)determines||L||.SeeConjecture5.1. UsingTheorem1.1andthepositivityoftheTuraev-Viroinvariants(Corollary1.2),wehaveaproof ofConjecture5.1fortheknotswithzerosimplicialvolume. Theorem1.8. LetK ⊂ S3 beaknotwithsimplicialvolumezero. Then 2π lim logTVr(S3(cid:114)K,e2rπi) = ||K|| = 0, r→∞ r wherer runsoveralloddintegers. Wealsoobservethat,unliketheoriginalvolumeconjecturethatisnottrueforsplitlinks[25,Remark 5.3],Conjecture5.1isclosedunderthesplitunionsoflinks,andundersomeassumptionsisalsoclosed undertheconnectedsums. 1.4 Organization The paper is organized as follows. In Subsection 2.1, we review the Reshetikhin-Turaev invariants[27] following the skein theoretical approach by Blanchet, Habegger, Masbaum and Vogel[2, 3, 4]. In Sub- section2.2,werecallthedefinitionoftheTuraev-Viroinvariants,andconsideranSO(3)-versionofthem forthepurposeofextendingBeneditti-Petronio’stheorem[1]tootherrootsofunity(Theorem3.1). The relationshipbetweenthetwoversionsoftheTuraev-ViroinvariantsisgiveninTheorem2.8whoseproof ispostponedtotheAppendix. WeproveTheorem1.1inSection3,andproveTheorem1.6andTheorem 1.8respectivelyinSections4and5. 1.5 Acknowledgement Part of this work was done during the Advances in Quantum and Low-Dimensional Topology 2016 at UniversityofIowaandKnotsinHellas2016atInternationalOlympicAcademy,Greece. Wewouldlike tothanktheorganizersforsupport,hospitalityandforprovidingexcellentworkingconditions. TheauthorsarealsogratefultoFrancisBonahon,CharlesFrohman,StavrosGaroufalidisandRoland vanderVeenfordiscussionsandsuggestions. 2 Preliminaries 2.1 Reshetikhin-TuraevinvariantsandTQFTs InthissubsectionwereviewthedefinitionandbasicpropertiesoftheReshetikhin-Turaevinvariants. Our expositionfollowstheskeintheoreticalapproachofBlanchet,Habegger,MasbaumandVogel[2,3,4]. A framed link in an oriented 3-manifold M is a smooth embedding L of a disjoint union of finitely manythickenedcirclesS1 ×[0,(cid:15)],forsome(cid:15) > 0,intoM.LetZ[A,A−1]betheringofLaurentpoly- nomialsintheindeterminateA.Thenfollowing[26,30],theKauffmanbracketskeinmoduleK (M)of A M is defined as the quotient of the free Z[A,A−1]-module generated by the isotopy classes of framed linksinM bythefollowingtworelations: 4 (1) KauffmanBracketSkeinRelation: = A + A−1 . (2) FramingRelation: L∪ = (−A2−A−2)L. Thereisacanonicalisomorphism (cid:104)(cid:105) : K (S3) → Z[A,A−1] A between the Kauffman bracket skein module of S3 and Z[A,A−1] viewed a module over itself. The Laurent polynomial (cid:104)L(cid:105) ∈ Z[A,A−1] determined by the framed link L ⊂ S3 is called the Kauffman bracketofL. TheKauffmanbracketskeinmoduleK (T)ofthesolidtorusT = D2×S1 iscanonicallyisomor- A phic to the module Z[A,A−1][z]. Here we consider D2 as the unit disk in the complex plane, and call the framed link [0,(cid:15)]×S1 ⊂ D2 ×S1, for some (cid:15) > 0, the core of T. Then the isomorphism above is givenbysendingiparallelcopiesofthecoreofT tozi.AframedlinkLinS3 ofncomponentsdefines anZ[A,A−1]-multilinearmap (cid:104) ,..., (cid:105) : K (T)⊗n → Z[A,A−1] L A on KA(T), called the Kauffman multi-bracket, as follows. For monomials zik ∈ Z[A,A−1][z] ∼= KA(T),k = 1,...,n,letL(zi1,...,zin)betheframedlinkinS3 obtainedbycablingthek-thcompo- nentofLbyi parallelcopiesofthecore. Thendefine k . (cid:104)zi1,...,zin(cid:105) = (cid:104)L(zi1,...,zin)(cid:105), L andextendZ[A,A−1]-multilinearlytothewholeK (T).FortheunknotU andanypolynomialP(z) ∈ A Z[A,A−1][z],wesimplydenotethebracket(cid:104)P(z)(cid:105) by(cid:104)P(z)(cid:105). U The i-th Chebyshev polynomial e ∈ Z[A,A−1][z] is defined by the recurrence relations e = 1, i 0 e = z,andze = e +e ,andsatisfies 1 j j+1 j−1 (cid:104)e (cid:105) = (−1)i[i+1]. i ThecoloredJonespolynomialsofanorientedknotK inS3 aredefinedusinge asfollows. LetD bea i diagramofK withwrithenumberw(D),andframeDwiththeblackboardframing. Thenthe(i+1)-st coloredJonespolynomialofK is J (t) = (cid:0)(−1)iAi2+2i(cid:1)w(D)(cid:104)e (cid:105) . K,i+1 i D The colored Jones polynomials for an oriented link L in S3 is defined similarly. Let D be a diagram of L with writhe number w(D) and the blackboard framing. For a multi-integer i = (i ,...,i ), let 1 n i+1 = (i +1,...,i +1).Thenthe(i+1)-stcoloredJonespolynomialofLisdefinedby 1 n n JL,i+1(t) = (cid:0)(−1)k(cid:80)=1ikAs(i)(cid:1)w(D)(cid:104)ei1,...,ein(cid:105)D, n wheres(i) = (cid:80)(i2 +i ). k k k=1 WenotethatachangeorientationonsomeorallcomponentsofLchangesthewrithenumberofD, andchangesJ (t)onlybyapowerofA.Therefore,foranunorientedlinkLandacomplexnumberA L,i with|A| = 1,themodulusofthevalueofJ (t)att = A4 iswelldefined,and L,i |J (t)| = |(cid:104)e ,...,e (cid:105) |. (2.1) L,i i1−1 in−1 D 5 If M is a closed oriented 3-manifold obtained by doing surgery along a framed link L in S3, then thespecializationoftheKauffmanmulti-bracketatrootsofunityyieldsinvariantsof3-manifolds. From now on, let A be either a primitive 4r-th root of unity for an integer r (cid:62) 3 or a primitive 2r-th root of unity for an odd integer r (cid:62) 3. To define the Reshetikhin-Turaev invariants, we need to recall some specialelementsofK (T) ∼= Z[A,A−1][z],calledtheKirbycoloring,definedby A r−2 (cid:88) ω = (cid:104)e (cid:105)e r i i i=0 foranyintegerr,and m−1 (cid:88) ω(cid:48) = (cid:104)e (cid:105)e r 2i 2i i=0 foranyoddintegerr = 2m+1.Wealsoforanyr introduce κ = η (cid:104)ω (cid:105) , r r r U+ andforanyoddr introduce κ(cid:48) = η(cid:48)(cid:104)ω(cid:48)(cid:105) , r r r U+ whereU istheunknotwithframing1. + Definition 2.1. Let M be a closed oriented 3-manifold obtained from S3 by doing surgery along a framedlinkLwithnumberofcomponentsn(L)andsignatureσ(L). (1) ThentheReshetikhin-TuraevinvariantoftheM isdefinedby (cid:104)M(cid:105) = η1+n(L) κ−σ(L) (cid:104)ω ,...,ω (cid:105) r r r r r L foranyintegerr (cid:62) 3,andby (cid:104)M(cid:105)(cid:48) = (η(cid:48))1+n(L) (κ(cid:48))−σ(L) (cid:104)ω(cid:48),...,ω(cid:48)(cid:105) r r r r r L foranyoddintegerr (cid:62) 3. (2) Let also L(cid:48) be a framed link in M. Then the Reshetikhin-Turaev invariant of the pair (M,L(cid:48)) is definedby (cid:104)M,L(cid:48)(cid:105) = η1+n(L) κ−σ(L) (cid:104)ω ,...,ω ,1(cid:105) r r r r r L∪L(cid:48) foranyintegerr (cid:62) 3,andby (cid:104)M,L(cid:48)(cid:105)(cid:48) = (η(cid:48))1+n(L) (κ(cid:48))−σ(L) (cid:104)ω(cid:48),...,ω(cid:48),1(cid:105) r r r r r L∪L(cid:48) foranyoddintegerr (cid:62) 3. Remark2.2. (1) Wewillcall(cid:104)M(cid:105)(cid:48) theSO(3)Reshetikhin-TureavinvariantofM. r (2) For any element S in K (M) represented by a Z[A,A−1]-linear combinations of framed links in A M,onecandefine(cid:104)M,S(cid:105) and(cid:104)M,S(cid:105)(cid:48) byZ[A,A−1]-linearextensions. r r (3) Since S3 is obtained by doing surgery along the empty link, we have (cid:104)S3(cid:105) = η and (cid:104)S3(cid:105)(cid:48) = η(cid:48). r r r r Moreover,foranylinkL ⊂ S3 wehave (cid:104)S3,L(cid:105) = η (cid:104)L(cid:105), and (cid:104)S3,L(cid:105)(cid:48) = η(cid:48) (cid:104)L(cid:105). r r r r 6 In[4],Blanchet,Habegger,MasbaumandVogelalsoconstructedtheunderlingtopologicalquantum fieldtheoriesZ andZ oftheReshetikhin-Turaevinvariants,whichcanbesummarizedasfollows. r r(cid:48) Theorem2.3. [4,Theorem1.4] (1) Let Σ be a closed oriented surface, then for any integer r (cid:62) 3, there exists a finite dimensional C-vectorspaceZ (Σ)satisfying r (cid:97) ∼ Z (Σ Σ ) = Z (Σ )⊗Z (Σ ), r 1 2 r 1 r 2 andforeachoddintegerr (cid:62) 3,thereexistsafinitedimensionalC-vectorspaceZ(cid:48)(Σ)satisfying r Z(cid:48)(Σ (cid:97)Σ ) ∼= Z(cid:48)(Σ )⊗Z(cid:48)(Σ ). r 1 2 r 1 r 2 (2) IfH isahandlebodywith∂H = Σ,thenZ (Σ)andZ(cid:48)(Σ)arerespectivelyquotientsoftheKauff- r r manbracketskeinmoduleK (H). A (3) Every compact oriented 3-manifold M with ∂M = Σ and a framed link L in M defines for any integerr avectorZ (M,L)inZ (Σ),andforanyoddintegerr avectorZ(cid:48)(M,L)inZ(cid:48)(Σ). r r r r (4) Forforanyintegerr,thereisasesquilinearpairing(cid:104), (cid:105)onZ (Σ)withthefollowingproperty: Given r oriented3-manifoldsM andM withboundaryΣ = ∂M = ∂M ,andframedlinksL ⊂ M and 1 2 1 2 1 1 L ⊂ M ,wehave 2 2 (cid:104)M,L(cid:105) = (cid:104)Z (M ,L ),Z (M ,L )(cid:105), r r 1 1 r 2 2 (cid:83) where M = M (−M ) is the closed 3-manifold obtained by gluing M and M along Σ and 1 Σ 2 1 2 L = L (cid:96)L . Similarly,foranyoddintegerr,thereisasesquilinearpairing(cid:104), (cid:105)onZ(cid:48)(Σ),such 1 2 r toranyM andLasabove, (cid:104)M,L(cid:105)(cid:48) = (cid:104)Z(cid:48)(M ,L ),Z(cid:48)(M ,L )(cid:105). r r 1 1 r 2 2 For the purpose of this paper, we will only need to understand the TQFT vector spaces of the torus Z (T2)andZ(cid:48)(T2).ThesevectorspacesarequotientsofK (T) ∼= Z[A,A−1][z],hencetheChebyshev r r A polynomials{e }definevectorsinZ (T2)andZ(cid:48)(T2).Wehavethefollowing i r r Theorem2.4. [4,Corollary4.10,Remark4.12] (1) Foranyintegerr (cid:62) 3,thevectors{e ,...,e }formaHermitianbasisofZ (T2). 0 r−2 r (2) Foranyoddintegerr = 2m+1,thevectors{e ,...,e }formaHermitianbasisofZ(cid:48)(T2). 0 m−1 r (3) InZ(cid:48)(T2),wehaveforanyiwith0 (cid:54) i (cid:54) m−1that r e = e . (2.2) m+i m−1−i Therefore,thevectors{e } alsoformaHermitianbasisofZ(cid:48)(T2). 2i i=0,...,m−1 r 7 2.2 Turaev-Viroinvariants Inthissubsection,werecallthedefinitionandbasicpropertiesoftheTuraev-Viroinvariants[32,15]. For anintegerr (cid:62) 3,letI = {0,1,...,r−2}bethesetofnon-negativeintegerslessthanorequaltor−2. r Let q be a 2r-th root of unity such that q2 is a primitive r-th root. For example, q = A2, where A is eitheraprimitive4r-throotorforoddr aprimitive2r-throot,satisfiesthecondition. Fori ∈ I ,define r i = (−1)i[i+1]. A triple (i,j,k) of elements of I is called admissible if (1) i+j (cid:62) k, j +k (cid:62) i and k +i (cid:62) j, (2) r i+j +k isaneven,and(3)i+j +k (cid:54) 2(r−2).Foranadmissibletriple(i,j,k),define i [i+j−k]![j+k−i]![k+i−j]![i+j+k +1]! j = (−1)−i+j2+k 2 2 2 2 . [i]![j]![k]! k A 6-tuple (i,j,k,l,m,n) of elements of I is called admissible if the triples (i,j,k), (j,l,n), r (i,m,n)and(k,l,m)areadmissible. Foranadmissible6-tuple(i,j,k,l,m,n),define mk inj = (cid:81)[i4a]=![j1](cid:81)![k3b]=![1l[]Q![mb−]![nT]a!]! min{Q(cid:88)1,Q2,Q3} (cid:81)4 [z(−−T1)z]![z(cid:81)+3 1][!Q −z]!, l z=max{T1,T2,T3,T4} a=1 a b=1 b where i+j +k i+m+n j +l+n k+l+m T = , T = , T = , T = , 1 2 3 4 2 2 2 2 i+j +l+m i+k+l+n j +k+m+n Q = , Q = , Q = . 1 2 3 2 2 2 Remark 2.5. We choose the notations i , i j and mk inj because the quantities are respectively k l theKauffmanbracketofthecorrespondingspinnetworks. See[15,Chapter9]. AcoloringofaEuclideantetrahedron∆isanassignmentofelementsofI totheedgesof∆,andis r admissibleifthetripleofelementsofI assignedtothethreeedgesofeachfaceof∆isadmissible. See r Figure1: InthissettingeachofT ,...,T correspondstoafaceandeachofQ ,Q ,Q correspondsto 1 4 1 2 3 aquadrilateralinthetetrahedron. Figure1 Let T be a triangulation of M. If M is with non-empty boundary, then we let T be an ideal trian- gulationofM,i.e.,agluingoffinitelymanytruncatedEuclideantetrahedrabyaffinehomeomorphisms 8 betweenpairsoffaces. Inthisway,therearenovertices,andinstead,thetrianglescomingfromtrunca- tions form a triangulation of the boundary of M. By edges of an ideal triangulation, we only mean the onescomingfromtheedgesofthetetrahedra,nottheonesfromthetruncations. Acoloringatlevelrof thetriangulated3-manifold(M,T)isanassignmentofelementsofI totheedgesofT,andisadmis- r sibleifthe6-tupleassigned totheedges ofeachtetrahedron ofT isadmissible. Letcbean admissible coloringof(M,T)atlevelr.ForeachedgeeofT,let c(e) |e| = . c Foreachfacef ofT withedgese ,e ande ,let 1 2 3 c 1 c |f|c = 2 , c 3 wherec = c(e ). i i For each tetrahedra ∆ in T with vertices v ,...,v , denote by e the edge of ∆ connecting the 1 4 ij verticesv andv ,{i,j} ⊂ {1,...,4},andlet i j c c 23 12c |∆|c = c c24 , 13 14 c 34 wherec = c(e ). ij ij Definition 2.6. Let A be the set of admissible colorings of (M,T) at level r, and let V, E F and T r respectivelybethesetsofvertices,edges,facesandtetrahedrainT.Thenther-thTuraev-Viroinvariant isdefinedby (cid:81) (cid:81) TV (M) = η2|V| (cid:88) e∈E|e|c ∆∈T |∆|c. r r (cid:81) |f| c∈Ar f∈E c For an odd integer r (cid:62) 3, one can also consider an SO(3)-version of the Turaev-Viro invariants TV(cid:48)(M)ofM,whichwillrelateTV (M)andtheReshetkin-Turaevinvariants(cid:104)D(M)(cid:105) ofthedouble r r r ofM (Theorems2.8,3.1). TheinvariantTV(cid:48)(M)isdefinedasfollows. LetI(cid:48) = {0,2,...,r−5,r−3} r r be the set of non-negative even integers less than or equal to r−2. An SO(3)-coloring of a Euclidean tetrahedron∆isanassignmentofelementsofI(cid:48) totheedgesof∆,andisadmissibleifthetripleassigned r tothethreeedgesofeachfaceof∆isadmissible. LetT beatriangulationofM.AnSO(3)-coloringat levelr ofthetriangulated3-manifold(M,T)isanassignmentofelementsofI(cid:48) totheedgesofT,and r isadmissibleifthe6-tupleassignedtotheedgesofeachtetrahedronofT isadmissible. Definition2.7. LetA(cid:48) bethesetofSO(3)-admissiblecoloringsof(M,T)atlevelr.Define r (cid:81) (cid:81) TV(cid:48)(M) = (η(cid:48))2|V| (cid:88) e∈E|e|c ∆∈T |∆|c. r r (cid:81) |f| c∈A(cid:48) f∈E c r TherelationshipbetweenTV (M)andTV(cid:48)(M)isgivenbythefollowingtheorem. r r 9 Theorem 2.8. Let M be a 3-manifold and let b (M) and b (M) respectively be its zeroth and second 0 2 Z -Bettinumber. 2 (1) Foranyoddintegerr (cid:62) 3, TV (M) = TV (M)·TV(cid:48)(M). r 3 r πi (2) (Turaev-Viro[32]). If∂M = ∅andA = e3 ,then TV (M) = 2b2(M)−b0(M). 3 πi (3) IfM isconnected,∂M (cid:54)= ∅andA = e3 ,then TV (M) = 2b2(M). 3 Inparticular,TV (M)isnonzero. 3 WepostponetheproofofTheorem2.8toAppendixAtoavoidunnecessarydistractions. 3 The colored Jones sum formula for Turaev-Viro invariants InthisSection,wefirstestablisharelationshipbetweentheSO(3)Turaev-Viroinvariantsofa3-manifold withboundarytotheSO(3)Reshetikhin-Turaevinvariantsofitsdouble,followingtheargumentof[1]. See Theorem 3.1. Then we prove Theorem 1.1 using the TQFT properties of the Reshetikhin-Turaev invariantsestablishedin[2,4]. 3.1 Relationshipbetweeninvariants TherelationshipbetweenTuraev-ViroandWitten-Reshetikhin-TuraevinvariantswasstudiedbyTuraev- Walker[31] and Roberts[28] for closed 3-manifolds and by Beneditti and Petronio[1] for 3-manifolds withboundary. Foranoriented3-manifoldM withboundary,denoteM withtheoppositeorientationby −M,andletD(M)denotethedoubleofM,i.e., (cid:91) D(M) = M (−M). ∂M We will need the following theorem of Benedetti and Petronio[1]. In fact [1] only treats the case of πi A = e2r,but,aswewillexplainbelow,theproofforothercasesissimilar. Theorem3.1. LetM bea3-manifoldwithboundary. Then TV (M) = η−χ(M)(cid:104)D(M)(cid:105) r r r foranyintegerr,and TV(cid:48)(M) = (η(cid:48))−χ(M)(cid:104)D(M)(cid:105)(cid:48) r r r foranyoddr,whereχ(M)istheEulercharacteristicofM. We refer to [1] and [28] for the SU(2) (r being any integer) case, and for the reader’s convenience includeasketchoftheproofherefortheSO(3)(r beingodd)case. ThemaindifferencefortheSO(3) casecomesfromtothefollowinglemmaduetoLickorish. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.