ebook img

Tunneling conductance and local density of states in time-reversal symmetry breaking superconductors under the influence of an external magnetic field PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tunneling conductance and local density of states in time-reversal symmetry breaking superconductors under the influence of an external magnetic field

Tunneling conductance andlocal density ofstates intime-reversal symmetrybreaking superconductors under the influence ofanexternal magnetic field Mihail A. Silaev,1 Takehito Yokoyama,2 Jacob Linder,3 Yukio Tanaka,2 and Asle Sudbø3 1InstituteforPhysicsofMicrostructures,RussianAcademyofSciences,603950NizhnyNovgorodGSP-105,Russia 2Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan and CREST, Nagoya, 464-8603, Japan 3Department ofPhysics, NorwegianUniversityofScienceandTechnology, N-7491Trondheim, Norway (Dated:ReceivedJanuary12,2009) 9 0 Weconsiderdifferenteffectsthatarisewhentime-reversalsymmetrybreakingsuperconductorsaresubjectedto 0 anexternalmagneticfield,thusrenderingthesuperconductor tobeinthemixedstate. Wefocusinparticular 2 ontwotime-reversalsymmetrybreakingorderparameterswhicharebelievedtoberealizedinactualmaterials: p+ıp′-waveandd+ıs-ord+ıd′-wave. ThefirstorderparameterisrelevantforSr2RuO4,whilethelatter n orderparametershavebeensuggestedtoexistnearsurfacesinsomeofthehigh-Tccuprates.Weinvestigatethe a interplaybetweensurfacestatesandvortexstatesinthepresenceofanexternalmagneticfieldandtheirinfluence J onboththetunnelingconductanceandthelocaldensityofstates.Ourfindingsmaybehelpfultoexperimentally 9 identifythesymmetryofunconventionaltime-reversalsymmetrybreakingsuperconductingstates. ] n PACSnumbers:74.45.+c,74.20.Rp,74.25.-q o c - I. INTRODUCTION tumspace p = p(cosθp,sinθp), g(θp) = cos(2θp +α) and r p g1(θp) = sin(2θp+α)whereα/2isananglemeasuringthe u misorientation of crystalline symmetry axes and coordinate Recently, considerable attention has been devoted to the .s chiral superconducting phase which is believed to be real- axes. One obtainsdx2−y2-wavesymmetryof the mainorder at izedinthep-wavetripletsuperconductor1Sr RuO . Thechi- parameter component for α = 0 and dxy-wave pairing for 2 4 α=π/2.Whiletheexperimentaldatasofarclearlyindicates m ral state of a p-wave superconductor corresponds to a non- anorderparameterwhichbreakstime-reversalsymmetry,the d- zero projection lz = ±1 of the Cooper pairs angular mo- questionofwhetherthesymmetryisd+ıs-ord+ıd′-wave mentum l along the z axis, and thus breaks time-reversal n remainsunsolved. Clearly, experimentalsignaturesthatmay symmetry. The spatially homogeneous triplet order param- o distinguishthesetwotypesofpairingswouldbehighlydesir- c eter ∆ˆ = ∆0(d σˆ)iσˆy is described by the vector1 d(p) = able. · [ (0,0,p +iχp ),whichdependsonthedirectionofelectron x y Oneoftheimportantfeaturesofunconventionalsupercon- momentum p. Here ∆ is the bulk value of the order pa- 1 0 ductorsisthepossibilityfortheexistenceofsurfaceAndreev v rameter, σˆ = (σˆx,σˆy,σˆz) is the vector of Pauli matrices of boundstates12,13,14. Theyoccurinthevicinityofthescatter- 2 conventionalspinoperators,andχ = 1 correspondsto the inginterfacebetweenasuperconductorandaninsulator,ifthe ± 2 two possible values of chirality. Also, chiral superconduct- incidentand reflected quasiparticles(QP) with differentmo- 2 ing states can be associated with an admixture of two order mentumdirectionsseedifferentphasesoftheorderparameter. 1 parameterscorrespondingto differentirreduciblerepresenta- TheconsequenceoftheAndreevboundstatesformationisan . 1 tionsofacrystalpointgroup.Naturallydifferentorderparam- increaseofthelocaldensityofstatesatthesurfaceresultingin 0 eter componentscan coexist in the vicinity of interfaces be- zero-biasconductancepeakanomalyobserved18intunneling 9 tweensuperconductorsandsurfacesduetobrokensymmetry spectroscopy of high-T cuprates with d-wave symmetry of :0 of the crystal group2,3,4,5. Among other possibilities of sub- superconductingpairingcaswellasin19 thep-wavetripletsu- v dominant order parameter symmetry2 there are states which perconductorSr RuO .Also,theAndreevboundstatesdeter- i break time reversal symmetry3,4,5. The coexistence of order 2 4 X mine the anomalouslow–temperaturebehaviour of the Lon- parametersshowsupinthelocaldensityofstates6,7,8,9aswell donpenetrationlength15 andtheJosephsoncriticalcurrentin r a asinthegenerationofspontaneouscurrentsflowingalongthe d-wave16andchiralsuperconductors17. surfacesintimereversalsymmetrybreakingcases7,8. Under the influence of an applied magnetic field, screen- Time-reversal symmetry breaking order parameters have ing currents and vortices may be generated in a supercon- been proposed to exist near surfaces10 and within vortex ductor. As a result, the spectrum of surface states acquires cores11inhigh-T superconductors.Thisproposalstemsfrom aDopplershift,leadingtoasplittingofthezero-biasconduc- c the observation of a split zero-bias conductance peak in the tancepeak10. Abrikosovvorticeslocatednearasuperconduct- absence of any applied magnetic field. In this case, it has ingsurfacegenerateanessentiallyinhomogeneoussuperfluid been suggested that the relevant order parameter is either velocityfield,whichleadstoanon-trivialelectronicstructure d + ıs- or d + ıd′- wave. The gap may then be written as ofthesurfaceboundstates20,21,22. Also,itwasrecently22pro- ∆ = ∆ g(θ )+ı∆ or∆ = ∆ g(θ )+ı∆ g (θ ),respec- posedthatthesameDopplershifteffectshouldleadtoachi- 0 p s 0 p d 1 p tively,where∆ isanamplitudeofthemaincomponentand rality selectiveinfluenceof the magneticfield onthe surface 0 theadmixtureofanotherpairingsymmetryisdenotedbythe states in a p-wave chiral superconductor with broken time- amplitudes∆ and∆ . Here, θ isapolarangleinmomen- reversalinvariance.Thequasiparticledensityofstates(DOS) s d p 2 nearaflatsurfacewasshowntodependontheorientationof In the dx2−y2 + is wave case, one finds that εa0 = magnetic field with respect to the chirality as well as on the ∆2cos2(2θ )+∆2, from which one infers that there are 0 p s vorticity in case when the Abrikosov vortex is pinned near no subgapsurface states. This is qualitativelydifferentfrom thesurfaceofsuperconductor. Additionally,insuperconduc- pthe d +is wave case. The interesting effects occur in the xy torsfeaturinggapnodes,such asin thecase in puredx2−y2- lattercase,sowefocusonthedxy+is(d)wavesymmetryin symmetricsuperconductingcuprates,avanishingpairpoten- thefollowing,correspondingtoα=π/2. tial in nodal directions results in important ramifications for ThetransformationofthesespectraduetotheDopplershift thephysicsofthesystem11,23,24,25,26. effectisshowninFig.1. Tobedefiniteweassumethat∆ > s To understand the effect of an externally applied mag- 0, ∆ > 0andχ = 1. ConsideringtheDOSatFermilevel, d netic field on the surface DOS, let us consider a spectrum ν = ∂ε /∂k −1 ,inachiralp-wavesuperconductoronecan ofAndreevboundstatesnearaflatsurfaceofatime-reversal seeth|ataitsdeyp|eεn=d0enceonthemagneticfieldismonotonic:it symmetrybreakingsuperconductoroccupyingthehalf-space eitherincreasesordecreasesfordifferentfielddirections(see x > 0. Below, we focuson the p+ıp-wave, dxy +ıs- and Fig.1a)asdiscussedinRef. 22. dxy +ıdx2−y2 -wave cases for concreteness. We consider a AnotherbehaviouroftheDOSoccursinthecaseofad+is model situation assuming spatially homogeneous gap func- wavesuperconductor. FromFig. 1bitfollowsthatfora cer- tion,havingthefollowingforminmomentumspace: tainfielddirectiontherearenostatesattheFermilevelε=0 (red dashed lines in Fig.1b). For the opposite field direction ∆=∆ eiχθp (1) 0 (blue dash-dotted lines in Fig.1b), intersections of spectral forp+ip-wave, brancheswiththeFermilevelappearwhenthesuperfluidve- locity is large enough v > ∆ /p so that the value of sy s F ∆=∆ sin(2θ )+ı∆ (2) | | 0 p s momentumprojectionattheintersectionpointissmallerthan fordxy+is-waveand tthhee FDeOrmSiamt tohmeeFneturmmi|lkey∗v|el<shkoFu.ldTbheusz,eroonewchaenneHxpe<ctHth∗at, ∆=∆0sin(2θp)+ı∆dcos(2θp) (3) whereH∗ isthemagneticfieldvalueprovidingthecondition v = ∆ /p tobefulfilled. fordxy+idx2−y2-wavesuperconductors. | sOy|n th|e cso|ntrFary, in the d+ id wave case the DOS at the AssumingthattheQParespecularlyreflectedatthesurface Fermi level is non-zero even in the absence of a magnetic ofthe superconductorwithina Dopplershiftapproach28, the field. As can be seen from Fig. 1c (black solid lines) the spectrumofthesurfacestatescanbeexpressedasfollows17,29: spectralbranchesintersectthelevelε = 0atk∗ = k /√2. εa =εa0+ǫd,whereεa0isapositionofenergylevelinzero Thetransformationofthespectrumduetotheymag±netiFcfield magnetic field and ǫ = ~k v is the Doppler shift energy d F s ofdifferentdirectionsisshowninFig. 1cbyreddashedlines which is determined by a local field of superfluid velocity. (H > 0)andbybluedash-dottedlines(H <0). Then,itcan Thesuperfluidvelocityv nearasurfacehasonlyatangential s beeasilyseenthatforH > 0thecoordinatesoftheintersec- component, directed along the y axis v = (0,v ,0), and s sy tionpointsk∗shifttowards k andforacertainvalueofthe can be related to the density of supercurrent flowing along magnetic fieyld H > H∗ th±e DFOS at the Fermi level ε = 0 thesurfacejs = envs, whereeiselectronchargeandnisa disappears. concentrationofCooperpairs. Themagneticfieldisscreened InthepresenceofanAbrikosovvortexnearthesurfaceof in a superconductorat the Londonlength λ as follows B = chiralsuperconductoranon-trivialstructureofthelocalden- He−x/λ, where H is a value of magnetic field outside the sityofstatesdistributionappearswhichdependsonthevortex superconductor. Therefore, the superfluid velocity is v = sy orientation22.AlongwiththeDopplershifteffect22,animpor- (2e/mc)λH. − tant modificationof the quasiparticle spectrum and the DOS Ifthemagneticfieldisabsent,thespectrumofsurfacestates can be obtained due to the overlapping of the surface states isgivenby12,27 andthelow-energyQPstateslocalizedwithinthevortexcore, ε =χ∆ k /k (4) foundin the pioneeringworkby Caroli-de GennesandMa- 0a 0 y F tricon (CdGM)30. It was shown that QP states with energy forachiralp-wave, lowerthanthebulksuperconductinggapvalue∆arelocalized within the vortexcore at the characteristic scale of the order ε =∆ sgn(k ) (5) a0 s y ofcoherencelengthξ andhavea discrete spectrumε (µ) as v forad +is-waveand afunctionofthequantized(half–integer)angularmomentum xy µ. Atsmallenergies ε ∆thespectrumforavortexwith ε =∆ sgn(k )cos(2θ ) (6) | | ≪ a0 d y p vorticityM isgivenby foradxy+idx2−y2-wave. Hereky isaprojectionofQPmo- ε (µ) Mµω, (8) mentumalongthesurface.Theabovespectramaybeformally v ≈− obtainedbysolving13 where k = p /~ and ω ∆ /(k ξ). For the most of F F 0 F ∼ superconductingmaterials,includingSr RuO ,theinterlevel ∆(θ ) ∆(π θ ) 2 4 p p = − . spacingω ismuchlessthanthesuperconductinggap∆since ε ı ∆(θ )2 ε2 ε +ı ∆(π θ )2 ε2 a0− | p | − a0 a0 | − p | − a0 (kFξ) 1. Therefore,theCdGMspectrummaybeconsid- (7) ≫ eredcontinuousasa functionof the impactparameterof the p p 3 of surface and vortex states is determinedby the overlapin- tegralJ ∆exp( a˜/ξ), where a˜ = a/cosθ and a is the p ≈ − distancefromthevortextothesurface.Takingacertainpoint at the surface (see point A in Fig.2a) of the superconductor one can obtain a relation between the angles and impact pa- rameters of trajectories passing trough this point as follows b=a˜sin(θ θ ).Thustheenergyofvortexcorestatescanbe p − writtenasε = M(a˜/ξ)∆ sin(θ θ ). Then,fromEq.(10) v 0 p − weobtainthespectrumtransformationshownqualitativelyin Fig.2fortheparticularcaseofθ =0. Itiseasytoseethatfor equal values of vorticity and chirality (Fig.2b) there appears aminigapinquasiparticlespectrumneartheFermileveland therefore the zero-energy DOS is suppressed. On the other hand, in the case of opposite vorticity and chirality (Fig.2c) thereisnominigapandtheDOSisnotsuppressed. FIG.1:(Coloronline)Plotofthesurfacestatesspectrumfor(a)chi- ral p+ip-wave superconductor, (b) d+is- waveand (c) d+id- wavesuperconductors. Spectruminzeromagneticfieldisshownby solidlines. Blueandredlinescorrespondtothespectrumtransfor- mation due tomagnetic fielddirected along and opposite toz axis correspondingly. quasiclassicaltrajectoryb = µ/k andthedirectionofQP F − momentumθ asinthefollowingform p ε (b,θ ) M∆(b/ξ). (9) v p ≈ Inthecaseofachiralp-wavesuperconductor,thespectrumof vortexcorestates differsfromthe CdGM result andis given byEq. (8)with integerµ. Forthe d+is-andd+id-wave superconductors the quasiclassical spectrum of vortex core statesisgivenbyEq.(9)with∆(θ )= ∆2g2(θ )+∆2and p 0 p s ∆(θ ) = ∆2g2(θ )+∆2g2(θ ). The discrete spectrum p 0 p d 1 p p is obtained by applying Bohr-Sommerfeld quantization rule to the canopnical variables µ = k b and θ 23,31. It should FIG.2: SketchofQPtrajectoriesformingsurfaceandvortexstates F p (a)andqualitativeplotofspectrumtransformationduetotheinter- − benotedthatwhenthesuperconductingorderparametercon- actionofsurfaceandvortexstatesinthecaseofachiralp-wavesu- tains nodes, the quasiclassical expression (9) is invalid near perconductor;vorticityandchiralityhave(b)equaland(c)opposite the nodal directions since energy states near the vortex core values. are not truly localized, but rather ”leak” outthroughthe gap nodes11,23,24,25,26. Thisisnotthecaseforussinceweconsider Inad+is-andd+id-wavesuperconductor,theinteraction superconductingorderparameterswhicharegappedoverthe betweenvortexandsurfacestatescanalsoleadtonoticeable entireFermisurface. effects,whichwillbediscussedlaterinthepresentpaper. Tostudytheinteractionbetweenvortexandsurfacestates, Recently, it was pointed out that tunneling of quasiparti- letusconsideranexampleofvortexpositionednearaflatsur- cles into vortex core states leads to a resonant enhancement faceofchiralp+ip-wavesuperconductor.Comparingtheen- ofsubgapconductanceofnormalmetal/superconductor(N/S) ergiesofsurfaceε (4)andvortexε (9)statesonecanseethat junction40. Inthecaseofchiralsuperconductors,suchatun- a v forcertainQPtrajectoriestheconditionofresonanceε =ε neling effectcan lead to either stimulation or suppressionof a v isrealized. Thusthespectrumtransformationinsuchalmost conductance,dependingonthedirectionofvorticity. Wewill degeneratetwo-levelsystemisgivenbyasecularequation: showthatifvorticesarelocatedfarfromtheN/Sinterface,the conductancefollowsthebehaviourexpectedfromtheDoppler (ε ε )(ε ε )=J2. (10) shift approach. On the other hand, when the distance from a v − − the vortex to the interface becomes comparable with coher- Sinceweconsideralow-energyspectrum ε ∆ , thetra- encelengthξ thetunnelingintovortexcorestatescomesinto 0 | | ≪ jectories should pass close to the vortex center for the spec- play, leading to the peculiar nonmonotonic conductance de- trum modification (10) to be effective. Then, the interaction pendenceonthe vortexcoordinatewith respectto the super- 4 conductingsurface. where ∆(θ ) describes the orbital symmetry of the super- p Thispaperis organizedas follows. In Sec. II, we givean conductingorderparameterinmomentumspace,whileΨ(r) overviewof the theoreticalframeworkwhichis employedin describesits spatial dependenceboth magnitude-and phase- this work, namely a Bogolioubov approach and a quasiclas- wise. sicalEilenbergerapproach. InSec. III, we presentourmain ThelocalDOS(LDOS)canbeexpressedthroughtheeigen- results for the influence of magnetic field on bound surface functionsoftheBdGequation(11)inthefollowingform32: statesspectraandlocaldensityofstatesnearthesurface. We discuss the transformation of surface states in the Miessner N(ε,r)= u (r)2δ(ε ε ), (14) n n stateofsuperconductoraswellastheeffectsofinterplaybe- | | − n tweensurfaceandvortexcorestates. Wegiveourconclusions X inSec. IV. where u (r) is electron component of quasiparticle eigen n functioncorrespondingtoanenergylevelε . Theeigenfunc- n tionhastobenormalized: ∞ u (r)2+ v (r)2d2r =1. −∞| n | | n | II. THEORETICALAPPROACH We will also later employa quasiclassicalEilenbergerap- RR proachtostudythespatiallyresolvedDOS.Letusheresketch OurfurtherconsiderationsarebasedontheBogoliubov–de theframeworkofthetreatmentwhichmakesuseoftheEilen- Gennes (BdG) equations for particle– (u) and hole–like (v) bergerequation,followingthenotationofRefs.35,36. Itisnow partsofthewavefunction,whichhavethefollowingform: convenient to solve the Eilenberger equation along trajecto- ries along the Fermi momentum, and introducing a Ricatti- 1 e 2 parametrization for the Green’s function36. In this way, one pˆ A u+∆ˆv = (ε+ε )u, − 2m − c F obtains20 1 (cid:16) e (cid:17)2 2m pˆ+ cA v+∆ˆ†u = (ε−εF)v. (11) ~vF∂x′a(x′)+[2ω˜n+∆†a(x′)]a(x′) ∆=0, − Here ∆ˆ is a (cid:16)gap opera(cid:17)tor, A is a vector potential, pˆ = ~vF∂x′b(x′)−[2ω˜n+∆b(x′)]b(x′)+∆† =0, (15) i(∂/∂ ,∂/∂ ),andr=(x,y)isaradiusvectorintheplane − x y whereıω˜n =ıωn+mvF vs isaDoppler-shiftedMatsubara perpendicularto the anisotropy plane. Hereafter we assume · frequencyand theFermisurfacetobecylindricalalongthez–axisandcon- sideramotionofQPsonlyinxyplane. 1 2e In case of unconventional superconductors, the gap po- vs = ~ Φ A 2m ∇ − c tential ∆ˆ is a non-local operator, so the BdG system effec- (cid:18) (cid:19) tively becomes a very complicated integro-differentialequa- is a gauge-invariantsuperfluid velocity where Φ(r) is a gap tion. Another complexity arises from the broken spatial in- functionphase:Ψ(r)= ΨeiΦ.TheLDOSmaybeexpressed variance of the superconducting gap in presence of vortices throughthescalarcohere|nc|efunctionsaandbasfollows20 near the N/S interface. A simplification can be obtained if one considers a quasiclassical approximation, assuming that 2π dθ 1 ab thewavelengthofquasiparticlesismuchsmallerthanthesu- N(ε)= Re − , (16) perconducting coherence length (see e.g. Ref.34). Within Z0 2π n1+aboıωn→ε+ıδ such an approximation, QP move along linear trajectories, whereεisthequasiparticleenergymeasuredfromFermilevel i.e. straight lines along the direction of QP momentum and δ is a scattering parameter which accounts for inelastic n = kFkF−1 = (cosθp,sinθp). Generally, the quasiclassi- scattering. calformofthe wavefunctioncanbeconstructedasfollows: To investigatethe transportpropertiesofN/Sjunction,we (u,v) = eikF·r(U,V), where(U(r),V(r)) isa slowlyvary- employ an approach similar to what was used in work by ing envelope function. Then the system (11) reduces to a Bardeen,TinkhamandKlapwijk33. Theexpressionforthedi- system of first-order differential equations along the linear mensionlesszero-biasconductanceoftheN/Sjunctionmea- trajectories defined by the direction of the QP momentum sured in terms of the conductance quantum e2/(π~) can be n = kFkF−1 = (cosθp,sinθp). Introducing the coordinate writtenasfollows: alongtrajectoryx′ =(n r)=rcos(θ θ)wearriveatthe p · − followingformofthequasiclassicalequations: G π/2 G= sh [1 R (θ )+R (θ )]cosθ dθ , (17) n 0 a 0 0 0 i~vF∂x′ +vF eA U +∆V =εU 2 Z−π/2 − − · c (cid:16)i~vF∂x′ +vF · ecA (cid:17)V +∆†U =εV, (12) wanhderAenRdrne(eθv0r)eflanecdtioRna(rθe0sp)eacrtievetlhye,θp0roibsatbhieliitniecsidoefntnaonrgmlea:l (cid:16) (cid:17) kF = kF(cosθ0,sinθ0), characterizing the propagation di- where the Fermi velocity is vF = n~kF/m. The pairing rection of quasiparticles, coming from the normal metal re- potentialinEq.(12)maygenerallybewrittenas gion. The Sharvin conductance G = k L /π equals the sh F y total number of propagatingmodes determinedby the chan- ∆(r,θ )=∆(θ )Ψ(r), (13) p p nelwidthL . y 5 TheproblemofquasiparticlescatteringattheN/Sinterface III. RESULTS isformulatedwithintheBdGtheory(11). Aninterfacialbar- rier separating the N and S regions can be modeled by re- To illustrate the basic effect of how the interplaybetween pulsivedeltafunctionpotentialW(x) = W0δ(x),parameter- theDoppler-shiftandthetime-reversalsymmetrybreakingof izedbya dimensionlessbarrierstrengthZ = W0/~vF. The the superconductingorder parameter is manifested, we con- boundaryconditionsattheN/Sinterfacethenread: sider a situation where an external magnetic field is applied nearthesurface ofthe superconductoralongthe ˆz-axis, thus [f(0)]=0, [∂xf(0)]=(2kFZ)f(0), (18) inducing a vector potential A in the superconductor which drivestheshieldingsupercurrent.Inordertoproceedanalyti- wheref =(u,v)and[f(x)]=f(x+0) f(x 0). cally,wemakethesimplifyingassumptionthatthesuperfluid − − Considering a zero-bias problem we will have to ana- velocityfieldisnearlyhomogeneousandthatthespatialvaria- lyze only zero-energy excitations with ε = 0. For wave tionofthesuperconductingorderparameterneartheinterface functions in S region corresponding to subgap quasiparti- issmall. Choosingarealgauge,wethenfindthattheRicatti- cles, the following representation can be used: (U,V) = functionsaandbinEq.(15)maybewrittenas:20,22 eζ ei(η+Φ)/2,e−i(η+Φ)/2 , where ζ = ζ(s,b) and η = η(s,b) are real-valued functions. Then, the quasiclassical a(θ)=s(θ)∆(θ), b(θ)=s(θ)∆∗(θ), (cid:0) (cid:1) equation(12)canbewrittenasfollows: s(θ)=1/[ω˜ (θ)+ (ω˜ (θ))2+ ∆(θ)2], (23) n n | | ∂x′η+2|∆|cosη+2ǫd =0, (19) whereω˜ndependsonθthrougphtheDoppler-shift.Toevaluate ∂x′ζ+2∆ sinη =0. the LDOS in Eq. (16) at the surface, we need to take into | | accountproperboundaryconditionsatx = 0. Assuming an where ǫd(r) = ~kFvs is a Doppler shift energy. For impenetrable surface with perfect reflection, these boundary wave functions decaying at the different ends of trajectory conditionsread: (U,V)(x′ = )=0fromEqs.(19)weobtain: ±∞ asurface(θ)=a(π θ), bsurface(θ)=b(θ). (24) − η(x′ = )= π/2. (20) InsertingthisintotheexpressionfortheLDOS,weobtain ±∞ ± Theboundaryconditions(18)modelthespecularlyreflect- 1 N(ε)=2Re 1. (25) ikng(Nco/Ssθin,tesrifnaθce,),coaunpdlikn′gth=ewkav[ceossw(πithwθav)e,vsienc(toπrskθF)=]. nD1+a(π−θ)b(θ)Eoıωn→ε+ıδ − F 0 0 F F 0 0 Thereforeiftheincidentelectronwaveis−ui =eikFr,th−enthe Theh...idenotesangularaveraging,whichwerestricttoan- gles π/2 θ π/2 due to the surface. It maybe shown reflectedelectronur andholevr waveswillhavetheform that −for a c≤hiral≤p-wave superconductor22, the zero-energy u =U eik′Fr, v =V eikFr, DOSatthesurfacereads r r r r ~k v N(0)=1+ F sy +..., (26) whereUr andVr aretheenvelopefunctions.Thus,eachpoint ∆0 (0,y)attheN/Sinterfaceliesontheintersectionoftwoqua- siclassical trajectories, characterized by the angles θ = θ whileforpures-ord-wavesuperconductorsonefinds p 0 and θ = π θ . Let us denote the distribution of phases η(x′)palong t−hese0 trajectories as η (x′) and η (x′) corre- N(0)=C1+C2vs2y +..., (27) + − spondingly.Usingtheboundaryconditionsweobtainthefol- whereC andC arearbitraryconstants. Fromnumericalin- lowingexpressionfortheconductance40: 1 2 vestigationsofEq.(25)atε=0,wefindthatthezero-energy DOSmayquitegenerallybewrittenas N Ly/2 π/2 G= 0 g(y,θ )cosθ dθ dy, (21) 0 0 0 N(0)=C +C v +..., (28) 2 1 2 sy Z−Ly/2Z−π/2 wheneverthesuperconductingorderparametersi)breaktime- whereg(y,θ )isgivenby 0 reversal symmetry and ii) support the presence of subgap surface-bound states. This is the case both for the p +ıp - 2 x y g(y,θ0)= (Z˜4+Z˜2)1 eiρ 2+1, (22) wwaevlleapsatihriengd+wısh-iwchavisebaenldiedve+dtıod-bwearveealpizaeirdinignsStrh2aRtuaOre4r,eals- | − | evant for the cuprates. In particular, tunneling spectroscopy withZ˜ =Z/cosθ andρ(y,θ )=η η isdeterminedby measurements have indicated the presence of such a time- 0 0 − + a difference of phases η (x′) and η (−x′) at the intersection reversalsymmetrybreakingorderparameternearsurfacesby − + point (0,y). To evaluate the conductance, one needs to find a split zero-bias conductance peak that was observed in the the factor eiρ in Eq.(22) and then the reflection probabilities absenceofanexternalfieldinseveralexperiments.10. bysolvingnumericallyEq.(19)withtheboundaryconditions InRef.35,itwaspointedoutthattheneglectofthegradient inEq. (20). termintheEilenbergerequationisexpectedtobeareasonable 6 approximationaslongastheDoppler-shiftenergymv v F s · issmallcomparedtothelocalgapenergy∆(θ). Thisapprox- imationwouldthenfailclosetothevortexcoreorgapnodes of∆(θ). Nevertheless,inthemodelcaseofspatiallyhomoge- neousgap function and superfluid velocity field the gradient terms in Eilenbergerequationcan be neglected in the whole rangeofDopplershiftenergies.Howeverconsideringamodel situationtheabovediscussionneverthelessservestoillustrate ourmainqualitativeargument:namely,thatchirality-sensitive effectsshouldbeexpectedinsuperconductorswithorderpa- rametersthati)breaktime-reversalsymmetryandii)support thepresenceofsubgapsurface-boundstates. Wenowproceed todiscussthecasesofp +ıp -waveandd+ıs(d)-wavepair- x y inginmoredetail,sincethesearerelevanttoactualmaterials. A. Surfacestatesinp+ipandd+is(d)superconductors undertheinfluenceofmagneticfield. In Fig.3, we show numerical plots of the surface LDOS at the Fermi level given by Eq.(25) for the chiral p-wave (Fig.3a),d+is-wave(Fig.3b)andd+id-wave(Fig.3c)cases inawidedomainofsuperfluidvelocities.Thestructureofgap functionsischosenintheformofEqs. (1)-(3)andtheparam- etercharacterizinginelasticscatteringinEq.(16)ischosenas δ = 0.1∆ . Weintroducethefollowingnotationsforthedif- 0 ferentcriticalvelocities: v = ∆ /(~k ),v = ∆ /(~k ) FIG.3: Plotofthenormalizedzero-energyLDOSN(0)for(a)p- c 0 F cs s F andvcd = ∆d /(~kF). | | wavesuperconductor with χ = 1, (b) d+ıs-wavecase with∆s = As seen,| the| surface LDOS has sharp peaks at a certain 0.4∆0 and(c)d+ıd-wavecasewith∆d = 0.4∆0. Dashedlinesare value of the superfluid velocity in all cases. We will show guides for eyes: thevertical ones denote positions of LDOSpeaks and horizontal ones correspond to the level of normal metal DOS below that peaked structure of LDOS is provided by bound surfacestates. AnothercontributiontotheLDOScomesfrom N0. thedelocalizedstatescorrespondingtothecontinuouspartof QP spectrum. A delocalized state with zero energy ε = 0 bythesuperfluidvelocity,isgivenby existsprovided(i) v > v incaseofchiralp-wavesuper- sy c | | conductor, (ii) |vsy| > vcs and (iii) |vsy| > vcd in case of εa =χ∆0ky/kF +~vsyky (29) d + is-wave and d + id-wave superconductors correspond- ingly.Condition(i)isunlikelytoberealizedbecauseitmeans forthep-wavecase, that the superfluid velocity is larger than the critical depair- ing value. Conditions (ii) and (iii) can be realized, because εa =∆ssgn(ky)+~vsyky (30) thevaluesv andv canbewellbelowthecriticaldepairing cs cd ford+is-wavecaseand velocity if the amplitude of additionalorder parameter com- ponentsissmallenough. ε =∆ sgn(k )cos(2θ )+~v k (31) a d y p sy y ToanalyzethecontributiontoLDOSprovidedbythebound surface states we will consider the domain of low energies for d + id-wave case. Consequently, the contribution from ε ∆0. Byneglectingsmalldeviationsoftheelectronand Andreevboundstatestothezero-energyLDOSatthesurface | |≪ hole momentum, the normalizedwave functionof QP local- ofachiralp-wavesuperconductorisgivenby izedneartheboundarycanbewrittenas 1 N =N , a 0 u = 1 2 eikyysin(k x)e−x/(ξ˜cosθp), |vsy/vc+χ| (cid:16)v(cid:17) (cid:18)i(cid:19)sξ˜|cosθp| x where N0 = m/(2π~2) is the normal metal LDOS per one spin direction. For a chiral d + is superconductor, the be- where(k ,k ) = k (cosθ ,sinθ ). Thiswavefunctionde- x y F p p haviour of the LDOS is more complicated. Assuming that cay in the superconductingside x > 0 at a characteristiclo- ∆ > 0, we obtain that the LDOS is zero for v > calizationscaleξ˜isgivenbyξ˜= ~vF/∆0 forchiralp-wave ∆s /~k . Otherwise,itisgivenby sy and ξ˜ = ~v /∆ sin(2θ ) for d + is- and d + id- wave − s F F 0 p superconductor|correspondin|glywithgapfunctionsgivenby vcsvc N =4N . Eqs.(2,3). ThespectrumoftheAndreevboundstates,shifted a 0 v2 sy 7 Onthecontrary,forthed+idcasetheLDOSiszeroifvsy > 1. p+ipwave ∆ /(~k )(for∆ >0)andotherwiseitisgivenby d F d In Fig.4 we show the LDOS profile near the surface of a chiralp-wavesuperconductorinthepresenceofasinglevor- ∆ v N =N 0 1+ cd . tex,positionedatsomedistanceafromthesurface.Whenthe a 0 |∆d| vs2y +8vc2d vortex is positioned far from the surface a ≥ 2ξ the LDOS  q  profilefollowsthebehaviour,expectedfromthepictureoflo- calDopplershift22. Dependingontherelativevalueofvortic- ItcanbeseenthatthesecontributionstoLDOShavepeaks ityandchirality,thesurfaceLDOSiseitherincreased(Fig.4a) at v = v for p-wave case. For d+is-wave and d+id- sy c ordecreased(Fig.4b). Ananalyticalestimatewiththehelpof wave superconductors the peaks are positioned at v = sy spectrum Eq. (33) yields a following estimation of the am- sgn(∆ )v andv =sgn(∆ )v correspondingly.Even t−houghthse pcossitionsoyfthe peaksdarecddifferent,the dependen- plitudeofLDOSpeakin Fig.4a: ∆N/N0 = (1+Mχa)−1. Atsmallerdistancesa 2ξ,thebehaviourofLDOSchanges ciesofthesurfaceLDOSonthesuperfluidvelocity(andcon- ≤ drastically. Inthecaseofoppositevorticityandchirality,the sequently on magnetic field) are very similar for d+is and surface LDOS grows at a 2ξ, obviously due to the over- d+id-wavesuperconductors.Therefore,itmightbedifficult ≤ lappingwith the peakof vortexcore states. In case of equal todistinguishwhichcaseisrealizedexperimentally. vorticityandchiralitythesameoverlappingoccurs,butonthe Ontheotherhandtheconsideredmodelwithaspatiallyho- contraryit leads to reductionof DOS, as it was discussed in mogeneousgapfunctionΨ(r)=1isadequateonlywhenthe Sec. I. The peak of the LDOS at the surface discussed in applied magnetic field is not too large. When the magnetic Ref.22transformsintoadip-and-peakstructureasthevortex field is large enough,it breaksthe Meissner state and gener- comesclosetothesurface. ates vortices near the surface of superconductor. Therefore, we investigate the influence of vortices on the LDOS distri- butionneara superconductingsurfaceas wellasonthe con- ductanceofnormalmetal/superconductingjunctions.Wewill showthatvorticeshavedifferenteffectontheconductancein d+isandd+idcases. B. Interplayofvortexandsurfacestatesinchiral superconductors. A chirality sensitive LDOS transformationdue to vortices situated near the surface of a chiral p-wave superconductor wasconsideredinRef.22. Itwasshownthatdependingonthe chiralityandvorticityvalue, thesurfaceLDOSneariseither enhancedorsuppressedupondecreasingthedistancefromthe vortextothesurface.Incaseofd+is(d)superconductorsthe transformationofLDOSprofileisalsosensitivetothevalueof FIG. 4: (Color online) Plot of the normalized zero-energy LDOS vorticity. Similarbehaviourisexpectedforaconductanceof N(0)inthepresenceofavortexnearthesurfaceofachiralp-wave normalmetal/chiralsuperconductorjunctioninthepresence superconductor. (a)and(c)correspondtoequalvorticityandchiral- ofvortices. ity, (b) and (d) correspond to opposite vorticity and chirality. The ToinvestigatetheinfluenceofasinglevortexontheLDOS distance from vortex to the surface is a = 2ξ for (a) and (b) and profileandconductance,weassumethatatx > 0(supercon- a=ξfor(c)and(d). ductingregion)thecoordinatedependenceoftheorderparam- etermaybewrittenasfollows: This is illustrated in Fig.5(a), where we plot the LDOS at thesurfacepoint(0,0),whichisthenearestpointtothevortex Ψ(r)=eiΦ. (32) inFig.4. Atlargedistancesa ξ theLDOSisamonotonic ≫ function of a, either increasing or decreasing depending on Here, we considera modelsituationwherethemagnitudeof the relation between vorticity and chirality. At smaller dis- the orderparameteris constant. Thephase distributionΦ(r) tancesa 2ξ,theextremumofLDOSappears.Inthecaseof ≤ consists of a singular part Φ (r) = arg(r r ) and a reg- oppositevorticityand chirality[lower curvein Fig.5(a)], the v v − ularpartΦ (r), determinedbytheparticularmetastablevor- surfaceLDOSgrowsata 2ξ, dueto theoverlappingwith r ≤ tex lattice configurationrealizing near the boundary. We as- the peakof vortexcore states. In case ofequalvorticityand sumethattheregularpartofthephasedistributionisΦ (r)= chirality[uppercurveinFig.5(a)]thesameoverlappingleads r arg(r rav)correspondingtotheimagevortexsituatedat toreductionofLDOS. − − thepointrav =( 2a,0,0)behindtheN/Sinterface. To investigate the influence of vortices on the transport − 8 properties of normal metal/ chiral p- wave superconductor anoppositeeffectoccurs:oneobtainsaconductancesuppres- junction we solve the generic problem of the influence of a sioninsteadofenhancementandviceversa.Theoriginofthe single vortex near the N/S surface on the zero-bias conduc- conductanceextremumisatunnelingofquasiparticlesintothe tance of the junction. A numerical plot of the conductance vortexcorestates,orinotherwords,theoverlappingofvortex G as a functionof a distance of vortex to the junction inter- andsurface boundstates. ComparingFigs.5(a) and 5(b)one face is shownbythe solid linesin Fig.5(b)forequal(upper canseethattheconductanceingeneralfollowsthebehaviour curve)andopposite(lowercurve)valuesofchiralityandvor- ofthesurfaceDOS. ticity. TheconductanceisnormalizedtothevalueofSharvin conductanceG =k L /π. sh F y 2. d+isandd+idwave. Inchirald+isandd+idsuperconductorstheLDOStrans- formationappearstoalsobevorticitysensitive. IntheFig.6 FIG.5: (a) Plotofthenormalizedzero-energy LDOSatthepoint onthesurfacewhichisclosesttothevortexcore. Differentcurves correspondtodifferentvorticities.(b)Plotofthevortex-inducedcon- ductanceinchiralp+ip-wavesuperconductorforequalandopposite valuesofvorticityandchirality. Thestrengthofinterfacebarrieris Z =5.LargedistancesasymptoticsforN andGareshownbydash lines. At large distances a ξ an analyticalestimation of con- ≫ ductance can be obtained by using a local Doppler shift ap- proximationonthequasiparticlespectrum. Indeed,themodi- ficationofthesurfacestatesenergyduetoasupercurrentflow- ingalongtheboundaryofsuperconductorcanbewrittenas FIG.6:(Coloronline)Plotofthenormalizedzero-energyLDOSpro- ε (χ∆ +~v k )k /k , (33) fileN(0)inthepresenceofvortexnearthesurfaceofchirald+is- a 0 sy F y F ≈ wavesuperconductor with∆s = 0.2∆0. (a),(c) and (b),(d) corre- spond to different vortex orientations with respect to z axis. The where k is a quasiparticle momentum along the surface, χ= 1yisachiralityvalueandv =(M~/m)a/(y2+a2)is distance from vortex to the surface is a = 4ξ for (a) and (b) and ± sy a=2ξfor(c)and(d). aprojectiononthesurfaceplaneofsuperfluidvelocitygener- atedbythevortexandimageantivortex,M isvorticityvalue we show the profile of zero-energy LDOS in the case when and m is the electronmass. Itfollows fromEq.(33) that the thevortexisplacedatadistanceofa=2ξfromaflatbound- Dopplershifteffectleadstoachangeintheslopeofanoma- ary of a d+is-wave superconductorcharacterized by a gap lousbranch. Itiseasytoobtainthatinthiscasethefunction functioninmomentumspacegivenbyEq.(2). Inthissection, g(y,θ )inexpressionEq.(22)takesthefollowingform: 0 weusethenotationξ =~v /∆ . F 0 2 OnecanseethatforonesignofvorticitythesurfaceLDOS g(y,θ0)= 4(Z˜4+Z˜2)(ε /∆ )2+1. (34) showstwopeakswhicharesymmetricwithrespecttothevor- a 0 tex position. As we have shown above, the large peaks in surfaceLDOSappearwhentheenergycoincideswiththepo- Thestraightforwardintegrationin Eq.(21)yieldsG = G + 0 δG,whereG =G (π/Z2)istheconductancewithoutvor- sitionofboundstatelevel.Foradifferentsignofthevorticity, 0 sh there are no surface states at the Fermi level and the LDOS texand alongthesurfaceisaflatfunction.Anon-zerolevelofLDOS 2πξ inthiscase isprovidedbyinelasticscatteringwhichleadsto δG/G = arctan(L /2a) (35) sh ±Z2L y thesmearingtheQPenergylevels. ApplyingalocalDoppler y shiftapproach,whichholdsifthedistancefromvortextosur- isavortex-inducedconductanceshift,wheretheupper(lower) faceisratherlarge(a ξ)onecaninterprettheresultsshown ≫ signcorrespondstoequal(opposite)vorticityandchirality. inFig.(6). At distancessmaller than 2ξ, an extremumof the conduc- The coordinates y∗ of surface LDOS peaks can be es- tanceappears. Uponplacingthevortexclosertothesurface, timated from the relation v = ∆ /p , where v = sy s F sy 9 tivelydifferentforsandd-wavesymmetryoftheadditional gapfunctioncomponent. Ford+is-wave, theconductance has a sharp peak for one vortex orientation (upper curve in Fig.8a)anditisa flatfunctionofa foranothervortexorien- tation(lowercurveinFig.8a). Theoriginoftheconductance enhancement is a formation of Andreev bound states at the Fermilevelwhicharelocalizednearthesuperconductingsur- face. AswasdiscussedintheIntroduction(seetheFig. 1b), the zero-energyAndreev bound states can appear only for a certain direction of superfluidvelocity flowing along the su- perconductingsurfaceandifthevalueofthesuperfluidveloc- ity is larger than a critical value v > ∆ /(~k ). For a sy s F | | | | highinterfacebarrierZ 1applyinganapproximateanalyt- ≫ icalexpression(35) we find thata sharp increaseof conduc- tanceinFig.8acanbedescribedbythefollowingexpression 16π ξ ∆ a 3/2 G/G = 0 1 +λZ−4, sh 3Z2L ∆ − a∗ y s | |(cid:16) (cid:17) FIG.7:(Coloronline)Plotofthenormalizedzero-energyLDOSpro- wherea∗ =ξ(∆ /∆ )andλ 1. Otherwise,ifa>a∗the fileN(0)inthepresenceofvortexnearthesurfaceofchirald+id- 0 | s| ∼ conductanceismuchsmallersinceZ 1: wave superconductor with ∆d = 0.2∆0 (a),(c) and (b),(d) corre- ≫ spond to different vortex orientations with respect to z axis. The 2 ∆ 4 distance from vortex to the surface is a = 4ξ for (a) and (b) and G/G 0 . sh ≈ ∆ 3Z4 a=2ξfor(c)and(d). (cid:18) s(cid:19) Whenthe distancea isdecreasedfurther,theconductanceis suppressed (see Fig.8a, upper curve). The decrease of con- (M~/m)a/(y2 + a2) is a projection on the surface plane ductancecanbeattributedtothegapattheFermilevelwhich of superfluid velocity generated by the vortex with vortic- appearsdue to the interactionof vortex and surface states in ity M and image antivortex. It can be seen that for a > a similar way as for the p+ip- wave case discussed in the ξ(∆ /∆ ) the peak is situated at y∗ = 0 i.e. at the 0 s previoussection. | | surface point nearest to the vortex. Otherwise, we obtain In a d + id-wave superconductor, zero-energy Andreev y∗ = a 1 (a/ξ)(∆s /∆0). Comparing this estima- bound states may exist even in the absence of vortex. An ± − | | tion with the numerical results in Fig.6, one observes a mi- asymptoticvalueoftheconductanceG ata ξ canbeob- nor differepnce. For example, it follows from the estimation tainedusingtheexpression(35)asfollo0ws ≫ thattheLDOSpeaksshouldbepositionedaty∗ = 2.4ξfor T∆hsis=dis0c.r2e∆pa0n,cbyuctainnbFeiga.t6trtihbueytedarteoltohceacteodmaptleyx∗s=h±ift±o2f.t0hξe. G0/Gsh =(cid:18)|∆∆d0|(cid:19)2√π2Z2. energyε ε+iδ due to the effectivescattering parameter → Whenthevortexapproachesthesuperconductingsurface,the δ = 0.1∆ whichwasusedinthenumericalcalculations. If 0 conductance is either suppressed (lower curve in Fig.8b) or weincreasethedistancefromvortextosurfacea, theLDOS slightlyenhanced(uppercurveinFig.8b).Thisbehaviourcan peakswillmergewhena>ξ(∆ /∆ )(seeFig.6). 0 | s| be understoodby again using the Eqs.(35) with the Doppler In Fig.7, we show the LDOS profile modulated by a vor- shifted spectrum of Andreev boundstates (6). The decrease tex placed at a distance of a = 2ξ from a flat boundary (increase) of conductance corresponds to the transformation of d + id superconductor. The structure of the gap func- of spectrum shown qualitatively in Fig.1c by dash (dash- tion was chosen in the form (3). Applying the approach dotted)lines. Itispossibletoobtainananalyticalexpression based on the local Doppler shift we obtain the similar ex- forthevortex-inducedconductanceshiftata ξ inthefol- pression for the coordinates of the peaks of surface LDOS: ≫ lowingform: y∗ = a 1 (a/ξ)(∆ /∆ ). Fortheparticularvaluesof d 0 ± − | | pyica∗arla=mple±otte2rpi.ns4ξ∆F,idwg.h7=icyh0∗.i2s∆m0uac4nhξd.leasTsh=tihsa2dnξisotchbritesapieansnetcdimyfracotaimnonanlyusimoelebdres- δG/Gsh =±2Zπ2 (cid:18)∆∆0d(cid:19)2 Lξy arctan(cid:18)L2ay(cid:19), ≈ ± attributed to the effect of inelastic scattering, which appears where the upper and lover signs correspond to the different tohavealargereffectind+id-wavecasethanindiscussed vortexorientations. Asthevortexapproachesthesurfacefur- aboved+is-wavecase. ther,thereappearsanextremumoftheconductance.Suchbe- AnumericalplotoftheN/Sjunctionconductanceasafunc- haviourcanbeexplainedbyaconductanceenhancementdue tionofdistancefromvortextosurfaceisshowninFig.8forthe tothetunnelingofQPintothevortexcorestates,discussedin d+isandd+idcases. Theconductanceisnormalizedtothe Ref.40. AsharpdecreaseoftheuppercurveinFig.8bcanbe SharvinconductanceG =k L /π. ComparingFig.8aand attributedto the openingof an energygapat the Fermilevel sh F y Fig.8bonecanseethattheconductancebehaviourisqualita- duetotheinteractionofvortexandsurfacestates. 10 erablequalitativemodificationofboththetunnelingconduc- tanceandtheLDOS.Whenthevortexislocatedatdistances wellaboveacoherencelengthξfromthesurface,theDoppler- shift produces an enhancement or suppression of the LDOS dependingontherelativesignofthevorticityandthechirality ofthesuperconductingOP.Thiseffectmaybedirectlyprobed byfirstapplyinganexternalmagneticfieldinadirectionwhile measuringtheLDOSandthenreversingthefielddirectionand measuringagain.Whenthevortexislocatedveryclosetothe surface(a distanceoforderξ orsmaller),thereisan overlap betweenthevortexandsurfacestateswhicheffectivelycause a dramatic change in the tunneling conductance and LDOS. FIG.8: Plotsofthevortex-inducedconductanceincaseof(a)chiral This effectis also sensitive to the relative sign of the vortic- d+issuperconductorfor∆s=0.2∆0and(b)d+idsuperconductor ity and the chirality of the superconductingOP. The overlap for∆d =0.2∆0. ThestrengthofinterfacebarrierisZ =5.Differ- between these two sets of states results in either a strongly entcurvesoneachplotscorrespond todifferentvortexorientations enhancedorsuppressedtunnelingconductance/LDOSatzero withrespecttothez-axis. biasvoltage/zeroenergy. We have demonstrated the aforementioned effects both IV. SUMMARY qualitativelyandquantitativelyforp+ip-,d+is-,andd+id- wavesymmetries. Experimentally,thedistancefromthesur- In summary, we have investigatedhow the tunneling con- facetotheclosestvortexcanbealteredbymodifyingthefield ductanceandthelocaldensityofstates(LDOS)insupercon- strength. Allofourpredictionsshouldbepossibletotestex- ductorsare affectedbytheinfluenceof anexternalmagnetic perimentallywithpresent-daytechniques. field when the superconductingorderparameter(OP) breaks V. ACKNOWLEDGMENTS time-reversal symmetry (TRS). This is directly relevant for bothSr RuO ,wherechiralp+ip-wavepairingisbelievedto 2 4 berealized, andforthehigh-T cuprates,wherea d+is-or M.S. is grateful to Alexander S. Mel’nikov for numer- c d + id-wave OP has been suggested to exist near surfaces. ous stimulating discussions. This work was supported, in In addition to breaking TRS, all of these OPs feature sur- part,byRussianFoundationforBasicResearch,byProgram face bound zero-energy states at surfaces under appropriate ”Quantum Macrophysics” of RAS, and by Russian Science circumstances(e.g.adominantd-waveOPinthed+is-wave Support and ”Dynasty” Foundations. J.L. and A.S. were case). supported by the Norwegian Research Council Grant Nos. We have shown how the Doppler-shift conspires with an 158518/431, 158547/431, (NANOMAT), and 167498/V30 interaction of vortex and surface states to produce a consid- (STORFORSK).T.Y.acknowledgessupportbyJSPS. 1 Y.Maeno,H.Hashimoto,K.Yoshida,S.Nishizaki,T.Fujita,J.G. Jpn.67,1118(1998);Phys.Rev.B60,9817(1999). Bednorz, andF.Lichtenberg, Nature(London) 372, 532(1994); 10 M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. J. Zhu, and C. A. Mirkin, Phys. Rev. Lett. 79, 277 (1997); A. Mori, and Y. Maeno, Nature (London) 396, 658 (1998); G. M. Biswas, P. Fournier, M. M. Qazilbash, V. N. Smolyaninova, H. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Balci,andR.L.Greene, Phys.Rev. Lett.88, 207004 (2002); Y. Nachumi,Y.J.Uemura,Y.Maeno,Z.Q.Mao,Y.Mori,H.Naka- DaganandG.Deutscher,Phys.Rev.Lett.87,177004(2001).A. mura, and M. Sigrist, Nature (London) 394, 558 (1998); A. P. Sharoni, O.Millo, A.Kohen, Y. Dagan, R.Beck, G.Deutscher, Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003); K. andG.Koren,Phys.Rev.B65,134526(2002);A.Kohen,G.Lei- D.Nelson,Z.Q.Mao,Y.Maeno,andY.Liu,Science306,1151 bovitch, and G. Deutscher, Phys. Rev. Lett. 90, 207005 (2003); (2004);Y.Asano,Y.Tanaka,M.Sigrist,andS.Kashiwaya,Phys. M.Aprili,E.Badica,andL.H.Greene,Phys.Rev.Lett.83,4630 Rev.B67,184505(2003);Phys.Rev.B71,214501(2005). (1999); R. Krupke and G. Deutscher, Phys. Rev. Lett. 83, 4634 2 L.J.Buchholtz,M.Palumbo,D.Rainer,andJ.A.Sauls,J.Low (1999). Temp.Phys.101,1079(1995). 11 M.FranzandZ.Tesanovic,Phys.Rev.Lett.,80,4763(1998). 3 M.MatsumotoandH.Shiba,J.Phys.Soc.Jpn.64,3384(1995). 12 C.R.Hu,Phys.Rev.Lett.72,1526(1994). 4 K.KubokiandM.Sigrist,J.Phys.Soc.Jpn.65,361(1996). 13 J.YangandC.-R.Hu,Phys.Rev.B50,16766(1994). 5 M.Sigrist,Prog.Theor.Phys.99,899(1998). 14 Y.TanakaandS.Kashiwaya,Phys.Rev.Lett.74,3451(1995);S. 6 L.J.Buchholtz,M.Palumbo,D.Rainer,andJ.A.Sauls,J.Low KashiwayaandY.Tanaka,Rep.Prog.Phys.631641(2000). Temp.Phys.101,1099(1995). 15 L.Alff,S.Kleefisch,U.Schoop,M.Zittartz,T.Kemen,T.Bauch, 7 M.MatsumotoandH.Shiba,J.Phys.Soc.Jpn.64,4867(1995). A.Marx,andR.Gross,Eur.Phys.J.B5,423(1998);H.Walter, 8 M. Fogelstrom, D. Rainer, and J. A. Sauls, Phys. Rev. Lett. 79, W.Prusseit, R.Semerad, H.Kinder, W.Assmann, H.Huber, H. 281(1997). Burkhardt, D.Rainer,andJ.A.Sauls,Phys.Rev.Lett.80, 3598 9 Y.Tanuma,Y.Tanaka,M.Ogata,andS.Kashiwaya,J.Phys.Soc. (1998); Yu.S.Barash, M.S.Kalenkov, and J.Kurkijarvi, Phys.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.