ebook img

Tuning of the strange quark mass with optimal reweighting PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tuning of the strange quark mass with optimal reweighting

Tuning of the strange quark mass with optimal reweighting 5 1 0 2 Björn Leder∗, Jacob Finkenrath n DepartmentofPhysics,BergischeUniversitätWuppertal a Gaussstr.20,42119Wuppertal,Germany J E-mail: [email protected] 6 2 Quark mass reweighting can be used to tune the mass of dynamical quarks. The basic idea is ] t tousegaugefieldensemblesgeneratedatsomebaremassparameterstoevaluateobservablesat a l different bare sea quark masses. This involves the computation of so called reweighing factors - p whicharegivenasratiosoffermiondeterminants.Inthecaseofsimulationsincludingthestrange e quark,reweightingcanbeusedtoimprovetheapproachtowardsphysicalquarkmasses. Optimal h [ reweightingstrategiescombineachangeofthestrangequarkmasswithachangeofthelightquark massesinordertominimizethefluctuationsofthereweightingfactor. Wepresentnumericaltest 1 v ofsuchstrategiesforrecentCLS2simulationsandasoftwarepackageformassreweightingbased 7 onopenQCD. 1 6 WUP15-01 6 0 . 1 0 5 1 : v i X r a The32ndInternationalSymposiumonLatticeFieldTheory, 23-28June,2014 ColumbiaUniversityNewYork,NY ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder 1. Whymassreweighting? Lattice QCD simulations proceed to generate ensembles at small lattice spacings and light quark masses close to or at their physical values. This is possible because of the algorithmic im- provementsofthelastdecade. Nevertheless,thecosttogenerateindependentgaugeconfigurations grows,particularlysobecauseofthegrowingautocorrelationtimeswhenthelatticespacingislow- ered[1]. Theproblemisfurtheraggravatedbytheinclusionofaseastrangequark,whichleadsto anenlargedmasstuningproblem(seeforexample[2]). In such a situation it might be more cost efficient to change the masses of a given ensemble using reweighting instead of generating a new one. This is because although reweighting is ex- pensiveitonlyhastobedoneforindependentgaugeconfigurationsandthereforeitscostdoesnot increase with the autocorrelation times. Also the naively expected linear scaling with the volume mightbemuchmilderinreality[3,4]. ReweightingsimplymeanschangingtheprobabilityP (U)(“weight”)ofeachgaugeconfigu- a rationU intheexpectationvalue 1 (cid:90) nf (cid:104)O(cid:105) = D[U]P (U)O(U), P (U)=e−Sg(β,U)∏det(D(U)+m +iγ µ). (1.1) a Z a a i 5 i a i=1 Here we assume n quark flavors with (possibly degenerate) bare masses m and twisted masses f i (cid:82) µ, the gauge action S only depends on β and normalization D[U]P(U)/Z ≡1. The subscript i g on the expectation value and the probability distribution specifies the bare parameter set a = {β,m ,m ,...,m ,µ ,...,µ }. Nowanobservableatbareparametersetb={β(cid:48),m(cid:48),m(cid:48),...,m(cid:48) , 1 2 nf 1 nf 1 2 nf µ(cid:48),...,µ(cid:48) }isobtainedfrom 1 nf (cid:104)OW(cid:105) P (cid:104)O(cid:105) = a, W = b. (1.2) b (cid:104)W(cid:105) P a a If one restricts oneself to changes in the masses (hence β(cid:48) =β), as we do here, the reweighting factorW canbewrittenas 1 nf D+m +iγ µ W = , A=∏ i 5 i . (1.3) det(A) D+m(cid:48)+iγ µ(cid:48) i=1 i 5 i Thenextsectionspecifiesthestochasticestimatorusedforthedeterminantin(1.3). Insection 3 follows a summary of the properties of three important cases of mass reweighting. From these properties an optimal strategy for the tuning of the strange quark mass is derived in section 4. Section 5 briefly describes a publicly available implementation of this strategy and in section 6 numericaltestsandcostestimatesarepresented. 2. Fluctuations Thenumericalestimationofreweightingfactorsoftheform(1.3)usestheMonte-Carloeval- uationofanintegralrepresentationofthedeterminantofacomplexmatrix[5,6] N W (A)= 1 ∑η e−η(k)†(A−I)η(k), (2.1) N η N η k=1 2 Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder with N Gaussian distributed random vectors η(i) and W →W for N →∞ if λ(A+A†)>0 η Nη η [5,6]. LetusassumeAcanbewrittenasA=I+εBwithε||B||(cid:28)1. Thenthestochasticerrorof thisestimatormaybeexpanded 1 δ2(A)=var (W )/(N |W|2)= [ε2Tr(BB†)+O(ε3)]. (2.2) η η Nη η N η A similar expansion is obtained for the fluctuations of the reweighting factor in the expectation value(1.1) σ2 =var (W)/(cid:104)W(cid:105)2=ε2var (Tr(B))+O(ε3). (2.3) U U U It has been noticed that the stochastic estimator (2.1) may be plagued by large fluctuations and/or long tails in the distribution. The reason is that its variance may not be defined even if the meanis,i.e.,thevarianceisonlydefinedforλ(A+A†)>1[7]. Therehavebeenseveralattempts tocontrolthevariance[8,9,10]. HereweuseafactorizationofthedeterminantinN factorswith ε(cid:48) ∝ε/N [5, 6]. Since the factorization has been described thoroughly elsewhere and for better readability we skip the details here and stick to the formulas with N =1. The generalization is straightforward. 3. Massreweightingfactors 3.1 Oneflavor The simplest case of mass reweighting is the change of the mass of one quark flavor of mass m to mass m +∆m. Using the shorthand D =D+m, the corresponding reweighting factor is s s m (µ =0) s det(D ) 1 W (m ,∆m)= ms+∆m = , A =I−∆mD−1 , (3.1) 1f s det(Dms) det(A1f) 1f ms+∆m andthestochasticerrorandthefluctuationsscale(asymptotically)with∆m2. 3.2 Twoflavors Now we consider the simultaneous change of the mass of two quark flavors s and l. Without loss of generality we assume m ≤m and a change m →m −γ∆m while m →m +∆m. The l s l l s s correspondingreweightingfactoris(µ =µ =0) s l det(D D ) 1 γ∆m+γD −D W(γ)(m ,m ,∆m)= ml−γ∆m ms+∆m = , A =I+∆m ms ml , (3.2) 2f l s det(D D ) det(A ) 2f D D ml ms 2f ms+∆m ml−γ∆m and the stochastic error and the fluctuations scale (asymptotically) with ∆m2. However, if m = l m =m and γ =1 one finds A =I+∆m2(D2 −∆m2)−1 and a scaling ∝ ∆m4 (see the isospin s 2f m reweighting in [6, 4]). In this case the noise and the fluctuations of decreasing the mass of one quarkarecompensatedbyincreasingthemassofthesecondone. Forγ =0thereweightingfactor (0) reduces to the one flavor case: W (m ,m ,∆m) =W (m ,∆m). Therefore, in the general case 2f l s 1f s m <m , an optimal 0≤γ∗ ≤1 may be found that minimizes the fluctuations ofW(γ). With light l s 2f quarksaroundthestrangequarkmassanoptimalvalueofγ∗≈0.82wasfound[5]. Ageneralizationofeq.(3.2)forfiniteµ and/orµ isstraightforward. Notethat,ingeneral,in s l thiscasethereweighingfactoriscomplex. 3 Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder (m,µ) (i) (ii) (iii) (iv) up (m ,0) →(m ,µ) →(m −γ∆m,µ) →(m −γ∆m,0) l l l l down (m ,0) →(m ,−µ) →(m −γ∆m,−µ) →(m −γ∆m,0) l l l l strange (m ,0) →(m +∆m,0) →(m +2∆m,0) s s s type tm(sec. 3.3) 2f(sec. 3.2) 2f(sec. 3.2) tm(sec. 3.3) Table1: Optimalreweightingstrategyforstrangequarkmassreweighting. 3.3 Twistedmassreweighting Twisted mass reweighting was introduced [3] and implemented [11] in order to stabilize the HMC at small quark masses. In the context of mass reweighting it can be used to ensure the convergence of the stochastic estimator (2.1) [5]. For a doublet of quarks of mass m =m =m 1 2 and µ =µ =−µ thecorrespondingreweightingfactoris 1 2 det(D D† +µ(cid:48)2) 1 µ2−µ(cid:48)2 W (m,µ,µ(cid:48))= m m = , A =I+ , (3.3) tm det(DmD†m+µ2) det(Atm) tm DmD†m+µ(cid:48)2 where we used (D +iγ µ)† =γ (D −iγ µ)γ . The stochastic error and the fluctuations scale m 5 5 m 5 5 (asymptotically)with(µ2−µ(cid:48)2)2. 4. Optimalstrangequarkmassreweighting As pointed out in the introduction, in a n =2+1 simulation with up, down, strange quark f masses{m ,m ,m }itmightbenecessarytotunethestrangequarkmassofanensembleinorder l l s toimprovetheapproachtothephysicalpoint. Wehaveseeninsection3thatitisadvantageousto combinethechangeofthemassofonequarkwithanoppositechangeofanotherone. Furthermore, iflightquarksarereweighted,afinitetwistedmassservesasasafeguardagainstzerocrossingsof small eigenvalues. Taken together, these lessons lead us to propose the following reweighting strategy: (i) thelightquarksarereweightedtoafiniteµ, (ii) theupandthestrangequarkarereweightedtogetherinoppositedirections, (iii) thedownandthestrangequarkarereweightedtogetherbythesameamount, (iv) thelightquarksarereweightedtozerotwistedmass. ThefourstepsaresummarizedinTable1. Inthestochasticestimationthetwistedmassreweighting in step (i) and (iv) can be combined so that the total reweighting factor W can be written as a s productofthreefactors W =W W W ← (W ) (W ) (W ) , (4.1) s (ii) (iii) (i+iv) (ii) Nη (iii) Nη (i+iv) Nη andeachofthesefactorsisestimatedaccordingto(2.1). Thetotalchangeinthemassesis {m ,m ,m }→{m −γ∆m,m −γ∆m,m +2∆m}. l l s l l s 4 Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder Iftheensembleisgeneratedatfinite µ inthelightquarksector,asforexamplein[2],step(i) canbeomitted. Dependingonwhichkindoftwistedmassreweightingisusedintheproductionof theensemble,thelastfactoristhengivenby  Wtm(ml,0,µ)Wtm(ml−γ∆m,µ,0) none  W(i+iv)= Wtm(ml−γ∆m,µ,0) typeIin[11]. (4.2)  √  W (m ,µ, 2µ)W (m −γ∆m,µ,0) typeIIin[11] tm l tm l Thereweightingfactorsforstep(ii)and(iii)areexplicitlygivenby (γ) W =W (m ,m ,∆m), withµ =µ (4.3) (ii) 2f l s l (γ) W =W (m ,m +∆m,∆m), withµ =−µ, (4.4) (iii) 2f l s l andγ ≈γ∗. Asmentionedbeforefor µ (cid:54)=0thereweightingfactorW(γ) iscomplex. Butsincethe l 2f productW W ismanifestlyreal,thephasesofthetwofactorscancel. (ii) (iii) 5. Publiccodeformassreweighting Thenumericalresultspresentedinthenextsectionhavebeenobtainedwiththemrw-package [12], an extended version of the openQCD package [13]. Keeping the structure of openQCD the extension is implemented as a module (mrw). It provides a main program that reads in open- QCD style input files, documentation and sample input files. The mrw-package is publicly avail- able at https://github.com/bjoern-leder/mrw. In detail it adds the following features to openQCD: • oneflavormassandtwisted-massreweighting[5,6] • interpolation(factorization)fortwistedmassreweightingtypeIandII • factorizationwithnon-equidistantinterpolations[5,6] • isospinmassreweighting[5,6] • strangequarkmassreweightingofsection4 • severalcheckroutinesforallpartsofthenewmodule 6. Numericaltestandcost The optimal strange quark mass reweighting proposed in section 4 has been tested on two n =2+1 ensembles from the effort described in [2], see Table 2. While the first one is off the f quarkmasstrajectorydescribedinsection2.3of[2],thesecondonesitsonit.1 Thelatticespacing isapproximatedtoa=0.086fm[2]andthelatticesizeis64×323. 1Thistrajectoryisdefinedby∑imi=const. Notethatforγ (cid:54)=1theoptimalstrangequarkreweightingtakesthe ensembleoff,whereasforγ=1itwouldmovetheensemblealongthistrajectory. 5 Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder IDin[2] m [MeV] m [MeV] ∆m [MeV] γ µ π K s – 330(380) 450(430) -12 0.80 0.0 B105 280(200) 460(480) 12 0.80 0.001 Table 2: Ensembles used in the numerical test. In parentheses are the meson masses after reweighting. ∆m isthedifferenceoftherenormalizedstrangequarkmassesbeforeandafterthereweighting. Thefirst s ensemblewaspartofanexploratorystudyandisnotlistedin[2]. (cid:27)W2 =0:708(95) (cid:30)=(cid:25)=0:0050(67) 5 4 (cid:11) 3 W (cid:10) = W 2 1 0 0 50 100 150 200 250 300 350 MDU Figure1: StrangequarkreweightingfactorW forensembleB105. s InFigure1thereweightingfactorW (eq. (4.1))isplottedfortheensembleB105. Thephase s is also plotted and is compatible with zero as expected. The fluctuations of the reweighting are sizable, but the change in the meson masses is large: 5% (30%) for the kaon (pion). By using a smallervalueforγ thischangecanbemademorebalanced. Assumingascalingofthefluctuations ∝∆m2Vq/m the feasibility of such a reweighting at different parameters can be projected using l thefollowingformula (cid:18) ∆m (cid:19)2(cid:18)240MeV(cid:19)2 Vq σ2 =0.71 s , q=1/4...3/4. Ws 12MeV m (3.3fm)4q π where ∆m is the difference of the renormalized strange quark masses and m is the mean of the s π pionmassesbeforeandafterthereweighting,andV isthephysicalvolume[4]. Theuncertaintyin thevolumescalingiscurrentlyunderinvestigation. The cost for estimating the reweighting factors W , W , W is roughly independent of (ii) (iii) (i+iv) the ensemble parameters. It is fixed by demanding the stochastic noise to be much smaller than thefluctuations[5]. TheerrorbarsinFigure1indicatethestochasticerrorforeachconfiguration. The total number of Gaussian noise vectors was 48 for W and W , and 24 for W . Since (ii) (iii) (i+iv) thestochasticerrorislargeinFigure1thesenumbershavetobeincreasedinanapplicationofthe method. Thenumericalcostperconfiguration(corehours)is∼30%ofonetrajectoryoflength2MDU. ButsincetheautocorrelationtimesofobservablesτO aretypicallymuchlargerthanthis,reweight- 6 Tuningofthestrangequarkmasswithoptimalreweighting BjörnLeder ingisonlyneededeveryn=τO/2(cid:29)1trajectories,effectivelycuttingthecostto∼(30/n)%. 7. Outlook Inthefirstnumericaltestpresentedinthelastsectionavalueforγ∗isusedthatwasdetermined in another setup and at different quark masses. A dedicated tuning needs only a small number of configurations and has the potential to lower the fluctuations significantly. Furthermore the cost perconfigurationcanbereducedbycombiningthereweightingfactorsW ,W intooneestima- (ii) (iii) tor. Finally, the mrw-package will be upgraded to openQCD-1.4, including support for periodic boundaryconditions. Acknowledgements: ThisworkwasfundedbytheDeutscheForschungsgemeinschaft(DFG)in formofTransregionalCollaborativeResearchCentre55(SFB/TRR55). References [1] ALPHACollaboration,S.Schaefer,R.Sommer,andF.Virotta,Criticalslowingdownanderror analysisinlatticeQCDsimulations,Nucl.Phys.B845(2011)93–119,[arXiv:1009.5228]. [2] M.Bruno,D.Djukanovic,G.P.Engel,A.Francis,G.Herdoiza,etal.,SimulationofQCDwith N =2+1flavorsofnon-perturbativelyimprovedWilsonfermions,arXiv:1411.3982. f [3] M.LüscherandF.Palombi,Fluctuationsandreweightingofthequarkdeterminantonlargelattices, PoSLATTICE2008(2008)049,[arXiv:0810.0946]. [4] J.Finkenrath,B.Leder,andF.Knechtli,IsospinEffectsbyMassReweighting,PoSLATTICE2014 (2014)297. [5] J.Finkenrath,F.Knechtli,andB.Leder,OneflavormassreweightinginlatticeQCD,Nucl.Phys. B877(2013)441–456,[arXiv:1306.3962].Erratum: ibid.B887(2013)574. [6] B.Leder,J.Finkenrath,andF.Knechtli,Oneflavormassreweighting: foundations,PoS LATTICE2013(2014)035,[arXiv:1401.1079]. [7] A.HasenfratzandA.Alexandru,Improvingthepartialglobalstochasticmetropolisupdatefor dynamicalsmearedlinkfermions,Nucl.Phys.Proc.Suppl.119(2003)994–996, [hep-lat/0209071]. [8] M.Hasenbusch,SpeedingupthehybridMonteCarloalgorithmfordynamicalfermions,Phys.Lett. B519(2001)177–182,[hep-lat/0107019]. [9] A.HasenfratzandA.Alexandru,Evaluatingthefermionicdeterminantofdynamicalconfigurations, Phys.Rev.D65(2002)114506,[hep-lat/0203026]. [10] A.Hasenfratz,R.Hoffmann,andS.Schaefer,Reweightingtowardsthechirallimit,Phys.Rev.D78 (2008)014515,[arXiv:0805.2369]. [11] M.LüscherandS.Schaefer,LatticeQCDwithopenboundaryconditionsandtwisted-mass reweighting,Comput.Phys.Commun.184(2013)519–528,[arXiv:1206.2809]. [12] B.LederandJ.Finkenrath,mrw-Massandtwisted-massreweightingbasedonopenQCD, https://github.com/bjoern-leder/mrw. [13] M.LüscherandS.Schaefer,openQCD-SimulationprogramforlatticeQCD, http://luscher.web.cern.ch/luscher/openQCD/. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.