Engineering Materials and Processes Series Editor Brian Derby For furthervolumes: http://www.springer.com/series/4604 Spartak Sh. Gevorgian Alexander K. Tagantsev Andrei K. Vorobiev Tuneable Film Bulk Acoustic Wave Resonators 123 Spartak Sh. Gevorgian Alexander K.Tagantsev Andrei K.Vorobiev Lausanne Department of Microtechnology Switzerland and Nanoscience Chalmers UniversityofTechnology Gothenburg Sweden ISSN 1619-0181 ISBN 978-1-4471-4943-9 ISBN 978-1-4471-4944-6 (eBook) DOI 10.1007/978-1-4471-4944-6 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012956301 (cid:2)Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Tuneable FBARs: is the ‘‘Holy Grail’’ of tuneablefilters found? Preface To handle many standards and the ever-increasing bandwidth requirements, large numbers of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumptionofthesesystems,includingcellularphones,criticalissues.Atpresent the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance- form factor-cost issues. Although FBARs improve overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However, handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacingfixedfrequencyfilterbanksbyonetuneablefilteristhemostdesired and widely considered scenario. As an example, development of software-based cognitiveradiosislargelyhinderedbythelackofadequateagilecomponents,first ofalltuneablefilters.InthissensetheelectricallyswitchableandtuneableFBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks, etc. The development of tuneable FBARs is a rapidly evolving and ‘‘hot’’ micro- wave topic (R. Aigner, ‘‘Tuneable RF Filters: Pursuing the ‘Holy Grail’ of Acoustic Filter R&D,’’ Microwave Journal, June 16, 2008). Trimming by etching takes care of the processing tolerances; however, it is a costly process. Electric field tuning of FBARs is a cost-effective way that, in addition to ‘‘trimming,’’ offers radically new functionalities, and RF system architectures. Heating, semi- conductor varactor loading, etc. are used to make the fixed frequency ZnO and AlN FBARs tuneable. This concept results in limited tuning and the Q-factor of the FBAR is deteriorated due to the loading. Ferroelectric films in the polar/ piezoelectric phase, such as Pb(Zr Ti )O (PZT) are also considered for tune- x 1-x 3 able FBARs. The inherently large hysteresis of these materials limits their applications. Switchable and tuneable FBARs make use of the electric field-induced piezo- electric effect in paraelectric phase ferroelectrics (i.e., Ba Sr TiO , BST). x 1-x 3 vii viii Preface Electricfieldtuningoftheresonantfrequencyandtheelectromechanicalcoupling coefficient represent two unique properties of BST-based resonators, offering design flexibility and allowing the development of tuneable frequency selective filters.Theperformances(Q-factor,sizes)ofthereportedswitchableandtuneable FBARs are already better than that of resonators based on lumped inductors and semiconductor varactors (LC tank) and they may be used in microwave circuits. Thebookconsistsofanintroductionandaconcludingchapterwherethefuture challenges are discussed. Six other chapters cover physics, modeling, fabrication methods, microstructure analysis, measurements, and applications of tuneable FBARs. Chapters 2 and 5 are written by A. Tagantsev. The introduction starts with brief discussions about the needs in tuneable resonators, focusing on advanced agile microwave communications systems. To assist in the reading of the following chapters vibrational modes in FBARs are reviewed.Theconceptofelectrostriction-mediated-inducedpiezoelectriceffectin paraelectrics, used in intrinsically tuneable ferroelectric FBARs, is discussed. A summary of the state of the art in intrinsically tuneable FBARs concludes the chapter. Chapter 2 introduces the fundamentals of dielectric, mechanical, and electro- mechanical properties of insulating solids, primarily focusing onferroelectric and piezoelectric materials, suitable for FBARs. Sections 2.1, 2.2, and 2.3 address these properties, neglecting the energy dissipation associated with AC signals, whereas Sect. 2.4 is reserved for the discussion of effects related to energy dis- sipation (e.g., dielectric and acoustic loss). In Chap. 3 the conventional models of acoustic resonators, such as Mason, KLM, and Lakin are considered as a general background and the possibility of theirapplications(withadequatemodifications)formodelingtuneableFBARs.In ferroelectric-based tuneable FBARs the basic parameters, stiffness, acoustic velocity,andrelativedielectricpermittivityoftheferroelectricfilmareassumedto be DC electric field dependent. Possibilities of tuning the resonant and antiresonsnt frequencies of fixed fre- quency FBARs are considered in Chap. 4. The first two sections address the pos- sibilitiesofintrinsictuningwherethestiffnessofthepiezoelectricfilmischanged byanappliedhighDCelectricfieldandheating.Therestofthechapterdealswith extrinsically tuneable FBARs. In this case the tuning is imposed by tuneable inductorsandcapacitorsshuntorseriesconnectedwiththeFBAR.Themaximum reportedintrinsictuningoftheAlNresonatorsunderappliedDCfieldandheatingis about 1 %, while the maximumextrinsictuneability is less than 2 %. Chapter5isdevotedtothetheoreticaldescriptionoftuningofFBARsbasedon materials with an induced piezoelectric effect. Though DC field-induced piezo- electricity occurs in any centrosymmetric material, only ferroelectrics display an effect that is strongenough tobe ofinterest for practical applications. Apart from the incipient ferroelectrics (regular ferroelectric in the paraelectric phase), ferro- electrics in ferroelectric phase are also considered. Basic design features of the intrinsically tuneable FBARs are considered in Chap. 6 focusing on the Bragg reflectors for the solidly mounted resonators. Preface ix Effects of the electrodes and other layers on the tuneable performance of the FBARsincludingtuneability,Q-factorandelectromechanicalcouplingcoefficient are also addressed. The first sections in Chap. 7 give a brief review of the main processes used in the fabrication of intrinsically tuneable ferroelectric FBARs. Test structures used forlowfrequencyandmicrowavemeasurementsandproceduresforextractingthe acoustic parameters offerroelectric films used in tuneable FBARs are considered in Sect. 7.6. The last sections are devoted to studies of temperature dependence and power handling capabilities. Chapter 8 looks at circuit applications of the intrinsically and extrinsically tuneable FBARs. VCOs seem to be one of the most attractive circuits for appli- cationsofthetuneableFBAR.TheybenefitbothfromhighQ-factor(muchhigher thanLCtanksbasedonsemiconductorvaractors)andtuneability.Perhapstuneable and switchable filters are the most desired devices. The chapter includes several demonstrations of these types of filters. Some specific applications such as amplifiers, sensors, and clocks are also considered. Possible ways of increasing the Q-factor, tuneability and electromechanical couplingcoefficientsarediscussedinChap.9.Usingnewmaterials,improvingthe crystalline quality of ferroelectric films and the designs of FBARs are the main challenges. The potential of nanoscale resonators and resonators with graphene electrodes is also discussed. The book is an introduction to the tuneable FBARs. It is intended for students both at undergraduate and graduate levels. It may be useful for designers of microwave devices, circuits, and systems both in academia and industry. S. Gevorgian and A. Vorobiev acknowledge the Swedish Science Counsel for partial financial support via FBAR-related projects. Thanks to Ishkan Gevorgyan for spelling and grammar checking. Gothenburg, Sweden, August 2012 Spartak Sh. Gevorgian Lausanne, Switzerland Alexander K. Tagantsev Gothenburg, Sweden Andrei K. Vorobiev Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Needs in Tuneable Resonators. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thin-Film Acoustic Wave Resonators. . . . . . . . . . . . . . . . . . . 5 1.2.1 Vibrational Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Tuneable FBARs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Dielectric Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2 Nonlinear Dielectrics and Ferroelectrics. . . . . . . . . . . . 21 2.2 Elastic Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Electromechanical Phenomena. . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Linear Piezoelectrics . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.3 Modification of Elastic and Piezoelectric Properties of Ferroelectrics Under Bias Electric Field and Higher Order Electromechanical Effects. . . . . . . . . 37 2.4 Dissipation Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Dielectric Losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.2 Mechanical and Piezoelectric Losses . . . . . . . . . . . . . . 42 2.4.3 Mechanisms of Energy Dissipation . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Models of FBARs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Electroacoustic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 Basic Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 Acoustic Wave Equation in Piezoelectrics . . . . . . . . . . 56 xi xii Contents 3.1.3 1D Model of Thickness Excitation–Mode Resonator with Perfect Electrodes (Unloaded Resonator). . . . . . . . 58 3.2 Lakin’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Mason’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.1 Piezoelectric Slab . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.2 Non-piezoelectric Slab. . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Butterworth van Dyke Model: Other Models. . . . . . . . . . . . . . 68 3.5 Modeling of Intrinsically Tuneable FBARs. . . . . . . . . . . . . . . 71 3.6 Losses in FBARs Associated with Structural Imperfections. . . . 72 3.6.1 Structure of the Ferroelectric Film in Tuneable FBARs. . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.2 Losses Due to Scattering of Acoustic Waves by Surface/Interface Roughness. . . . . . . . . . . . . . . . . . 74 3.6.3 The Effects of Nanocolumn Height Dispersion . . . . . . . 75 3.6.4 Other Loss Mechanisms. . . . . . . . . . . . . . . . . . . . . . . 82 3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Making Non-tuneable Piezoelectric FBARs Tuneable . . . . . . . . . . 91 4.1 Tuning via DC Field-Induced Change in Sizes and Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Converse Piezoelectric Effect . . . . . . . . . . . . . . . . . . . 91 4.1.2 DC Bias–Dependent Stiffness . . . . . . . . . . . . . . . . . . . 92 4.2 Thermally Driven FBARs. . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 FBARs Loaded by Tuneable Impedances . . . . . . . . . . . . . . . . 95 4.3.1 BVD Models of Unloaded Lossless Resonators. . . . . . . 96 4.3.2 Varactors and Inductors Used in Extrinsically Tuned FBARs. . . . . . . . . . . . . . . . . . . 96 4.3.3 Shunt Varactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.4 Shunt Inductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.5 Series Varactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.6 Series Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.7 Ferroelectric FBARs as Varactors and Tuneable Inductors . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.8 Impact of the Losses . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 Composite and Stacked Resonators . . . . . . . . . . . . . . . . . . . . 112 4.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5 FBARs Utilizing Induced Piezoelectric Effect . . . . . . . . . . . . . . . . 117 5.1 Field Control of Material Parameters of Ferroelectrics . . . . . . . 117 5.2 Tuneability of Resonances of FBAR . . . . . . . . . . . . . . . . . . . 119 5.2.1 General Relationships. . . . . . . . . . . . . . . . . . . . . . . . . 119 Contents xiii 5.2.2 Relationship Between the Coupling Coefficient and Tuneability of the Dielectric Permittivity . . . . . . . . 121 5.2.3 Expected Trends in Tuneability of FBARs . . . . . . . . . . 122 5.2.4 Tuning of FBAR in Ferroelectric Phase . . . . . . . . . . . . 124 5.2.5 Landau Theory of FBAR Tuning: Problems and Applicability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.3 Frequency-Switchable FBARs. . . . . . . . . . . . . . . . . . . . . . . . 129 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Designs of Tuneable FBARs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1 Basic Designs of FBARs . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Membrane-Based Tuneable FBARs . . . . . . . . . . . . . . . . . . . . 134 6.3 Solidly Mounted Tuneable FBARs. . . . . . . . . . . . . . . . . . . . . 137 6.3.1 FBARs Based on Metal/Dielectric Bragg Reflectors . . . 137 6.3.2 All-Dielectric Bragg Reflectors. . . . . . . . . . . . . . . . . . 140 6.3.3 All-Metal Bragg Reflectors. . . . . . . . . . . . . . . . . . . . . 142 6.3.4 Optimization of Reflectors . . . . . . . . . . . . . . . . . . . . . 142 6.4 Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.4.1 Effects and Structure of the Electrodes. . . . . . . . . . . . . 147 6.4.2 Layout of the Electrodes. . . . . . . . . . . . . . . . . . . . . . . 152 6.5 Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.6 Comparisons and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7 Fabrication Processes and Measurements . . . . . . . . . . . . . . . . . . . 157 7.1 Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2 Deposition Processes of Ferroelectric Films . . . . . . . . . . . . . . 158 7.2.1 RF Magnetron Sputtering. . . . . . . . . . . . . . . . . . . . . . 158 7.2.2 Ion Beam Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.2.3 Chemical Deposition Methods. . . . . . . . . . . . . . . . . . . 161 7.2.4 Pulsed Laser Deposition. . . . . . . . . . . . . . . . . . . . . . . 161 7.2.5 Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.3 Bragg Reflectors and Electrodes . . . . . . . . . . . . . . . . . . . . . . 163 7.3.1 Bragg Reflectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.3.2 Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.3.3 Microstructure Analysis . . . . . . . . . . . . . . . . . . . . . . . 168 7.4 Stress Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.5 Patterning Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.5.1 Etching the Ferroelectric Film. . . . . . . . . . . . . . . . . . . 174 7.5.2 Patterning of Conductive Layers . . . . . . . . . . . . . . . . . 175 7.5.3 Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.6 Test Structures and Low-Frequency Measurements . . . . . . . . . 176 7.6.1 Test Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.6.2 Low-Frequency Measurements . . . . . . . . . . . . . . . . . . 178
Description: