Eur.Phys.J.CmanuscriptNo. (willbeinsertedbytheeditor) Tsallis statistics approach to the transverse momentum distributions in p-p collisions MaciejRybczyn´skia,1,ZbigniewWłodarczykb,1 1InstituteofPhysics,JanKochanowskiUniversity,ul.Swietokrzyska15,PL-25406Kielce,Poland 4 1 Received:date/Accepted:date 0 2 Abstract Transversemomentumdistributionsofnegatively nonextensivestatistics[2]inwhichtheparameterqsummar- n a chargedpionsproducedinp-pinteractionsatbeammomenta ilydescribesallfeaturescausingadeparturefromtheusual J 20,31,40,80and158GeV/carestudiedusingtheTsallis Boltzmann-Gibbsstatistics.Inparticularitwasshownin[5] 2 distributionasaparametrization.Resultsarecomparedwith that q−1=Var(T)/(cid:104)T(cid:105)2 and directly describes intrinsic 2 higherenergiesdataandchangesofparameterswithenergy fluctuations of temperature (however, the Tsallis distribu- aredetermined.DifferentTsallis-likedistributionsarecom- tion also emerges from a number of other more dynamical ] h pared. mechanisms,forexamplesee[6]formoredetailsandrefer- p ences).Thisapproachhasbeenshowntobeverysuccessful - Keywords Transversemomentum·Tsallisdistribution p indescribingmultiparticleproductionprocessesofadiffer- e PACS 13.85.Hd·24.60.-k·25.75.Dw·89.75.-k entkind(see[6,7]forrecentreviews).Intermsoftransverse h (cid:113) [ momentum,transversemass,mT = m2+p2T,andrapidity y,Eq.(1)becomes 1 v 1 Introduction 9 d2N m cosh(y) 3 Transversemomentum(p )distributionsofidentifiedhadrons =gV T × 6 T pTdpTdy (2π)2 are the most common tools used to study the dynamics of 5 (cid:20) (cid:21) q . high energy collisions. The p-p interactions are used as a mTcosh(y)−µ 1−q 1 × 1+(q−1) . (2) baseline and are important to understand the particle pro- T 0 4 duction mechanism [1]. In the framework of Tsallis statis- IthasbeenshownrepeatedlythattheTsallisdistribution 1 tics[2–4]themomentumdistributionisgivenby givesanexcellentdescriptionof p spectrameasuredinp- : √ T v p collisions at RHIC ( s=62.4 and 200 GeV) and LHC i √ X d3N gV (cid:20) E−µ(cid:21)1−qq q→1 ( s=0.9,2.76and7.0TeV)energies[3,8–11].Inpartic- ar dp3 = (2π)3 1+(q−1) T −−→ ular changes in the transverse momentum distribution with energy(useddataatenergies0.54,0.9,2.36and7TeV)are (cid:18) (cid:19) gV E−µ studied using the Tsallis distribution (2) as a parametriza- exp − , (1) (2π)3 T tion[12].Inthispaperweextendthisanalysistotransverse √ momentumspectraobtainedinp-pcollisionsat s=6.27, whereT andµ arethetemperatureandthechemicalpoten- 7.74,8.76,12.32and17.27GeVbytheNA61/SHINEcol- tial,V is the volume and g is the degeneracy factor. In this laboration [13] 1. In addition to possibility of study colli- form,Eq.(1)isusuallysupposedtorepresentanonextensive generalizationoftheBoltzmann-Gibbsexponentialdistribu- 1Recently,theexperimentalresultsoninclusivespectraofnegatively chargedpionsproducedininelasticp-pinteractionsatbeammomenta tion,exp(−E/T),withqbeinganewparameter,inaddition 20,31,40,80and158GeV/cwerepresented[13].Themeasurements toprevious"temperature"T.Suchanapproachisknownas wereperformedusingthelargeacceptanceNA61/SHINEhadronspec- trometer at the CERN Super Proton Synchrotron. Numerical results ae-mail:[email protected] correspondingtothetwodimensionalspectraintransversemomentum be-mail:[email protected] andrapiditycorrectedforexperimentalbiasesweregiveninRef.[14]. 2 Fig. 1 (Color online) Transverse momentum distributions of nega- Fig.2 (Coloronline)Thevaluesofthenonextensivityparameterq,as tively charged pions produced in p-p collisions as obtained by the afunctionofrapidityobtainedfromfitstothetransversemomentum √ NA61/SHINEcollaboration[13]at s=17.27GeVinrapidityinter- distributionsatdifferentenergies. vals0.2k<y<0.2(k+1)wherek=0,···,11fromthebottom.Data pointsfordifferentrapiditybinswerescaledby3kforbetterreadabil- ity. sionsatlowincidentenergies,themeasurementsperformed by NA61/SHINE collaboration allow us to study the low- p partofspectra.ThevaluesofT andV areverysensitive T tothelow-p partofthetransversemomentumdistribution T and extending the analysis to lower p could bring much T clarificationhere. 2 Analysisoftransversemomentumdistributions Fig.3 (Coloronline)Thevaluesofthetemperatureparameter,T,as Transverse momentum spectra of negatively charged pions afunctionofrapidityobtainedfromfitstothetransversemomentum are fitted using Tsallis distribution given by Eq. (2) with distributionsatdifferentenergies. gπ− =1andµ =0.Itisworthtobenotedthatthevariable T andV arefunctionsofµ atfixedvaluesofq, 3 Energydependenceofparameters The energy dependence of the various parameters is dis- T =T +(q−1)µ, (3) 0 played in Figs. 4, 5 and 6. For comparison with higher en- ergy data [12] which are for mid-rapidity y=0, we show parameters as evaluated for rapidity interval 0 <y <0.2. V =V [1+(q−1)µ/T ]q/(1−q)=V (T/T )q/(1−q) (4) All analysed parameters show a clear but weak energy de- 0 0 0 0 pendencewhichwehaveparametrizedas andtheycanbecalculatediftheparametersT =T andV = 0 V0atµ =0areknown[12]. (cid:0)√ (cid:1)0.01326 q(s)=1.027 s (5) TheTsallisdistributiondescribesthetransversemomen- tum distributions of negatively charged pions in p-p colli- sionsasobtainedbytheNA61/SHINEcollaboration[13]in √ all rapidity intervals remarkably well as shown in Fig. 1. T(s)=0.1014(cid:0) s(cid:1)−0.03262 (6) The values of nonextensivity parameters q needed to de- scribethetransversemomentumdistributionsofnegatively charged pions are shown in Fig. 2. The values of tempera- (cid:18)3V(s)(cid:19)1/3 (cid:0)√ (cid:1)0.09 tureparameterT fordifferentenergiesandrapidityintervals R(s)= =2.31 s (7) 4π are shown in Fig. 3. The temperature parameter T shows a clear rapidity dependence which we have parametrized as ThevalueofRisnotnecessarilyrelatedtothesizeofthe T (cid:39)0.09cosh(y). systemasdeducedfromaHBTanalysis[15,16]butserves 3 Fig.4 (Coloronline)Energydependenceoftheparameterqappearing Fig.7 (Coloronline)dN/dyofchargedparticlesproducedinthecen- intheTsallisdistribution.OpenpointsarefromATLAS,ALICEand tralrapidityregionasafunctionofcenter-ofmassenergyinp−pand UA1Collaborationsdata(takenfromRef.[12]).Solidpointsarefrom p−p¯collisions.EnergydependencegivenbyEq.(9)iscomparedwith NA61/SHINECollaborationdata[13].DataarefittedbyEq.(5). inelasticmeasurementsfromNA61/SHINE[13](p−p),NALBubble Chamber (p−p¯), ISR (p−p), UA5 (p−p¯), PHOBOS (p−p) and ALICE(p−p)experimentstakenfromcompilation[17]. tofixthenormalizationofthedistribution(2).Inparticular, wehave (cid:12) dN(cid:12) gVT (cid:104) m(cid:105) 1 (cid:12) = 1+(q−1) 1−q× dy(cid:12)(cid:12) (2π)2 T y=0 (2−q)m2+2mT+2T2 × . (8) (2−q)(3−2q) For evaluated above energy dependence of parameters Fig.5 (Coloronline)Energydependenceofthetemperatureparameter q(s),T(s)andR(s)givenbyEqs.(5-7)wehave T appearingintheTsallisdistribution.OpenpointsarefromATLAS, ALICE and UA1 Collaborations data (taken from Ref. [12]). Solid (cid:12) pboyiEntqs.a(r6e).fromNA61/SHINECollaborationdata[13].Dataarefitted ddNy(cid:12)(cid:12)(cid:12) (cid:39)0.1+0.56(cid:0)√s(cid:1)0.24. (9) (cid:12) y=0 EnergydependenceofdN/dyinthecentralrapidityre- gionincomparisonwithinelasticmeasurementsisshownin Fig.7. We can treat the size of the system, R, more seriously. TheradiusgivenbyEq.(7)iscalculatedforµ=0.Forother valuesofchemicalpotential,thesizeissmaller(cf.Eqs.(3) and (4)). Comparing R(s) with experimental data deduced fromHBTanalysiswecanseethatR (cid:39)R/κ,whereκ= HBT 3.5.InFig.8wedisplayedR(s)/κ incomparisonwithdata obtainedfromHBTanalysis[18]. Followingthisobservationweassume Fig.6 (Coloronline)EnergydependenceoftheradiusRappearingin thevolumefactor,V=4/3πR3.OpenpointsarefromATLAS,ALICE Vµ=0=Vµ·κ3 (10) andUA1Collaborationsdata(takenfromRef.[12]).Solidpointsare fromNA61/SHINECollaborationdata[13].DataarefittedbyEq.(7). andfromEqs.(3)and(4)wehave T (cid:16) (cid:17) µ = µ=0 κ3(q−1)/q−1 (11) q−1 4 unperturbative theory or model, and the high-p region is T governedbyhardphysicsrepresentedbyperturbativeQCD. In(15),thenonextensiveformulaworksinthewholerange of p and it is not derived from some particular theory. It T is only a generalization of the regular statistical mechan- ics and just offers the kind of universal unifying principle, namelytheexistenceofsomekindofequilibriumaffecting all scales of p , which is described by two parameters, T T and q. The temperature T characterize its mean properties and the parameter q, known as the nonextensivity parame- ter,expressesactionofthepotentiallynon-triviallongrange effectsbelievedtobecausedbyfluctuations[5](butalsoby some correlations or long memory effects [2]). It is worth Fig.8 (Coloronline)EnergydependenceoftheradiusRµ=Rµ=0/3.5 tobenotedthattheinvariantmomentumdistributioninthe (solidpoints)incomparisonwithHBTmeasurementsofsourceradii obtainedinhadron-hadronreactions[18](openpoints). form(cf.Eq.(1)) and using parametrizations (5) and (6) we have energy de- d3N gV (cid:20) E(cid:21)1−qq E = 1+(q−1) , (16) pendenceofchemicalpotentialintheform dp3 (2π)3 T (cid:0)√ (cid:1)−0.022 result in Eq. (2) without pre-factor mTcosh(y) in the right µ(s)(cid:39)0.39 s . (12) hand side of the equation. For the non-relativistic energies (E=p2/(2m)),Eq.(16)correspondstoTsallisdistribution 4 Differentparametrizations d3N gV (cid:20) p2 (cid:21)1−qq Almost fifty years ago Hagedorn develop a statistical de- E = 1+(q−1) , (17) scriptionofmomentumspectraobservedinmultiparticlepro- dp3 (2π)3 2mT ductionprocesses[19].Hagedorn’sapproachpredictsanex- originatedfrommultiplicativenoise[21,22]2. ponentialdecayofmomentumdistribution ExponentialfunctionEq.(13)describeddataonlyinthe d3N (cid:16) p (cid:17) limitedrangeoftransversemomentum,0.15<p <0.6[13]. T T E (cid:39)Cexp − (13) dp3 T AsshowninFig.1,theTsallisdistributiongivenbyEq.(2) describesall p rangeremarkablywell. T for transverse momenta, whereas in experiments one ob- AllTsallis-likedistributionsleadtoapowerlawtail servesnon-exponentialbehaviorforlargetransversemomenta. Subsequently,Hagedornproposedthe"QCDinspired"em- piricalformuladescribingthedataoftheinvariantmomen- d2N ∝p−n (18) tumdistributionofhadronsasafunctionof pT overawide pTdpTdy T range[20]: ofthedistributionforsufficientlylargetransversemomenta. d3N (cid:18) p (cid:19)−n (cid:40)exp(−np /p ) for p →0 Thedifferencebetweenthemcanbeseeninlow pT region, T T 0 T E =C 1+ → where dp3 p0 (pT/p0)−n for pT →∞ (14) (cid:40) d2N α−βp +γp2 forEqs.(13),(14),(15) withC,p0andnbeingfitparameters.Thisbecomespureex- ∝ T T ponentialforsmall pT andpurepowerlawforlarge pT.For pTdpTdy α−γp2T forEqs.(1),(16),(17) n=q/(q−1) and p =T/(q−1), the Hagedorn formula (19) 0 (14)coincideswithTsallisdistribution[2], d3N (cid:104) p (cid:105) q 2TheLangevinequationdp/dt+γ(t)p=ξ(t)wherebothγ(t)and E =C 1−(1−q) T 1−q. (15) ξ(t)denotestochasticprocesses(traditionalmultiplicativenoiseand dp3 T additivenoise,respectively)leadstoapower-lawtailofthedistribu- tion for sufficiently large momenta. As shown in [21] in the case of Thebasicconceptualdifferencebetween(14)and(15)is Cov(γ,ξ)=0andE(ξ)=0(i.e.,for,respectively,nocorrelationbe- intheunderlyingphysicalpicture.In(14)thelow-p region T tweennoisesandnodrifttermduetotheadditivenoise)thesolutionis iscontrolledbysoftphysicsrepresentedbysomeunknown givenbythenon-normalizedTsallisdistributionforthevariablep2. 5 For distributions with the same mean transverse momen- tum, (cid:104)p (cid:105), the parameter T evaluated from Eq. (13) is T exp connected with parameter T evaluated from Eq. (2) by the relation T (cid:39)a+b·T, (20) exp where, numerically, a=0.31−0.654q+0.354q2 and b= 27.35−55q+29.07q2.Moreover,itisremarkabletonotice thatparametrization(1)proposedbyCleymans[3,4]isfor momentum distribution, d3N/dp3 while the other Tsallis- likeparametrizations(14)-(17)areforinvariantdistribution Ed3N/dp3. Acknowledgements ThisresearchwassupportedbytheNationalSci- enceCenter(NCN)undercontracts:2011/03/B/ST2/02617 and2012/04/M/ST2/00816. References 1. F.BecattiniandU.W.Heinz,Z.Phys.C76,269(1997) [Erratum-ibid.C76,578(1997)][hep-ph/9702274]. 2. C. Tsallis, J. Statist. Phys. 52, 479 (1988); Eur. Phys. Fig. 9 (Color online) Panel (a) - transverse momentum distribution J.A40,257(2009)[arXiv:0812.4370[physics.data-an]] √ of negatively charged pions produced in p−p collisions at s= and Introduction to Nonextensive Statistical Mechanics 17.27 GeV in the rapidity interval 0<y<0.2 [13] fitted by differ- (Springer, 2009). For an updated bibliography on this entparametrizations(withnormalizationathightpT region).Panel(b) subject,seehttp://tsallis.cat.cbpf.br/biblio. -ratio fit/datafortheresultspresentedinpanel(a). htm. 3. J.CleymansandD.Worku,J.Phys.G39,025006(2012) Parameters α, β and γ are positive valued functions of [arXiv:1110.5526[hep-ph]]. q and T (in case of Eq.(1), T <m is required for γ >0 ). 4. J. Cleymans and D. Worku, Eur. Phys. J. A 48, 160 Inlow p region,Tsallis-likedistributionswithvariable p2 (2012)[arXiv:1203.4343[hep-ph]]. T T differs from the one expressed in variable p . Comparison 5. G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 T ofdifferentparametrizationsisshowninFig.9. (2000)[hep-ph/9908459]. 6. G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 48, 161 (2012)[arXiv:1203.4452[hep-ph]]. 5 Discussionandconclusions 7. G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009)[arXiv:0810.2939[hep-ph]];CentralEur.J.Phys. In conclusion, the Tsallis distribution, Eq. (2) leads to an 10,568(2012)[arXiv:1110.4220[hep-ph]]. excellent description of data on transverse momentum. By 8. I. Sena and A. Deppman, Eur. Phys. J. A 49, 17 (2013) comparingresultsfromNA61/SHINE[13]totheresultsob- [Eur. Phys. J. A 49, 17 (2013)] [arXiv:1209.2367 [hep- tainedathigherenergies[12]ithasbeenpossibletoextract ex]]. energy dependence of the parameters q, T and R. A con- 9. A. Adare et al. [PHENIX Collaboration], Phys. Rev. D sistent picture emerges from comparison of fits using the 83,052004(2011)[arXiv:1005.3674[hep-ex]]. Tsallisdistributioninwiderangeofenergies. 10. P. K. Khandai, P. Sett, P. Shukla and V. Singh, Int. Differentparametrizationsleadnotonlytodifferentqual- J. Mod. Phys. A 28, 1350066 (2013) [arXiv:1304.6224 ityoffitsbutalsotodifferentvaluesofparameters.InRef.[13] [hep-ph]]. experimentaldataarefittedbyexponentialdistribution(13) 11. C.-Y.WongandG.Wilk,ActaPhys.Polon.B43,2047 inlimitedrangeoftransversemomenta(0.15<p <0.6GeV/c) (2012)[arXiv:1210.3661[hep-ph]]. T evaluatingtemperatureparametersseeminglylargerthanour 12. J. Cleymans, G. I. Lykasov, A. S. Parvan, A. S. Sorin, estimate based on parametrization (2). Such difference in O. V. Teryaev and D. Worku, Phys. Lett. B 723, 351 values of temperature parameters is fully understandable. (2013)[arXiv:1302.1970[hep-ph]]. 6 13. N. Abgrall et al. [NA61/SHINE Collaboration], 18. T. Kageya, Bose-Einstein correlation from pions pro- arXiv:1310.2417[hep-ex]. ducedinppcollisions,in:CorrelationsandMultiparticle 14. for numerical data, see https://edms.cern.ch/ Production,eds.:M.Plumer,S.RahaandR.M.Weiner, document/1314605. WorldScientific,Singapore(1991),p.92. 15. K.Aamodtetal.[ALICECollaboration],Phys.Rev.D 19. R.Hagedorn,NuovoCim.Suppl.3,147(1965). 82,052001(2010)[arXiv:1007.0516[hep-ex]]. 20. R.Hagedorn,Riv.NuovoCim.6N10,1(1984). 16. M. M. Aggarwal et al. [STAR Collaboration], Phys. 21. T.S.BiroandA.Jakovac,Phys.Rev.Lett.94,132302 Rev.C83,064905(2011)[arXiv:1004.0925[nucl-ex]]. (2005)[hep-ph/0405202]. 17. V.Khachatryanetal.[CMSCollaboration],Phys.Rev. 22. C. Anteneodo and C. Tsallis, J. Math. Phys. 44, 5194 Lett.105,022002(2010)[arXiv:1005.3299[hep-ex]]. (2003).