ebook img

Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics PDF

310 Pages·2009·1.87 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics

Markus Pantsar TTTTrrrruuuutttthhhh,,,, PPPPrrrrooooooooffff aaaannnndddd GGGGööööddddeeeelllliiiiaaaannnn AAAArrrrgggguuuummmmeeeennnnttttssss:::: AAAA DDDDeeeeffffeeeennnncccceeee ooooffff TTTTaaaarrrrsssskkkkiiiiaaaannnn TTTTrrrruuuutttthhhh iiiinnnn MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccssss Philosophical Studies from the University of Helsinki 23 Filosofisia tutkimuksia Helsingin yliopistosta Filosofiska studier från Helsingfors universitet Philosophical Studies from the University of Helsinki Publishers: Department of Philosophy Department of Social and Moral Philosophy P.O. Box 9 (Siltavuorenpenger 20 A) 00014 University of Helsinki Finland Editors: Marjaana Kopperi Panu Raatikainen Petri Ylikoski Bernt Österman Markus Pantsar TTTTrrrruuuutttthhhh,,,, PPPPrrrrooooooooffff aaaannnndddd GGGGööööddddeeeelllliiiiaaaannnn AAAArrrrgggguuuummmmeeeennnnttttssss:::: AAAA DDDDeeeeffffeeeennnncccceeee ooooffff TTTTaaaarrrrsssskkkkiiiiaaaannnn TTTTrrrruuuutttthhhh iiiinnnn MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccssss ISBN 978-952-10-5373-3 (paperback) ISBN 978-952-10-5374-0 (PDF) ISSN 1458-8331 Tampere 2009 Kopio Niini Finland Oy Contents CONTENTS ............................................................................................ 5 ACKNOWLEDGEMENTS ................................................................... 5 1. INTRODUCTION ........................................................................... 11 1.1 GENERAL BACKGROUND ................................................................... 11 1.2 ANOTHER APPROACH ....................................................................... 17 1.3 TRUTH AND PROOF ............................................................................ 20 1.4 TARSKIAN TRUTH .............................................................................. 22 1.5 REFERENCE ........................................................................................ 24 1.6 NON-CLASSICAL LANGUAGES ........................................................... 27 1.7 THE BASIC THEORY OF MATHEMATICS .............................................. 29 1.8 THE LIMITATIONS OF THE APPROACH HERE ..................................... 30 1.9 THE STRUCTURE OF THIS WORK ......................................................... 32 2. THE BACKGROUND ..................................................................... 37 2.1 THE PROBLEM OF TERMINOLOGY ...................................................... 37 2.2 PLATONISM ........................................................................................ 39 2.3 REALISM/OBJECTIVISM ...................................................................... 42 2.4 FORMALISM/NOMINALISM ............................................................... 46 2.5 SOUNDNESS AND COMPLETENESS ..................................................... 50 2.6 GÖDEL’S INCOMPLETENESS THEOREMS ............................................ 52 2.7 IS THE GÖDEL SENTENCE TRUE? ........................................................ 55 2.8 GÖDEL SENTENCES AND TARSKI ....................................................... 57 3. THE SEMANTICAL ARGUMENT .............................................. 63 3.1 FIELD’S NOMINALISM ........................................................................ 63 3.2 SHAPIRO’S SEMANTICAL ARGUMENT ................................................ 69 3.3 COUNTERARGUMENTS BEYOND CONSISTENCY ................................ 75 3.4 WHY NOT DEFLATIONARY TRUTH? ................................................... 85 3.5 TENNANT ........................................................................................... 89 3.6 WHY SOUNDNESS OVER TRUTH? ....................................................... 95 3.7 CONCLUSIONS ................................................................................... 98 6 Contents 4. FORMAL AND PRE-FORMAL MATHEMATICS .................. 104 4.1 ASSERTABILITY AND ARBITRARINESS .............................................. 104 4.2 UNDECIDABLE SENTENCES AND FORMALISM ................................. 112 4.3 TARSKIAN TRUTH AND MATHEMATICS ........................................... 117 4.4 ANOTHER APPROACH TO MATHEMATICAL THINKING ................... 134 4.5 PRE-FORMAL MATHEMATICS ........................................................... 138 4.6 PHILOSOPHICAL IMPORTANCE OF PRE-FORMAL MATHEMATICS .... 148 4.7 PRIORITY OF SEMANTICS OVER SYNTAX .......................................... 153 4.8 TRUTH, PROOF AND REFERENCE ..................................................... 154 5. TRUTH AND LOGIC.................................................................... 158 5.1 DIFFERENT LOGICS........................................................................... 158 5.2 HINTIKKA’S TRUTH .......................................................................... 160 5.3 WHY IF LOGIC? ................................................................................ 168 5.4 SECOND-ORDER LOGIC .................................................................... 176 5.5 KRIPKE’S TRUTH AND THE POTENTIAL OF MANY-VALUED LOGICS 184 5.6 COLLAPSING THE HIERARCHY WITH PRE-FORMAL LANGUAGES .... 189 5.7 WHY LOGICISM AND SINGLE TRUTH PREDICATE? ........................... 191 6. WHY NOT NOMINALISM? ....................................................... 195 6.1 SEMANTICAL ARGUMENTS AND THE TROUBLE WITH REFERENCE .. 195 6.2 MENO’S PARADOX AND THEORY CHOICE ....................................... 199 6.3 BENACERRAF’S DILEMMA AND NOMINALISM ................................. 203 6.4 FIELD’S NOMINALISM REVISITED ..................................................... 212 6.5 MODAL RECONSTRUCTIVISM ........................................................... 219 6.6 THE POWER OF OBJECTIVITY: PENROSE’S QUESTION ....................... 225 6.7 THE POWER OF NOMINALISM AND POTENTIAL WAYS OUT ............. 231 6.8 ONTOLOGY OF MATHEMATICS: AN ALTERNATIVE OUTLINE .......... 236 7. TRUTH AND REFERENCE ......................................................... 244 7.1 COUNTERFACTUALS ........................................................................ 244 7.2 TRUTH BEFORE REFERENCE OR VICE VERSA? ................................... 251 7.3 NEO-FREGEANISM ........................................................................... 254 7.4 BAD COMPANY AND NEO-FREGEAN EPISTEMOLOGY ..................... 262 7.5 TWO KINDS OF PRIORITY .................................................................. 268 7.6 NON-PLATONIST REFERENCE: LINNEBO ......................................... 271 7.7 NEO-FREGEANISM AND QUINE....................................................... 277 Contents 7 8. LOOSE ENDS ................................................................................. 280 8.1 NON-STANDARD MODELS ............................................................... 280 8.2 ANOTHER SEMANTICAL ARGUMENT ............................................... 282 8.3 GÖDELIAN FALLACIES ..................................................................... 285 8.4 CONCLUSION: WHAT DOES “SUBSTANTIAL” TRUTH MEAN? .......... 289 REFERENCES ..................................................................................... 293

Description:
Markus Pantsar. Truth, Proof and Gödelian roof and Gödelian. Arguments: rguments: rguments: A Defence of Tarskian efence of Tarskian efence of Tarskian Truth in. Mathematics athematics. Philosophical Studies from the University of Helsinki 23
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.