ebook img

Trust-based Collective View Prediction PDF

150 Pages·2013·3.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trust-based Collective View Prediction

Tiejian Luo · Su Chen Guandong Xu · Jia Zhou Trust-Based Collective View Prediction Trust-Based Collective View Prediction Tiejian Luo Su Chen • • Guandong Xu Jia Zhou • Trust-Based Collective View Prediction 123 Tiejian Luo Guandong Xu Jia Zhou Universityof Technology UniversityofChineseAcademyofSciences Sydney, NSW Beijing Australia People’s Republic ofChina SuChen China MobileResearch Institute Beijing People’s Republic ofChina ISBN 978-1-4614-7201-8 ISBN 978-1-4614-7202-5 (eBook) DOI 10.1007/978-1-4614-7202-5 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013934720 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To wife Xia Chen and daughter Chenxi Luo From Tiejian To wife Ms. Jane Zhu, father Mr. Sanqin Chen, and mother Ms. Xingqiao Luo From Su To wife Feixue Zhang and son Jack Xu From Guandong Preface The task of collective view prediction is to reason about the opinion of an indi- vidual to an item by calculating his or her relevant online community’s attitudes. More than 20 years’ explorations in this field have made progress in developing preciseandrobustmodelsandrelatedalgorithmsforpredictingcollectiveviewin online community. The researchers also learned the current methods’ advantage and understood their limitations. Our research presents a new perspective and ideastoaddressthelowperformanceandrobustnessincollectiveviewprediction tasks.Theapplicationsofthemodels,methods,andalgorithmsinthisbookwillbe promising and valuable for improving the quality of online information recom- mendationservices,targetingadvertisementdelivery,word-of-mouthanalysisand so on. Investigatingrelatedtheoryandengineeringpracticecanhelpusunderstandthe prosandconsofconventionalmethodsincompletingthegroupopinionprediction task. Recommendation methods and sentiment analysis are closely related to the task. Collaborative filtering is such a typical approach. The advantage of this method can generate personalized predictions without additional text analysis. Those approaches have become mainstream models and methods for collective view prediction in recent years. Early study indicated that the feasibility of col- laborative filtering is solely based on the reliability of information resources. However,intherealapplicationenvironment,thingsaregettingcomplicated.The misconduct behaviors in rating could decrease the information reliability. Those activities could make the prediction invalid and unreliable. To improve the pre- diction accuracy andreducethe impact ofnoisedata, the theme ofthisbook isto review the previous related theoretical foundation and propose a trust-based col- lective view prediction model and relevant algorithms. Our study shows that effective model for collective view prediction is attributed to users’ trust rela- tionships network. Asking appropriate research questions could motivate us to pursue the right direction and address hard problems in the right way. From the theoretical per- spective, this book re-examines the trust definition and quantitatively analyze the relationship between user’s similarity and their trust network leads us to the right solutions. From algorithm design perspective, one of the key questions is what kinds of trust metrics strategies would impact the collective view prediction vii viii Preface accuracy.Fromtheevaluationperspective,weestablishaframeworkforassessing the model’s robustness and to formally describe the attacks aimed at trust-based prediction algorithms. This book studies on the linear correlation of trust and similarity, and the influence of spread distance to the correlation. To explore the trust network, we collectmorethan300,000users’datafromthepopularreviewwebsites.Thestudy results indicate that users’ similarity on opinions is positively correlated to their distance in trust network and negatively correlated to their trust value. We con- clude two basic rules that are important to designing effective and efficient col- lective view prediction algorithms. In order toanalyze how different trustmetrics influence the prediction accuracy, we further elaborate on two well-known trust metrics, and based on the new metrics we design new collective view prediction algorithms. To further improve the accuracy of the trust-based prediction algo- rithms, we propose a Bayesian fusion model for combining trust and similarity. Moreover,asecond-orderMarkovrandomwalkmodelisproposedtoalleviatethe sparse data problem in similarity measurement. These new approaches are more accurate than the classical collaborative filtering algorithms in our experimental evaluations. Trust-based collective view prediction demonstrates more capability to resist attacksoverthetraditionaltechniques.Buttherewerefewquantitativeanalysisof this issue in previous studies. We build a robustness analysis framework to measure the capability of trust-based prediction algorithms to resist attacks. Simulation results using this framework reveal the key factors which impact the robustnessoftrust-basedalgorithms,andconfirmthatthehonestusers’feedbacks can help algorithm recover from attacks. We also give two strategies to improve the algorithm robustness in real applications. Keywords Collective view (cid:2) Trust metrics (cid:2) Trust network (cid:2) Social network (cid:2) Sentimental analysis (cid:2) Recommendation (cid:2) Collaborative filtering Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Scope and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Recommendation Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Content-Based Recommendation. . . . . . . . . . . . . . . . . . 13 2.1.2 Collaborative Filtering. . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Dynamic Network Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Statistic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Evolution Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 Web Information Cascades. . . . . . . . . . . . . . . . . . . . . . 22 2.4 Trust Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Collaborative Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Neighborhood-Based Method . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 User-Based CF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Item-Based CF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Comprehensive Analysis of User-Based CF and Item-Based CF. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Latent Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 30 3.2.2 Regularized Singular Value Decomposition . . . . . . . . . . 31 3.3 Graph-Based Collaborative Filtering . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Bipartite Graph Model of Collaborative Filtering . . . . . . 32 3.3.2 Graph-Based algorithm of Collaborative Filtering. . . . . . 32 ix x Contents 3.4 Socialization Collaborative Filtering . . . . . . . . . . . . . . . . . . . . 33 3.4.1 Gathering Socialization Data . . . . . . . . . . . . . . . . . . . . 34 3.4.2 Neighborhood-Based Socialization Recommendation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.3 Graph-Based Socialization Recommendation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Dynamic Model in Collaborative Filtering . . . . . . . . . . . . . . . . 38 3.5.1 Dynamic Neighborhood-Based Model. . . . . . . . . . . . . . 38 3.5.2 Dynamic Latent Factor Model . . . . . . . . . . . . . . . . . . . 39 3.5.3 Case Study: Dynamic Graph-Based Collaborative Filtering. . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Sentiment Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Sentiment Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Dictionary-Based Opinion Words Generation. . . . . . . . . 55 4.1.2 Corpus-Based Opinion Words Generation . . . . . . . . . . . 56 4.2 Sentiment Orientation Classification . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Counting Opinion Words. . . . . . . . . . . . . . . . . . . . . . . 57 4.2.2 Supervised Learning Approaches . . . . . . . . . . . . . . . . . 58 4.3 Case Study: Sentimental Analysis in Recommender Systems . . . 59 4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.4 Sentiment Enhanced Approach for Tag-Based Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 66 5 Theoretical Foundations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Traditional Prediction Method. . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Trust and Its Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 Data Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.2 Statistical and Transmission Characteristics . . . . . . . . . . 76 5.3 Analysis of Trust and Collective View. . . . . . . . . . . . . . . . . . . 77 5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Indicator Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.4 Result Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6 Models, Methods and Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Contents xi 6.2 Trust-Based Prediction Methods . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.1 Dual Factor Trust Metric. . . . . . . . . . . . . . . . . . . . . . . 96 6.2.2 Single Factor Trust Metric. . . . . . . . . . . . . . . . . . . . . . 97 6.2.3 User Similarity Weighted. . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Prediction Algorithm Based on Second-Order Markov Model. . . 100 6.3.1 Random Walk Model . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Bayesian Fitting Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.5.1 Evaluation Measurement . . . . . . . . . . . . . . . . . . . . . . . 108 6.5.2 Trust-Based Algorithms. . . . . . . . . . . . . . . . . . . . . . . . 108 6.5.3 Second-Order Markov Model. . . . . . . . . . . . . . . . . . . . 110 6.5.4 Bayesian Fitting Model . . . . . . . . . . . . . . . . . . . . . . . . 112 6.5.5 Complexity Analysis of Algorithm . . . . . . . . . . . . . . . . 114 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 Framework for Robustness Analysis. . . . . . . . . . . . . . . . . . . . . . . 117 7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Noisy Data Injection Strategy. . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4 Attack Cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5 Feedback Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.6 Application Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.7 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Description:
Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.