CB29CH13-Julius ARI 1September2013 10:5 TRP Channels and Pain David Julius DepartmentofPhysiology,UniversityofCalifornia,SanFrancisco,California94158; email:[email protected] g or s. w e vi e ualry. w.annse onl wu wal m on os ded fror per aF 84. Downlon 01/30/14. 3o 55-gh Annu.Rev.CellDev.Biol.2013.29:355–84 Keywords 9:3bur 13.2Pitts TBiholeogAyninsuoanllRineeviaetwhotftpC:/e/llcaenlldbiDo.eavnenloupamlreenvtaielws.org somatosensation,nociception,thermosensation,inflammatorypain, Cell Dev. Biol. 20by University of AT1C0lohl.p1irs1yigar4hri6gtt/ihscatlnree(cid:2)n’cssuedrr2evo0vei1:-d3cebllybAion-1n0u1al0R11e-v1ie5w58s.33 nANmabaottucsoirtcsareelanppcstrtiooordnyuiscsytstsht,eeamnpardlogeceteessiccstswnohxeiroeubsysptirmimualir.yPauffnegreennttnirerritvaenfitsbferrosmofptehpepseor-, v. mint,andmustardplantshaveservedaspowerfulpharmacologicaltoolsfor e R identifying molecules and mechanisms underlying this initial step of pain u. n sensation.Thesenaturalproductshaverevealedthreemembersofthetran- n A sientreceptorpotential(TRP)ionchannelfamily—TRPV1,TRPM8,and TRPA1—asmoleculardetectorsofthermalandchemicalstimulithatacti- vatesensoryneuronstoproduceacuteorpersistentpain.AnalysisofTRP channelfunctionandexpressionhasvalidatedtheexistenceofnociceptors as a specialized group of somatosensory neurons devoted to the detection ofnoxiousstimuli.Thesestudiesarealsoprovidinginsightintothecoding logic of nociception and how specification of nociceptor subtypes under- liesbehavioraldiscriminationofnoxiousthermal,chemical,andmechanical stimuli.Biophysicalandpharmacologicalcharacterizationofthesechannels hasprovidedtheintellectualandtechnicalfoundationfordevelopingnew classesofanalgesicdrugs. 355 CB29CH13-Julius ARI 1September2013 10:5 Contents SENSINGNOXIOUSSTIMULI:NOCICEPTIONASADISTINCT SOMATOSENSORYMODALITY............................................ 356 NATURALPRODUCTSASPROBESOFTHEPAINPATHWAY............... 358 TRPCHANNELS:ABRIEFPRIMER............................................ 358 TRPV1:AHEAT-ACTIVATEDIONCHANNELANDINTEGRATOR OFINFLAMMATORYSIGNALS............................................. 361 AnEmergingFunctionalMapofTRPV1........................................ 362 TRPM8:ACOLD-ACTIVATEDCHANNEL.................................... 369 TRPM8AccountsforColdSensationInVivo.................................... 369 TheCoolingAgentSite(s)...................................................... 370 g or TRPM8Modulation............................................................ 370 s. w HowDoTRPV1andTRPM8DetectThermalStimuli?......................... 371 e vi TRPA1:ACHEMORECEPTORFORENVIRONMENTALIRRITANTSAND e ualry. INFLAMMATORYAGENTS................................................. 371 w.annse onl ATcRtiPvAat1ioInsAbylsCooavRaleecnetpMtoro-dOifipceartaitoend.C..h.a.n.n..e.l....................................................................... 337743 wu m wonal EvolutionaryTuningofTRPA1:ChemosensationVersusThermosensation....... 374 ded froor pers COTNRCPLCUhDanINneGlsRanEdMNAeRurKaSlS.p.e.c.i.fi.c.i.t.y....................................................................................... 337755 84. Downloan 01/30/14. F SETNhSeIrNapGeutNicOPoXteInOtiUal.S..S.T..I.M...U..L..I.:.N..O..C..I..C..E.P..T..I.O..N...A..S..A...D..I.S.T..I.N..C..T.... 375 3o 55-gh SOMATOSENSORYMODALITY 9:3bur 2s Somatosensation,colloquiallyreferredtoastouch,actuallyencompassesseveralsubmodalitiesthat v. Biol. 2013.versity of Pitt ip(ndlacecltueedcmteieotnontuoocffhmn(douexsticeolceutsaionmndeojcofhilnaigntshi)ct,amtlh,eetcrhhmearonmsiecanal,lsasottriimocnhue(ldim)e,itpceracoltpisotrniimoocufelcpiottioholanatn(gddievwteeacrrtimisoetnhtoo),fpamnaidencnhsoeacnniisccaeatpilotdinoissn-) DeUni (Gardneretal.2000).Exceptforchemicalsensitivity,nociceptioncouldsimplybeconsideredan Cell by extremeversionoftouchandtemperaturesensation.Indeed,oneofthegreatdebatesinthisfield v. hasrevolvedaroundthequestionofwhether(andtowhatextent)nociceptionrepresentsnotjust e R apsychophysicallydistinctaspectofsomatosensationbutamechanisticallydistinctone,aswell. nu. Noxiousstimuliareinitiallydetectedbyprimaryafferentsensorynervefibersthatinnervate n A aperipheraltargetandtransmitthisinformationtoneuronswithinthedorsalhornofthespinal cord,andthencetothebrain,viaascendingneuralcircuits(Figure1)(Basbaum&Jessell2000). Twoopposingmodelshavebeenputforthtoexplainhowprimaryafferentneuronsencodenoxious percepts.Accordingtothepatterntheory,painisproducedwhenastimulusofsufficientintensity elicits a pattern of activity across functionally indistinct sensory nerve fibers; the resulting pat- ternisthendeconvolutedwithinthecentralnervoussystem(spinalcordandbrain)togenerate aspecificperceptrepresentingthenoxiousmechanical,thermal,orchemicalstimulusappliedto the peripheral receptive field (Melzack & Wall 1965). In contrast, the specificity theory posits thatpainisproducedbyactivationofsensoryneuronsubtypesthataretunedtodetectastimulus of a specific quality and/or intensity (e.g., noxious heat versus cold) (Bessou & Perl 1969, Perl 2007,Sherrington1903).Assuch,informationaboutthemodalityandintensityofastimulusis encoded,atleastinpart,bytheprimaryafferentnervefiberitself,evenbeforesignalsreachthe 356 Julius CB29CH13-Julius ARI 1September2013 10:5 Basophil Neutrophil Mast cell Substance P Histamine DRG Serotonin cell body NGF Lesion Proteases To spinal cord Bradykinin Prostaglandin 5-HT g ATP or H+ s. w e CGRP vi Substance P e ualry. ww.annuse onl vBelososedl wal m on os ded fror per Figure1 384. Downloaon 01/30/14. F anpiSnreoeernxtchiasoeicetputiiritzsvaaoastbitfigeoialndnictaubylotsyftetonnodooaisslxcesciiococooeumspnisgftdtoonharraretslyrobamnrnyeatputliai,drsimrosnoun.emesIcnhiiinncaaajnudtlhlirdycyei,atlsasi,opunonicdnrhtaiconlthhflcteahoamtmerdtsihcmedaecaloyetsrinrtsoietamnrllea.hualPllosyirer.itnmOtrr,aaanannrcnsysemdmaatificthfttteteeirevnderacnstseetingdtnono,otattcohlhsinec,eselnyebportfncoareioircnrsmev,p(eepctlfioueicbrnrisepttrlriaenasrlgnetreuaaunnroisqnmus)iet 55-gh terminalsinthespinalcordbutalsofromstimulatedperipheralterminals.Inparticular,somenociceptors 9:3bur releasethepeptidessubstancePandCGRP,whichelicitvasodilation,vascularleakage,andotherresponses 2s 13.Pitt fromnearbyperipheralcelltypes.Theseactionsproduceorreleaseapanoplyoflocalsignalingmolecules,a Cell Dev. Biol. 20by University of pnecpharaecoieunhcmreohoistcyfsrapowrlepehsrfhtseiiciemrnhnrseus,idilntpii.ttrveoToirtsaahytcs.aitsnAnspoebwhiubdiertrsonheagovrneimeadncteiieoconptnoihtn:noeflDrrrsaebRmopiGnormea,taschdetteiinoovtrnensso.alaiclTpikrcihoedeeyosp,titpneogexflrartaintrpemaghrclmmeieorlailnanutl.oalmalrryteopcsroheouantnphoianssnomscapewnridohtdsenursueeccbnelydseiottiiitnvsicdsituleuyesd,tieoansnjpudhrmyyspoicrnaoalmmoorinteess, v. Re centralnervoussystem.Thatistosay,thespecificitytheorypredictstheexistenceofthenocicep- u. torasafunctionallydistinctsubtypeofsomatosensoryneuronthatisdevotedtothedetectionand n n A transductionofnoxious,high-intensitystimulicapableofcausingtissuedamageandelicitingpain (Sherrington 1906). This controversy is not merely academic because each side makes predic- tionsastohownoxiousstimuliareencoded;whetherreceptorsandotherfunctionallyimportant moleculesareexpressedbyspecificsubsetsofsomatosensorynervefibers;and,thus,whetherand towhatextentprimaryafferentnervefibersconstituteeffectivetargetsforanalgesictherapy. Asissoclearlydemonstratedinothersensorysystems(e.g.,vision,olfaction,andtaste),the cloning and functional characterization of sensory receptors provides the definitive molecular tools with which to address such questions and elucidate the logic of stimulus detection and perception (Julius & Nathans 2012). Indeed, the study of transient receptor potential (TRP) channelshashelpedresolvelong-standingcontroversiesinthepainfieldbyvalidatingtheexistence of the nociceptor (and thus the specificity theory), while providing a molecular framework for understandingperipheralmechanismsunderlyingstimulusdetection,injury-evokedsensitization, www.annualreviews.org • TRPChannelsandPain 357 CB29CH13-Julius ARI 1September2013 10:5 andpsychophysicalcoding(Basbaumetal.2009,Caterina&Julius1999,Patapoutianetal.2009, Woolf&Ma2007). NATURALPRODUCTSASPROBESOFTHEPAINPATHWAY Naturalproductsfrommedicinalplantshaveproventobeamongthemostpowerfulandimportant toolsforidentifyingandmanipulatingkeyelementsofthepainpathway.Twonotableexamples includemorphinefromtheopiumpoppyandsalicylatefromthewillowbark,pharmacological agentsthatwerekeytodiscoveringopioidreceptorsandcyclooxygenases,respectively(Snyder 1977,Vane&Botting1998)(Figure2a).Theprofoundinfluenceofthesenaturalproductson painresearchandtherapeuticsishighlightedbythefactthattheyrepresentthetwomainclasses ofpainmedicinesstillinusetoday,namely,opiateanalgesicsandnonsteroidalanti-inflammatory drugs(Jancso´ etal.1977). g s.or Morphine and aspirin suppress pain, but some plants generate compounds that elicit pain, w e presumablyasachemicaldefensemechanismtowardoffforagingmammalsandotherpredators. vi w.annualrese only. Tcsehhlieleictmpiveoepslpyteefraxsmcitithleieapirrriomzfinathrgye(saFeffiepgrrueornaetlgs2eeansi)sc.ocrCyoamnpespuaoircuoinnndsas(nJiasdncrcaespol´asaeteitcdailn.v,1at9nh7iel7lo)p,iudenlicgcoeitmnintpgaogauesnnedntsstahrtoaiotbnugsiovtfleyascahunotdet wwal u burningpainaccompaniedbylocalvasodilationandinflammation,followedbyhypersensitivity m on toheat(thermalhyperalgesia)and,tosomedegree,touch(mechanicalallodynia)(Jancso´ etal. os ded fror per 1p9re6s7u)m.Tpthiuves,nsoecniscietipvtiotyrst,oigcnaiptsinaigciandheacsadloens-globnegenseraergcahrdfoerdiatsssaitdeeafinndinmgefcuhnacntiisomnaolfhaaclltmioanr.kof aF 84. Downlon 01/30/14. mtheantBtuahctoccloa,uptnshateicfcionoroistlhinneogtpatuhgneegnoetnnlfcyryopmolafnmwt-iadnseta,rbiavi,sedgwaaergllilecna,tsotihnsaioottnhpsir,oocadynuadcneaosttiehrreairntadmtiotuhnsitooasrrudplafiainnnad;toeatlhclieourmmsipnopcullaunnddtess 5-3h o (Figure2a).Likecapsaicin,thesecompoundshavebeenusedextensivelyincellularandbehavioral 9:35burg studiesofacuteandpersistentpainand,mostrecently,toidentifyproteinsandsensoryneurons 2s thatcontributetotheseprocesses(Basbaumetal.2009).Remarkably,eachofthesestructurally v. Biol. 2013.versity of Pitt dmniesertcvihneacfintbicselmarsss;ientshweoshfeiicrihrnicttalhunedtysethTaarRsgeePtvVosp1lve(ectdihfietcocmeapleiscmaitibcdeinirsscrooefcmetfhpoetrotTra)R,nTPdRpchaPiaMnnnt8he(rltofhuaemgmhileayncotonhmoplmrrimoecnaermpytooalfref)ec,ruaelnnadrt DeUni TRPA1(thewasabireceptor)(Figure2b).Functionalandhistologicalanalyseshaveshownthat Cell by TRPV1, TRPM8, and TRPA1 exhibit distinct patterns of expression within primary sensory v. ganglia,providingpharmacologicandgeneticstrategiesforidentifyingandmanipulatingsensory e R neuronsubtypesthatcontributetoparticularaspectsofnociceptionandpain. u. n n A TRPCHANNELS:ABRIEFPRIMER TRP channels were first discovered in the fly eye, where light-activated rhodopsin stimulates phospholipase C (PLC) to hydrolyze the minor plasma membrane lipid, phosphatidyl-inositol bisphosphate(PIP ).This,inturn,promotesgatingofTRPchannelstodepolarizethephotore- 2 ceptorcell(Figure 3)(Hardie2007,Minke&Parnas2006,Montell2012).Althoughthebasic outlinesofthisreceptor-operatedTRPchannelsignalingpathwaywerelaidoutseveraldecades ago, the mechanism whereby PIP hydrolysis leads to TRP channel gating remains enigmatic. 2 Geneticandelectrophysiologicalstudiessuggestthatchannelactivationinvolvesacombinatorial processrequiringbothdepletionofPIP andconsequentgenerationofaphosphoinositide-derived 2 secondmessenger(s),suchaspolyunsaturatedfattyacidand/orintracellularprotons(Estacionetal. 2001,Huangetal.2010).Accordingtothismodel,TRPchannelsintheflyeyearenegatively 358 Julius CB29CH13-Julius ARI 1September2013 10:5 Aspirin Morphine a CH COOH N 3 O CH3 O HO O OH Menthol Capsaicin CH 3 O HCO 3 N H OH HO g s.or H3C CH3 w e vi w.annualrese only. ThiosuSlfinOSates IsothioNcyaCnatSes wu wal m on os ded fror per aF 84. Downlon 01/30/14. b Na+/Ca2+ 3o 5-h 5g 9:3bur 2s 13.Pitt SP v. Biol. 20versity of To spinal cord CATGPRP DeUni Cell by v. e O R nu. N CH3 n H A CH HO 3 OCH 3 Figure2 Naturalproductsasprobesofthepainpathway.(a)Naturalplantproductshaveprovidedthemostpowerful pharmacologicalprobesforidentifyingandstudyingmoleculesandsignalingmechanismsunderlying nociceptionandpain.Theseincludesalicylicacid(relatedtoaspirin)fromwillowbark;morphinefrom opiumpoppies;mentholfrommintleaves;capsaicinfromchilipeppers;thiosulfinatesfromgarlic,onions, andotheralliumplants;andisothiocyanatesfromwasabiandothermustardplants.(b)Capsaicinelicitsacute painandneurogenicinflammationbyselectivelyactivatingexcitatorytransientreceptorpotential(TRP)ion channelsonnociceptornerveendings,promotingthereleaseofneurotransmittersandpeptidesfromboth centralandperipheralnerveterminals.Similarmechanismsunderlietheactionsofmenthol,isothiocyanates, thiosulfinates,andrelatedpungentirritants. www.annualreviews.org • TRPChannelsandPain 359 CB29CH13-Julius ARI 1September2013 10:5 Light T R P PPIIPP 22 INAD G PLC A A C A N g or s. w IP3/Ca2+ DAG/PUFAs, H+ e vi e w.annualrse only. FDirgousorpehi3latransientreceptorpotential(TRP)—amodelforthecanonicalreceptor-operatedTRPchannel. wu TRPchannelswerefirstcharacterizedintheflyeye,inwhichtheydepolarizethephotoreceptorcellsin m wonal responsetolight.Photon-evokedactivationofGprotein–coupledrhodopsin(purple)stimulates aded froFor pers pbdhoiswopshnposhtsropelhaipamatespe(oPClIyPu(P2n)Ls,aCytiu)erltadotiencdagtfasaeltyctzyoenatdchidmeshe(syPsdeUrnoFglAyesrsis)s,ionafnodpsiltiaonsltmrtaracipmehlleoumslapbrhrpaatnreoet(poIPhn3os.)s,Hpdhoiaawtciydtlyhglel-ysienceoarscoittlioo(lDn-4sA,p5Gr-o)manodte 84. Downlon 01/30/14. TihammeRtpiePnororoctthatrenairmncmeneieronlifcualscGi.ptiivpdar-tocihoteaninnrn;eeImNlainAintDesr,aascmctaiaoftfntoeslr.dAionfbgbdprisercovuitasestiiinoonnfosar:nAfld,ydaTnebkRyaPtreian,nardletphaesosauotgsc;hiaCtme,docsastribgenovixadylientnegcremmpoinoleiuncstu;slGetos,;tNhe, 3o 5-h 5g 9:3bur v. Biol. 2013.2versity of Pitts rmperogoVvudelueascrttteeheddbisbmriaynethePtaiIbbTPiot2Roli(Prtaeynsccdoohprnaonsostntrsheiabelisnlrytpraoehntpyhdrseeiaroslellpoonhwgtoiscsatpnshhteioemcxinhtueoalnins.idnteieddletsop),rtohsuteecnihnbtehffaaumtllPiylLyaCcct-oivmnasetiedsdtiiabnteygdsoihmfyudmlrtooalrnyeesoitsuhrsaelny- DeUni 30 distinct subtypes (Ramsey et al. 2006). Genetic studies have highlighted the importance of Cell by TRPchannelsinnumerousbiologicalprocesses(e.g.,calciumadsorption,neuronalgrowthcone v. guidance, keratinocyte development, and sensory transduction), and TRP channelopathies are e R associatedwitharangeofhumandisorders(e.g.,polycystickidneydisease,skeletaldysplasia,and u. n familialepisodicpainsyndrome)(Nilius2007).Thus,understandinghowthesechannelsrespond n A tophysiologicalstimulianddrugsisofdirectclinicalandtherapeuticrelevancetodiseasesthat affectvirtuallyeverymajororgansysteminthebody.However,whencomparedwithmostother ionchannelsuperfamilies,suchasthoseofthevoltage-orligand-gatedilk,thestudyofTRPchan- nelsisstillinitsinfancy,andendogenousstimuliorphysiologicalrolesformanyfamilymembers remain unknown. Moreover, whereas functional TRP channels likely resemble voltage-gated potassium channels in regard to their overall transmembrane topology and tetrameric subunit composition, relatively little is known about their structure or structure-activity relationships. These gaps in knowledge reflect several limitations, including (a) a dearth of pharmacological agentsformanipulatingchannelfunctioninvitroorinvivo;(b)alackofdetailed(i.e.,crystallo- graphic)structuralinformation(exceptforsomesolubleintracellulardomains);and(c)relatively low sequence similarity among TRP family members, which makes identification of conserved motifs and analysis of subtype chimeras challenging. As such, recent efforts have focused on 360 Julius CB29CH13-Julius ARI 1September2013 10:5 discovering novel, subtype-selective pharmacophores (including toxins and other natural prod- ucts);developingunbiased,high-throughputscreensforpinpointingfunctionallyimportantchan- neldomains;andapplyingproteinpurificationandreconstitutionmethodstoprobechannelfunc- tionindefinedsystemsusingbiophysicalandstructuralapproaches.Theselimitationsnotwith- standing, somewhat rudimentary structure-function maps are beginning to emerge for certain TRPchannelsubtypes,whicharediscussedhereprimarilyinthecontextofTRPV1andTRPA1. AlthoughTRPchannelsarewidelydivergentintheirprimarystructuresand(knownorpre- sumed) physiologic functions, many resemble ancestral fly channels in their ability to be acti- vatedormodulatedbyPLC-coupledreceptors(Venkatachalam&Montell2007).Asinthefly eye, mechanisms underlying these receptor-operated pathways remain enigmatic, but existing results suggest that vertebrate TRPs have evolved to recognize distinct consequences of PLC activation,withsomesubtypesrespondingtolipidmetabolismperseandothersrespondingto inositol-triphosphate(IP3)-mediatedCa2+ release.Inthisway, neurotransmittersorhormones g s.or that activate PLC-coupled receptors can activate TRP channels or enhance their sensitivity to w e otherphysiologicalstimuli.Indeed,someTRPchannelsrespondtomultiplephysiologicalinputs, vi w.annualrese only. etthhneeabccloeilnnltgoetrxhtteiosmfsunteoocefinucvneipcrttoiiononmn,aebsnepta.orDlsysemisgponidtiafielctsahingetnplayhloyinnsitopelagotrghaiwtcoaarlysrscelalepeavadabinnlecgeotfooafnsssoueccsishcienrpgetgocuorlmasetpinolsenixt—iczhawtahinoigcnheas,niinnd wwal u consequentpainhypersensitivity—themechanisticandstructuraldetailsunderlyingPLC-evoked m on channelmodulationremainlargelyunresolved. os ded fror per knoAwsnm, heanmtiopnereidngaboouvre,abpihliytsyiotologuinccostvimeruilni fvoivromroosltesm, memecbhearnsiosmf tshoefTacRtiPvaftaimonil,yorresmtrauicntuurna-l aF 84. Downlon 01/30/14. updnaetrdhievwrepadyiniranrriientagnnsotsotafabnsltedimesxpucildeupesrtidoteontxseicnbtsei)ocntahuaastnedetlhiccehiytanadrniesecltoagmragfteointregtd.obTryRpadPienfc,ehnpasrniovnveeidlnsianotgufrutahnleipqrusooedmauanctdtossp(eponlwsaonerrty-- 5-3h o ful pharmacological tools with which to manipulate and probe channel function in a variety of 9:35burg biologicalsystems.Anotheradvantagederivesmoregenerallyfromthefactthatsensorysystems 2s mustevolvetodetectandtransducesignalsthataremostsalientforthesurvivalandreproduc- v. Biol. 2013.versity of Pitt tftrihooanmtsopdfeiafcfniefryoersngtitamnspuiselmucsie(dsJeurtleeipuctrsieo&snenNotrsaotahthatnreersmf2ue0nn1cd2toi)o.unAsalsylsauptcotrhwi,becurotfuemsl.pwIanardayteitevode,iadtnheainsltyaisfpyisprroeofsasicdehuneshosarsoybrredeeconempqatuoiintress DeUni fruitfulinthestudyofsensoryTRPchannelsandstandsincontrastwiththerelativelymeagersuc- Cell by cessincomparingTRPchannelsubtypeswithinagivenorganism,wherelowsequencesimilarity v. amongmembersofthesuperfamilyhasstymiedidentificationofconservedfunctionaldomains e R ortheanalysisofchimerasgeneratedfromTRPchannelhomologswithinagivenspecies.For nu. thesereason,somatosensoryTRPshavebecomefavoredsubjectsforelucidatingbasicprinciples n A underlyingTRPchannelpharmacology,structure,andregulation.Whatfollowsisacurrentview ofphysiologicalroles,activationmechanisms,andstructure-functionrelationshipsforthenoci- ceptiveTRPchannels,TRPV1,TRPM8,andTRPA1.Thisisnotmeanttobecomprehensive but,rather,tohighlightafewareasthatareparticularlyinterestingandrelevanttothestudyof nociceptionandpain. TRPV1:AHEAT-ACTIVATEDIONCHANNELANDINTEGRATOR OFINFLAMMATORYSIGNALS TRPV1 (also known as VR1) is the founding member of a subfamily of thermosensitive TRP channels that enable primary afferent nociceptors, or other cells, to detect changes in ambient temperature over a wide physiologic range (Julius 2005, Patapoutian et al. 2003). TRPV1 is a www.annualreviews.org • TRPChannelsandPain 361 CB29CH13-Julius ARI 1September2013 10:5 noxious heat–activated channel with a steep temperature coefficient (Q > 20) and a thermal 10 activation threshold of ∼43◦C (Caterina et al. 1997). Genetically engineered (knockout) mice lacking TRPV1 show partial deficits in acute thermal nociception, which attests to a role for thischannelinheat-evokedpain.Importantly,productsoftissuedamageandinflammationcan dramatically decrease this threshold, and genetic and pharmacologic studies have shown that TRPV1 is an essential component of the cellular signaling mechanisms through which injury produces thermal hyperalgesia and pain hypersensitivity (Basbaum et al. 2009, Caterina et al. 2000,Davisetal.2000). TRPV1marksapopulationofunmyelinated,slowlyconductingneurons(C-fibers)thatexpress theneuropeptidessubstanceP,neurokininA,andCGRPandconstituteapproximately30–50% of all somatosensory neurons within rodent sensory ganglia (Kobayashi et al. 2005, Tominaga etal.1998).Activationofthesefiberspromotespeptide-mediatedvascularleakage,vasodilation, andotherparacrineactionsonbothexcitableandnonexcitablecellsinthevicinityofthetrauma, g s.or culminatingintheproductionandreleaseofacomplexmixtureofproinflammatoryandproal- w e gesic factors (including neurotrophins, bioactive lipids, extracellular protons and nucleotides, vi w.annualrese only. ptthorueoscteehaf(saFecstig,ourasnraedc1tm)b.oaTnckohaiosmnpilrnooeccsae)l,sssceoonlfsloencreytrivvneeelrfiyvbereeerfn–eidrnrinietdgiasttteoodae(snnhtehuaenrocigenefltnhaiemci)rmisnaefltnoasrmityimvsiotayutiptoo.nOt,etmnocgpeeetrrhaeetleurarwseeiotdhr, wwal u immunologicallyinitiatedinflammation,accountsforanimportantcomponentoftissueinjury– m on evokedpainhypersensitivity(McMahonetal.2006,Meyeretal.2006).Indeed,TRPV1hascome os ded fror per tcoourenptsrefsoernatctuhteepsreenesmitiivnietynttomnoolexciouulasrhmeaatr,knereufororgdeenfiinciningfltahmemnoatciiocnep,taonrdsuthbeprompaullahtyiopnertahlgatesaica-. aF 84. Downlon 01/30/14. Awrictitathibvlaaetwibooindweoerflastnhygneesderoofpmeppaett,ihdpoeaprnhgciyrcesiaCotli-otfiigsb,icemarsligclirokaneindlyeitichooennastdrianicbvhuoetle,vsianntgodiacncaflunatcmeermanpadatiinochn(rS,osznuoiclcchspa´aansiynaira&thssroSitcaiinsa,dtieord-r 5-3h o 2012).Importantly,neurogenicinflammationhelpstoinitiateacycleinwhichinjury-evokedno- 9:35burg ciceptor activation initiates or exacerbates the inflammatory response, leading to, for instance, 2s furtheractivationandsensitizationofthenociceptorandongoinginflammation.Thus,drugstar- v. Biol. 2013.versity of Pitt gneetuiRrnoegimnthflareakmnabomlcyai,ctoesorpymtocarytcmolseae.ynsnoortyonnelryvedifimbienrisshexpparienssbruetcaelpsotofrascfiolirtamteohste,ailfinngotbaylli,nctoermruppotninengttshoisf DeUni theinflammatorysoup,renderingthemcompetenttorespondtothesefactorsthroughavarietyof Cell by signalingmechanisms(Julius&McCleskey2006).TRPV1isanimportanttargetformanyofthese v. factors,whichenhancesensitivitytoheatbyloweringthechannel’sthermalactivationthreshold. e R TRPV1sensitizationcanoccurintwoways:Someproalgesicagents(e.g.,extracellularprotons, nu. anandamide and other bioactive lipids, capsaicin, and peptide toxins) interact directly with the n A channeltoserveaspositiveallostericmodulators,whereasothers(e.g.,bradykinin,ATP,andnerve growthfactor)stimulatetheirownreceptors(oftheGprotein–coupledortyrosinekinasevariety) toactivatePLCorothersecondmessenger–signalingpathways.Inthisway,TRPV1functions asapolymodalintegratorofthermalandchemicalsignals,modulatingnociceptorexcitabilityin responsetochangesinthelocaltissueenvironment(Caterina&Julius2001,Huangetal.2006, Tominagaetal.1998).Elucidatingstructuralandbiophysicalunderpinningsoftheseinteractions remainsafascinatingandimportantgoalfrombothbasicandtranslationalstandpoints. AnEmergingFunctionalMapofTRPV1 One relatively straightforward but important goal has been to identify regions of TRPV1 that specify sensitivity to direct-acting chemical ligands, including exogenous irritants, endogenous 362 Julius CB29CH13-Julius ARI 1September2013 10:5 proalgesicagents,andsyntheticpharmacophores.Thishasbeenaccomplishedthroughstandard mutationalanalyses,guidedwherepossiblebyspecies-specificdifferencesinligandsensitivity. Thevanilloidsite. Oneofthefirstsuchgoalswastoidentifyelementsgoverningsensitivityto capsaicinandothervanilloidcompounds.Thiswasfacilitatedbyabitofneuroethologicalinsight thatrelatestoaphenomenoncalleddirecteddeterrence,whereinmammalsaresensitivetothe noxiouseffectsofcapsaicinandthusrepelledfromthechiliplant,whereasbirdsareindifferent to capsaicin and therefore are evolutionarily favored as vectors for seed dispersal (Tewksbury & Nabhan 2001). Analysis of chimeric rat/chicken TRPV1 channels, together with other site- directedmutationalstudies,suggeststhatcapsaicinsensitivityisspecifiedbyresidueswithinthe secondandthirdtransmembrane(TM2andTM3)regionsandtheinterveningcytoplasmicloop (Jordt & Julius 2002), consistent with patch-clamp-recording studies suggesting that vanilloid agonistspenetrateorcrossthemembranetoactivateTRPV1fromtheintracellularfaceofthe g s.or bilayer(Jungetal.1999).Inasimilarvein,speciesdifferencesinefficacyand/orpotencyofother w e vanilloidcompounds,suchasresiniferatoxin,anultrapotentTRPV1agonistfromEuphorbiacactus, vi w.annualrese only. osheringchsailptiigsvahizttyeTp(iGMnea2,vavtahsyrenottuhagleh.ti2cT0aM0n4t4,agJaooshntnihssteo,nhreaegvteioaanll.sco2o0bn0et6ean)i.neiTnxpgalkoaeintpeudtottagoteimvtheaepvra,rntehislieldosueidessbttuihndaditeisnspgceocpniofsyciskltieegtna,tnilndy wwal u whichthevanillylmoietyorthealiphaticsidechainisproposedtointeractwitharomaticand/or m on otherhydrophobicresiduesinthecytoplasmicloopbetweenTM2andTM3(Figure4a).Atthis os ded fror per paohiingth,-hroewsoelvuetrio,anmstorurectaucrceuoraftaelaingdandde-tcahilaendnpeilcctuormepolfetxh.evanilloidbindingsitewilllikelyrequire aF 84. Downlon 01/30/14. raesaasFnoranonsmd.aFamirpisdth,eytsahinoedlvooagntihcileallroisbdtiaobnaidcnptdiovinienglti,spisitduesclhitkheianltyfobsrepmaercasitfitiroeunscitwnuitrlealrlbasceitmihoiilngahrwiltyiythstiogenncdiafipocsgaaeninctionfuo(srsofaa-ccctaoolurlespdlseuecnoh-f 5-3h o dovanilloids)(Jordt&Julius2002).Thus,thevanilloidsiterepresentsanimportantlocusatwhich 9:35burg certaincomponentsoftheinflammatorysoupenhancethe(mammalian)channel’ssensitivityto 2s heat.Second,weknowthatforsomespecies,thevanilloidantagonistcapsazepineblocksactiva- v. Biol. 2013.versity of Pitt tsmitoreuncchntauonrtiesomann(lysd)brbeyylacwtaiphvsiecahilcoiccnhatebimounticaoallsfoatnhbdiysphkheeyyastaic(lTlaolosstmteimrinicuaglsiiatgeeattweaillt.lh1lei9kc9eh8lay)n.pnTreohlv.uisd,edgerlienaetaitninsigghthteinattoomthiec DeUni Cell by Theprotonsite. Localtissueacidosisisahallmarkofinjuryandinflammation,andextracellular v. protonsconstituteaprominentcomponentoftheinflammatorysoup.Protonsexciteorsensitize e R nociceptors by interacting with numerous molecular targets, including members of the acid- nu. sensingionchannel(ASIC)andTRPchannelfamilies(Holzer2009,McMahonetal.2006,Meyer n A etal.2006).GeneticandphysiologicalstudiessuggestthatASICscontributesignificantlytoacute acid-evokedischemicpaininskeletalorcardiacmuscle,whereasTRPV1playsaprominentrole in acid-evoked sensitization of cutaneous and visceral nociceptors (Leffler et al. 2006, Sugiura et al. 2007, Yagi et al. 2006). ASIC channels can be activated by relatively mild decreases in extracellularpHandaccountforthelarge,transientcomponentofproton-evokedcurrentsseenin avarietyofsensoryneuronsubtypes.TRPV1isactivatedatlowerpHvalues(threshold∼pH6at roomtemperature)andaccountsforthesmaller,persistentphaseofproton-evokedcurrentsseen inmanysmall,unmyelinatedneurons(Leffleretal.2006).Whereasprotonsserveasbonafide TRPV1agonistsunderconditionsofextremeacidosis(pH<6),theyfunctionaspositiveallosteric modulators under more moderate acidic conditions (pH 6.5), greatly enhancing sensitivity to heat,capsaicin,orotherinflammatoryagents.Thesedualactionslikelycontributetonociceptor sensitizationandpainhypersensitivityunderavarietyofpathologicalconditions(e.g.,infection, www.annualreviews.org • TRPChannelsandPain 363 CB29CH13-Julius ARI 1September2013 10:5 a A PLC A PIP2 g s.or A AAAAAAAAA A C w e ualreviy. A N PPKKAC ww.annuse onl ACTaPlmodulin wal m on os ded fror per aF 84. Downlon 01/30/14. b c 3o 5-h 5g 9:3bur 2s 13.Pitt v. Biol. 20versity of TRPV1 DeUni Cell by v. e R u. n n C C A N N Figure4 Anemergingstructure-functionmapforthecapsaicinreceptor,TRPV1.(a)Pharmacologicalandmutagenesisstudieshaveidentified TRPV1domainsthatconfersensitivitytovariousstimuliorcontributetophysiologicalmodulationofthechanneldownstreamof metabotropicreceptors.Theseincludesitesofactionforcapsaicin(chilipepper)andrelatedvanilloidligands,extracellularprotons (lemon),orpeptidetoxinsfromtarantula(spider).Regionsimplicatedinchannelmodulationbycellularproteinsandcytoplasmicsecond messengersarealsoindicated.(b)Thebivalentdoubleknottoxin(DkTx)fromtheEarthTigertarantulabindstotheouterporeregion ofTRPV1,lockingitinitsopenstate.Fourresidueswithinthisregiondefineaputativefootprintfortoxinbinding,illustrated schematicallyinacrosssectionofthechannelshowingjusttwodiagonallyopposedsubunitsforclarity.(c)Top-downviewofproposed DkTxbindingsiteonahomotetramericTRPV1channel.Orangeandredspheresrepresentlocationsofaminoacids(onneighboring channelsubunits)thathavebeenimplicatedintoxinbinding.TheTRPV1poredomainwasmodeledafterthestructureofthebacterial KcsApotassiumchannel.PanelsbandcwereadaptedwithpermissionfromBohlenetal.(2010).Abbreviations:A,ankyrinrepeats; C,carboxyterminus;N,aminoterminus;PLC,phospholipaseC. 364 Julius
Description: