2011.TheJournalofArachnology39:133-138 Trophic strategy ofant-eating Mexcala elegans (Araneae: Salticidae): looking for evidence of evolution ofprey-specialization StanoPekar: DepartmentofBotanyandZoology, FacultyofSciences, Masaryk University, Kotlafska2,611 37 Brno, Czech Republic. E-mail: [email protected] CharlesHaddad: DepartmentofZoology«feEntomology,UniversityoftheFreeState,P.O. Box339, Bloemfontein9300, SouthAfrica Abstract. WeinvestigatedthetrophicstrategyofMexcalaelegansPeckham&Peckham1903,anant-eatingsalticidspider fromSouthAfrica,inordertogainbaselineinformationconcerningtheevolutionofpreyspecialization.Westudiedits naturalprey,preyacceptance,andchoiceusingavarietyofpreyspecies.Initsnaturalhabitat,thespidercapturedonly ants,mainlyitsmimeticmodelCamponotiiscinctelliis,indicatingthatthespeciesisastenophagousant-eater.However,in thelaboratory,M.eleganscaptured 12differentinvertebratetaxawithefficiencysimilartothecaptureofants,suggesting thatitiseuryphagous.Forthecaptureofantsbutnotforotherprey,itusedaspecializedprey-capturebehavior.Inprey- choiceexperiments,thespidersdidnotpreferantstoflies.Wefoundnoevidenceforneuralandbehavioralconstraints related to identification and handling ofprey. Our results suggest that M. elegans is aeuryphagous specialist using a specializedant-eatingcapturestrategyinwhichpreyspecializationhasevolvedasabyproductofriskaversion(“enemy- freespace”hypothesis). Keywords: Prey,huntingbehavior,myrmecophagy,mimicry,evolution Stenophagy,theutilizationofanarrowpreyrange,maybe Spidershavebeenfoundtobemainlyeuryphagous(Nentwig a product of an innate response due to evolutionary 1987),buttherearequiteafewcasesofstenophagousspecies. transitions and fitness trade-offs or a proximate response Evidenceforstenophagyismainlyanecdotal.Themostfrequent duetospecificenvironmentalconditions;i.e.,dominanceofa type of stenophagy observed is myrmecophagy; spiders in certain prey species. In the former case, such species are several families (e.g., Zodariidae, Gnaphosidae, Theridiidae) stenophagous specialists because they are not able to catch demonstratespecializationinantpredation(Heller1976;Carico and utilizealternative prey. Inthelattercase, such predators 1978; Pekar2004). Whilethemajorityofsalticidspidersrarely are stenophagous generalists since they possess versatile feedsonants(e.g.,Nentwig1986;Guseinov2004),sometropical adaptations allowing them to capture and process a variety speciesaremyrmecophagous(Cutler1980;Wing1983;Jackson ofpreyinenvironmentswithdiverseprey(Sherry 1990). &VanOlphen1992;Lietal. 1999;Allan&Elgar2001;Jackson Evolutionofstenophagousspecialistshasbeenexplainedby & Li 2001). These myrmecophagous species use a specialized a number of hypotheses (particularly in herbivores). The tactictocaptureants(e.g.,Jackson&VanOlphen1992;Jackson enemy-free space hypothesis postulates that stenophagy has & Li 2001). However, no salticid species is known to prey evolved as a byproduct of using host/prey as a refuge or exclusivelyonants. defense (Brower 1958). The neural constraints hypothesis We investigated the prey capture behavior of a salticid (Jermyetal. 1990)suggestsaninabilitytorecognizecuesfrom spider Mexcala elegans Peckham & Peckham 1903 in South other than preferred prey. The physiological trade-off Africa. Mexcalaelegansappearstobean inaccurate Batesian hypothesis (Singer 2001) is relevant when the predator is mimicofa few ground-livingant species. It is adistinctively constrained in utilization of other than its preferred food. polymorphicspider, with threecolorvariations: 1)a metallic And, the optimal-foraging hypothesis (Singer 2008) predicts silver-gray bodywith black triangularabdominal markingin lowerefficacyinthecaptureofalternativeprey. late instar immature and adult specimens, resembling silver- Revealingthetrophicstrategyofaspeciesrequiresmultiple grayground-dwellingants(Fig. lA),presumablyCamponotiis approaches. Analysis of natural prey alone cannot provide cinctellus that are common on the ground surface and low completeevidenceforatrophicstrategy.Suchdataneedtobe foliagein northeastern South Africa; 2) a metallicsilver-gray supplemented by extensive laboratory prey acceptance and body adorned by two pairs oflarge yellow abdominal spots choiceexperiments. This is because the natural preyanalysis (Fig. IB)inadultspecimensresemblinglargeground-dwelling reveals only the realized trophic niche that measures actual winglessfemalemutillidwasps;and3)ametallicblueprosoma diet use and results from the effect of both intrinsic and andbrightmetallicgreenabdomeninearlyinstarimmatures, extrinsic variables. In contrast, laboratory experiments can possiblyinaccurateantmimics. reveal the fundamental trophic niche that is determined by OtherspeciesofthegenusMexcalafeedontheirantmodels intrinsic variables only (Bolnick et al. 2003). Furthermore, (Curtis 1988). Therefore, we predicted that M. elegans also trade-offs (behavioral, morphological, or physiological) that hunts its model ants, thus supporting the enemy-free space constrainpreyutilizationinstenophagousspecialistscanonly hypothesis. In order to reveal any trade-offs, neural or bedeterminedexperimentally.Thegatheredevidencecanthen behavioral, thatwould lead to support alternativeevolution- beusedtodrawconclusionsonthetrophicstrategy. ary hypotheses, we performed both field and laboratory 133 — 134 THEJOURNALOFARACHNOLOGY \ A — Figure 1. Mexcalaeleganscapturingantsinthefield.A.FemaleofthegraycolorvariationcapturingCaniponotuscinctellus\B.Femaleof ' thespottedvariationcapturingCaniponotussp.2. surveys. Afterexaminingnaturalpreycaptureinthefield,we and 12 h laterinitiated anewtrialwithadifferent prey. Ifa tested the ability ofthis species to catch and eat alternative prey was accepted, we initiated the next trial 24 h later. For prey in the laboratory, and also whether it prefers ants to each trial, we recorded whether the prey was attacked and alternativeprey. subsequentlyconsumed. Intrialswithantortermiteprey,we j METHODS also recorded the latency to attack (i.e., time between the Field survey.—We investigated the natural prey of M. slpaitdeenrcyotroiepnatraatliyosnist(io.we.a,rtdimtehebeptrweeyenanthdetahtetacakttaacnkd)garanbdbitnhge elegans during field trips to Ndumo Game Reserve, South thepreyin thechelicerae). Africa inJune-Julyand November-December2004-2009(11 Intheprey-choiceexperiment,performedaftertheacceptance trips in total) that formed part of a larger arachnid experiment with a paired design, we released two non-native biodiversitysurveyinthereserve. Wecollected64M. elegans preyitemsofsimilarsize(relativeprey/spidersize:0.4-1)atthe , spiders in a variety ofhabitats: Acacia nigrescens woodland sametimeintothedishoccupiedbyaspider. Spiders(n = 15) ] (1.6% of total), A. xanthophloea forest (7.8%), broadleaf werestarvedfortwodayspriortoeachtrial. Weusedanant, woodland (25%), floodplains (25%), Ficus sycomonis forest Tetramorium caespitiim (Myrmicinae), and a fly. Drosophila (3.1%),andsubtropicalbush(37.5%). Individualspiderswere melanogaster(Drosophilidae),ortwoantspecies, T. caespitum | followed for up to 10 minutes to see whether they would andLasiiisniger(Formicinae).Thesetwoalternativetreatments capture ants and to note the prey capture behavior and wererepeated foreachindividualonarandombasis. Inthese interactions with different ant species. Ifthey had a prey in paired trials, we recorded which ofthe two prey insects was their chelicerae, the spiders were collected and preserved in attackedandwhichonewasconsumed.Atleastoneoftheprey ethanol and brought to laboratory where their sex and the insectswasattackedandconsumedineachtrial.Allexperiments prey was identified to species level. We measured the size of wereperformedbetween09:00and 16:00h. ' adultmales(// = 15)andfemales(n = 15)and 15antworkers Data analysis. We analyzed data using various methods of each species captured in the field using an ocular withinR(RCoreDevelopmentTeam2009).Forthefielddata, micrometerwithinabinocu—larstereomicroscope. weusedANOVAtocomparepreysizeamongimmature,adult Laboratory experiments. For intensive studies of prey male and adult female spiders. Because there were repeated ’ capture and prey choice, we brought 15 live juvenile M. measuresofthesameindividualsinbothexperiments,weused elegans (body size 3.5-5.3mm) collected at Ndumo Game Generalized Estimating Equations (GEE) as an alternativeto ’ Reserve to the home laboratory. We housed spiders individ- Generalized Linear Models. This method allows implementa- j uallyinPetridishes(diam.4.5cm)withafilterpaperattached tionofanassociation(correlation)structurethatcorrectsfortoo 1 to the bottom. A small piece ofcotton moistened at 2-day small standard errors of parameter estimates and inferences I intervals served as a water resource. Using these spiders, we favoring acceptance of the alternative hypothesis (Hardin & performed twodifferentexperiments. Hilbe2003).WeusedGEEwithbinomialerrorstructure(GEE- 1| Intheacceptanceexperiment,weusedacompleterepeated b) to compare capture frequency of the prey acceptance i measures design, offering each spider (n = 15) each of 17 experiment,sincethe responsevariableswererelativefrequen- potential prey species in random order (Table2). The prey cies.WeusedGEEwithGammaerrorsandloglink(GEE-g)to , were not native to the spider, as the experiments were comparelatenciesamongselectedpreyspecies,astheresponse . performedinEurope,butweusedonlypreyfromordersthat variablewastime,and variancewasexpected toincreasewith ( alsooccurinSouthAfrica. Therelativebodysizeoftheprey themean.Weusedaproportiontesttocomparethefrequency : (1.6-8.0mm)tospiderbodylength(3.3-5.3mm)was0.3-2.4. ofattackandconsumptionseparatelyforselectedpreyspecies. Wreespoonbdsetroveadperaeychittermialwictohnitnin1u5oumsilny,.wIef sstpoipdepresd tdhied trnioatl WMceNeamnaalryzteesdtdtuheetoprpeayi-rcehdoitcrieals.experiments data with the || i PEKAR&HADDAD—TROPHICSTRATEGYOFMEXCALA ELEGANS 135 — Table 1. Natural prey ofjuvenile, male, and female Me.xcala elegans specimens determined during field observations in Ndumo GameReservefrom2004to2009.Thesizeisanaveragetotalbody lengthofworkersattackedbyspiders. Ants Spiderpredators Subfamily/species Size[mm] Juveniles Males Females Total Formicinae Anoplolepis custodiens(Smith) 5.9 0 1 4 5 Camponotus cinctellus (Gerstacker) 7.2 6 12 6 24 Camponotussp.2 (maculatusgroup) 8.6 2 3 3 8 Polyrhachissp. 8.6 0 4 5 9 Myrmicinae Crematogastersp. 3.5 2 0 1 3 Myrmicaria natalensis(Smith) 6.3 0 1 3 4 Tetramorium Figure 2.—Comparisonofthepreysize(mean ±SE)capturedby quadrispinosum juveniles,malesandfemalesinthefield. Emery 3.5 3 0 0 3 Ponerinae attacked, they were less likely to consume Triholium larvae Pachycondyla and Pardosa spiders (Proportion tests, X" > 5.5, P < 0.02). tarsata(Fabricius) 16.5 0 0 4 4 Spidersattackedpreythatwereonaverage 1.03oftheirbody Streblognathus length (Q25 = 0.64, Q75 = 2.2, n = 255). In the choice PseupRdeooebmteeyrrrstmisiocninae 11.6 0 0 2 2 eslypxipadeserrifslmieeanstt(tsaM,ccksNepdiedmeaarnsrdattcetsoatnsc,skueXdm-e/adn=dL0ac,soiPnuss=uamnIetdnsa=anst1sf5r)a.esqSufiermneitqlluayernltya,-s Teatrmahpiognueara(Emery) 6.8 2 0 0 2 TetMer.axmcoarliaumeleagnatnss(uMsceNdedmifafreretnesttsp,reXd^a/to>ry0.b4e,hPav>ior0.t5o).catch Total 15 21 28 64 different prey taxa. Although spiders ignored woodlice and beetles, they stalked aphids, crickets, bugs, and Theridion spiders but did not attack them. Spiders grabbed small springtails, leafhoppers, moths, and flies with their forelegs — RESULTS and moved them to their chelicerae. In contrast, they Field survey. In the field, M. elegans captured and repeatedlyattacked termiteshead-on, and thengrabbed hold consumedtenspeciesofantsfromfoursubfamilies(Table 1). ofthe insect’s thorax. To catch ants, the spider approached Weobservednopreyotherthanantsbeingcaptured.Among from the rear, maintaining a distance ofthree to four body ants,themostfrequentpreywasCamponotuscinctellus.Adult lengths from an ant, all the while moving the front legs and male(bodysize5.3-8.3mm)andfemale(6.1-8.9mm, Fig. 1) abdomen up and down. The spider attacked quickly from M. eleganscaptured significantly larger ant species {Campo- behind, biting the ant on the abdomen. The spider then notus, Polyrhachis, Anoplolepis and Myrmicaria) than the retreated and followed its ailing prey with raised forelegs juveniles, which generally preyed on smaller ants such as (Fig. 3A), maintainingadistanceofabouttwo bodylengths. Crematogaster, Tetramorhim, and Tetraponera (ANOVA, Once the ant slowed down, the spider grabbed the ant’s F2,6o = 4.5, P= 0.013, Fig.—2). antenna with its chelicerae (Fig. 3B), and after a minute, it Laboratory experiments. Although the prey acceptance moveditsholdtothethorax. experimentshowedthatthespiderswerecapableofattacking Among the four ant and one termite species used in the diverse prey, and the prey choice experiment showed no trials,thespidersshowedsignificantlydifferentlatencyintheir preference between prey types, the spiders did respond attacks (GEE-g, = 9.6, P = 0.047, Fig. 4A). Spiders differently to varying prey types. In the acceptance experi- attacked Lasiusand Messor ants with a significantly shorter ment, spiders responded differently to the 17 potential prey latency than Formica ants (contrasts, P < 0.02). There was species. Thefrequencyofattacksdifferedamongthe 17prey also a significantly different paralysis latency among these species (GEE-b, = 194, P < 0.0001). Spiders did not prey ants (GEE-g, X^4 = 49.4, P < 0.0001, Fig. 4B). Large attack crickets, beetles, Theridion spiders, or woodlice and FormicaandMessorantshadasignificantlylongerlatencyto springtailsandbeetlelarvaewereonlyattackedbyhalfofthe paralysis than small Lasiusand Tetramorium ants (contrasts, spiders. Other prey species such as ants, Pardosa spiders, P < 0.03). Termites of the same size as small ants were termites, flies, and moths were always attacked (Table2). paralyzed more quickly than all ant species (contrasts, P < Althoughspidersconsumed themajorityofpreyspeciesthey 0.0001). 136 THEJOURNALOFARACHNOLOGY i Table 2.—Listofpreyusedinlaboratoryexperiment.Thesizeof DISCUSSION pPreeryceinstaagneaovfercaognesutomteadlbisodofytlheonsgetht.ha«t=wer1e5atrtitaalcskefdor.eachspecies. fieWldeobfsoeurnvdataiocnosntsruagsgteisntgtarosptheincospthraagtoeugysihnabMi.t,elbeugtanlsa.boOruar- Size % toryexperimentsconverselyindicateaeuryphagoushabit. In Order/species [mm] Attacked Consumed thefield,M.eleganscapturedonlyants.Thisisconsistentwith observations oftwo otherspecies ofthisgenus, M. namibica ; Araneae Wesolowska 2009 and M. ntfa Peckham & Peckham 1902 t Thericiionsp. 3.0 0 0 from Namibia, that feed on Camponotusfulvopilosus (Curtis \ Pardusasp. 2.5 100 10 1988). In the laboratory, however, M. eleganscaught awide | Isopoda varietyofprey. So, thefundamental trophicnicheincludesa j 1 PorcellioscaherLatreille 3.5 0 0 wide assortment ofprey, whereas the realized niche includes i Collembola onlyants. SinellaciirvisetaBrook 1.6 45.5 100 Mexcala elegans recognized and captured prey other than ants as efficiently, or even more efficiently, than ants. Thus Isoptera neural and behavioral trade-offs resulting in an inability to Reticiditennessp. 4.7 100 100 recognizecuesfromotherpreyandtocatchnon-antpreywere Ensifera not present. Thisis incontrasttostenophagousant-eatersof Acheladomesticus(Linnaeus) 3.5 0 0 thegenusZodarion, forexample,whichareunabletosubdue Heteroptera preyotherthanants(Pekar2004;Pekar&Toft2009).YetM. Lygiispratensis(Linnaeus) 6.0 0 0 elegansusedcompletelydifferentbehaviortocatchantsthan other prey, so this species has clearly evolved a specialized Sternorhyncha capturestrategythatseemstobeveryeffectiveandsafeforant AphisfahaeScopoli 1.7 9.1 0 capture,aswehavenotwitnessedasinglesuccessfulreversed Auchenorhyncha attackbyananttowardthespidersinlaboratoryexperiments Eupteryxsp. 3.5 81.8 100 (0%,n = 60,pooledacrosstheacceptancetrialswithants). ' Lepidoptera Mexcala elegans used a ‘bite-and-release’ tactic to catch ‘ Plodiainterpunctella(Hubner) 6.5 81.8 100 ants. This specific tactic is also used by other ant-eating ' Hymenoptera salticids, namely Naphrys pulex (Hentz 1846), Aelurillus muganiciis Dunin 1984, and Tutelina similis (Banks 1895) * LFaosrinuuscanipgrearte(nLsiinsnaReeutsz)ius 63..35 110000 110000 (Wing 1983;Lietal. 1996;Huseynovetal.2005).Thisspecial - Messornmtieus(Nylander) 6.0 91.7 100 tactic includes a short leap with a quick bite, followed by Tetramoriiimcaespiliini release and retreat. Interestingly, a similar tactic is used by (Linnaeus) 3.5 91.7 100 other non-salticid, ant-eating spiders, such as gnaphosids, zodariids,andthomisids(Heller 1976;Lubin 1983;Oliveira& Coleoptera PThriylblaoorltvirauenliacsaps.tainmeaigimo(Herbst) 83..30 500 00 a(SletEagtdzsawic(amkJaradecsi1kt9seh8toe5nra;l.&hPe1ea9Vkd7aa4-rn)o,nO2;o0lr0pi4f.h)er.e.,onmIbn1itt9he9eas2ll;rebacJeraat;scweikse.s,ee.o,nntohhneetetasahpdle.idaae1bn9rd9sd8o)um,tsehubonaorltaolhxry .t Diptera tacticsmakingitimpossiblefortheanttodefenditself. Drosophilamelanogaster As the most frequent natural prey of M. elegans were Meigen 2.0 100 100 Camponotus ants (subfamily Formicinae), we expected that — Figure 3. PredatorybehaviorofM.eleganswhencapturingants.A.Spiderstalksattackedantwithraisedforelegs.B.Spidergrabsantennae 1 ofantinchelicerae. PEKAR&HADDAD—TROPHICSTRATEGYOFMEXCALA ELEGANS 137 — Figure 4. Comparisonoftheattacklatency(A)andparalysis latency(B)forfourant {Eormica, Lcishts, Xlessor, Telnimorium)andone termitespecies. Barsindicatemeans,whiskersindicate95%confidenceintervalsofeachmean. related ants {Formica and Lasins) would be attacked and may provide M. eleganswith higher protection from enemies. paralyzedmorequicklythanothers.Thespidersattackedfour Thusitappearstofavortheenemy-freespacehypothesis. ant species used in the acceptance trials at significantly We conclude that the evidence gained on the trophic different latencies. Slow-moving species {Messor and Lasius) strategy of M. elegans suggests that it is a euryphagous wereattackedmorerapidlythanfast-movingFormica. Larger specialist, because it has the versatility to catch a variety of ant species had longer paralysis latencies than small ant prey but uses a specialized prey capture tactic on ants. species, regardless oftheir taxonomic relatedness, suggesting Observedstenophagyinthefieldhaspresumablyresultedasa that the venom of M. elegans is not specific for certain byproduct of adaptive dynamics related to risk aversion subfamilies of ants, as was found in ant-eating Zodarion (avoidingofenemies). (Pekaretal. 2008). ACKNOWLEDGMENTS Inthefield,Mexcalaelegansfrequentlycapturesantswitha greater body length than itself; the largest, Pachycondyla Hamish Robertson (Iziko South African Museum, Cape tarsata, is double the spider’s body length. Similarly, in Town)isthankedforassistancewiththeidentificationofsome laboratoryexperiments,thespiderscapturedpreyuptotwice ants; two reviewers and L. Higgins are thanked for useful their own length, consistent with observations of other comments. This study was supported by Project mthyeArmbmsseeelcnvocepesha(eog.fgo.u,nseSuosrypaeilrder1as9n4d3t;habPteehkcaaavtricoh2r0a0pl4r)e.tyramdeu-cohffslardgoeersthnaont ntSoph.oarnt0ks0e2do1f6f2otr2h4ep1e6CrmzoieftcshthteRoepMuuinbndlieisrctt.raykEezoeffmivEedledulwcooartkKioZnat,NtYhWoeiuldtNlhdifueamnoids preclude the presence of physiological trade-offs. We have Game Reserve and to export material for laboratory not studied the effect ofprey type on fitness aspects such as experiments (permit numbers 1924/2004, 54/2005, 1010/2006, survival or reproduction. Thus we cannot exclude the 2496/2006,4198/2008and2612/2009). possibilitythat M. eleganshasevolved a physiological trade- LITERATURECITED offintheirutilizationofalternativeprey.However,inanother Allan, R.A. &M.A. Elgar. 2001. Exploitationofthegreentreeant ant-eating salticid, Siler cupreus (Simon 1889), Miyashita Oecophylla smaragdimi by the salticid spider Cosmophasis hitae- (1991) did not find evidence for either behavioral or niata.AustralianJournalofZoology49:129-139. physiological trade-offs, as the spider was able to catch Bolnick, D.I., R. Svanbiick, J.A. Fordyce, L.H. Yang, J.M. Davis, alternativepreyandsufferedhighmortalitywhenrearedona C.D. Hulsey & M.L. Forister. 2003. Theecology ofindividuals: pure ant diet. Therefore, we expect that physiological trade- incidenceandimplicationsofindividual specialization. American offs may not have evolved in M. elegans, either. If our Naturalist 161:1-28. predictionsarecorrect,thentheevolutionofstenophagyinM. Brower,L.P. 1958.Birdpredationandfoodplantspecificityinclosely elegans cannot be explained by the physiological trade-off relatedprocrypticinsects.AmericanNaturalist92:183-187. hypothesis. M Car(iAcroa,neJa.eE.: T1h97e8r.idiPirdeadea)toarnydbtehheavievoorluitnioEniairryyopsiisgnfiufniecharnicse(oHfenwtezb) Mexccda elegans, like rufa and M. namihica, not only reduction.SymposiaoftheZoologicalSocietyofLondon42:51-58. imitatesantsbutalsofeedsonthemodelspecies(Curtis1988).It Curtis, B.A. 1988. Do ant-mimicking Co.smopluisis spiders prey on isthereforelikelyaBatesianmimic.Thisspiderassociatesclosely theirCamponotiismodels?Cimbebasia 10:67-70. withitsantmodels,whichareabundantinavarietyofhabitats. Cutler, B. 1980. Ant predation by Hahrocestiim pulex (Hentz) Myrmecomorphy,combinedwithspatialassociationwithants. (Araneae:Salticidae).ZoologischerAnzeiger204:97-101. THEJOURNALOFARACHNOLOGY 138 Edwards,G.B.,J.F.Carroll&W.H.Whitcomb. 1974.Stoidisaiirata Lubin, Y.D. 1983. An ant-eatingcrab spider from the Galapagos. (Araneae:Salticidae),aspiderpredatorofants.FloridaEntomol- NoticiasdeGalapagos37:18-19. ogist57:337-346. Miyashita,K.1991.LifehistoryofthejumpingspiderSilerellavittata Guseinov,E.F.2004. NaturalpreyofthejumpingspiderMenemenis (Karsh)(Araneae,Salticidae).ZoologicalScience8:785-788. semilimhatus(Hahn, 1827)(Araneae: Salticidae),withnotesonits Nentwig, W. 1986. Non-webbuilding spiders: prey specialists or unusualpredatorybehaviour.Pp.93-100.InProceedingsofthe21st generalists?Oecologia69:571-576. EuropeanColloquiumofArachnology,Russia2003.(D.V.Logunov Nentwig, W. 1987. Theprey ofspiders. Pp. 249-263. In Ecophysi- &D.Penney,eds.).St.PetersburgUniversityPress,St.Petersburg. ologyofSpiders.(W.Nentwig,ed.).Springer-Verlag,Berlin. Hardin,J.W.&J.M.Hilbe.2003.GeneralizedEstimatingEquations. Oliveira, P.S. & 1. Sazima. 1985. Ant-hunting behaviour in spiders Chapman&Hall/CRC,BocaRaton, Florida. withemphasisonStrophiusnigricans(Thomisidae).Bulletinofthe Heller, G. 1976. Zum Beutefangverhalten der ameisenfressenden BritishArachnologicalSociety6:309-312. Spinne Callilepis noctuma (Arachnida: Araneae: Drassodidae). Pekar, S. 2004. Predatory behavior of two European ant-eating EntomologicaGermanica3:100-103. spiders(Araneae,Zodariidae).JournalofArachnology32:31^1. Huseynov, E.F.O., F.R. Cross & R.R. Jackson. 2005. Natural diet Pekar, S., S. Toft, M. Hruskova& D. Mayntz. 2008. Dietary and and prey-choice behaviour of Aelurillus muganicus (Araneae: prey-captureadaptationsbywhichZodariongermanicum,anant- Salticidae), a myrmecophagic jumping spider from Azerbaijan. eatingspider(Araneae:Zodariidae),specialisesontheFormicinae. JournalofZoology267:159-165. Naturwissenschaften95:233-239. Jackson, R.R. & D. Li. 2001. Prey-capture techniques and prey Pekar,S.&S.Toft.2009.Canant-eatingZodarionspiders(Araneae: preferenceso\'Zenodonisdiirvillei,Z.nielcdlescensandZ.orhicidata, Zodariidae)developonadietoptimalforpolyphagouspredators? tropical ant-eating jumping spiders (Araneae: Salticidae) from PhysiologicalEntomology34:195-201. Australia.NewZealandJournalofZoology28:299-341. R DevelopmentCoreTeam. 2009. R: Alanguageandenvironment Jackson,R.R.,D.Li,A.Barrion&G.B.Edwards.1998.Prey-capture for statistical computing. Vienna: R Foundation for Statistical techniques and prey preferences of nine species of ant-eating Computing.Onlineathttp://www.R-project.org. jumpingspiders (Araneae: Salticidae) from the Philippines. New Sherry,T.W.1990.Whenarebirdsdietaryspecialized?Distinguishing ZealandJournalofZoology25:249-272. ecologicalfromevolutionaryapproaches.StudiesinAvianBiology Jackson, R.R.&A.vanOlphen. 1992. Prey-capturetechniquesand 13:337-352. preypreferencesofCInysilla, NallaandSiler,ant-eatingjumping Singer, M.S. 2001. Determinants of polyphagy by a woolly bear spiders(Araneae,Salticidae)from KenyaandSriLanka.Journal caterpillar:atestofthephysiologicalefficiencyhypothesis.Oikos ofZoology227:163-170. 93:194-204. Jermy,T.,E.Labos&I.Molnar. 1990.Stenophagyofphytophagous Singer,M.S.2008.Evolutionaryecologyofpolyphagy.Pp.29^2.In insects-a result ofconstraints on the evolution ofthe nervous Specialization, Speciation, and Radiation. The Evolutionary sDyysntaemm.icsPp.of 1E5v7o-l1u6t6io.n.In(J.OrMgaaynnizaartdionSamlithCon&stGra.inVtisda,onedst.h)e. CBailoilfoogrynioafPHreesrsb,ivBoerrokeulseyI,nsCeacltsi.fo(rKn.iJa..Tilmon,ed.). Universityof Li,pMDra.en,ychRpe.rsRet.feeJrraecUnnkciesvsoenros&fitBHy.aPhCrrueotsclsee,sr.tMuai1n9nc9h6je.usdtPeerxre,,y-acUnaKp.taunrte-etaetcihnngiqjuuemspainndg SoymAeryra,rimgBe.nceoe19ps4h3a.dgeCeoslnatdrepisrbuoetvnievonincreoansfocedcteiuddeMenatreastlehei.ollloe1.g.iqBQuuuelelelettqiuenecsodluoAgrMiaquiusgeneedueemss spider (Araneae, Salticidae) from North America. Journal of d’HistoireNaturelledeMarseille 13:51-55. Li,ZDo.o,loRg.yR.2J40a:c5k5s1o-n56&2.D.P.Harland. 1999.Prey-capturetechniques Wintgh,atKf.eed1s98o3.nTaunttse.liJnaousrinianlUisof(AtrhaeneKaaen:saSsaltEinctidoameo)l:ogaincaalntSomciimeitcy andpreypreferencesofAelurillusaeriiginosus, A. cognatusandA. 56:55-58. kochi,ant-eatingjumpingspiders(Araneae:Salticidae)fromIsrael. IsraelJournalofZoology45:341-359. Manuscriptreceived9September2010, revised2March2011.