Trivalent Live Attenuated Influenza-Simian Immunodeficiency Virus Vaccines: Efficacy and Evolution of Cytotoxic T Lymphocyte Escape in Macaques JeanetteC.Reece,aSheilajenAlcantara,aShayaranaGooneratne,aSinthujanJegaskanda,aThakshilaAmaresena,a CarolineS.Fernandez,aKarenLaurie,bAeronHurt,bShelbyL.O’Connor,cMaxHarris,cJankaPetravic,dAlexeyMartyushev,d AndrewGrimm,dMilesP.Davenport,dJohnStambas,a,eRobertDeRose,aStephenJ.Kenta DepartmentofMicrobiologyandImmunology,UniversityofMelbourne,Parkville,Victoria,Australiaa;WHOCollaboratingCentreforReferenceandResearchonInfluenza, NorthMelbourne,Victoria,Australiab;DepartmentofPathologyandLaboratoryMedicine,UniversityofWisconsin,Madison,Wisconsin,USAc;CentreforVascular Research,UniversityofNewSouthWales,Kensington,NewSouthWales,Australiad;SchoolofMedicine,DeakinUniversity,WaurnPonds,Victoria,Australiae Thereisanurgentneedforahumanimmunodeficiencyvirus(HIV)vaccinethatinducesrobustmucosalimmunity.CD8(cid:1)cyto- D toxicTlymphocytes(CTLs)applysubstantialantiviralpressure,butCTLstoindividualepitopesselectforimmuneescapevari- o antsinbothHIVinhumansandSIVinmacaques.Inducingmultiplesimianimmunodeficiencyvirus(SIV)-specificCTLsmay w n assistincontrollingviremia.Wevaccinated10Mane-A1*08401(cid:1)femalepigtailmacaqueswithrecombinantinfluenzaviruses lo expressingthreeMane-A1*08401-restrictedSIV-specificCTLepitopesandsubsequentlychallengedtheanimals,alongwithfive a d controls,intravaginallywithSIV .Seroconversiontotheinfluenzavirusvectorresultedandsmall,butdetectable,SIV-spe- e mac251 d cificCTLresponseswereinduced.TherewasaboostinCTLresponsesafterchallengebutnoprotectionfromhigh-levelviremia f r o orCD4depletionwasobserved.AllthreeCTLepitopesunderwentacoordinatedpatternofimmuneescapeduringearlySIV m infection.CTLescapewasmorerapidinthevaccineesthaninthecontrolsatthemoredominantCTLepitopes.AlthoughCTL h escapecanincura“fitness”costtothevirus,aputativecompensatorymutation20aminoacidsupstreamfromanimmunodomi- tt p nantGagCTLepitopealsoevolvedsoonaftertheprimaryCTLescapemutation.WeconcludethatvaccinesbasedonlyonCTL :/ / epitopeswilllikelybeunderminedbyrapidevolutionofbothCTLescapeandcompensatorymutations.Morepotentandpossi- jv i. blybroaderimmuneresponsesmayberequiredtoprotectpigtailmacaquesfromSIV. a s m . o r Thehumanimmunodeficiencyvirustype1(HIV-1)pandemic WerecentlydescribedaninfluenzavectorSIVvaccinemodel g/ o continues to be a global health problem. Despite significant wherebySIVCTLepitopeswereinsertedintotheneuraminidase n efforts,aneffectivevaccinehasnotyetbeendeveloped,anditis (NA)geneofmouse-adaptedattenuatedinfluenzaviruses.Infec- M stillunclearwhatasuccessfulvaccinationapproachwillcomprise. tion of pigtail macaques via the respiratory route induced SIV- a r c Attemptstoinducebroadlyreactiveneutralizingantibodieshave specificCTLresponses,butinpilotstudiestheinductionofonly h thusfarbeenunsuccessful.Non-neutralizingantibodiesappearto one SIV-specific CTL response resulted in selection of immune 2 5 haveaffordedonlymodestprotectionintherecentThaiRV144 escapevariantsandwasnotprotectiveagainstSIVmac251challenge , 2 trial (1). Cytotoxic T lymphocyte (CTL) responses have been (22).WeexpandedourvectorstoincludethreeSIV-specificCTL 0 showntoassistinthecontrolofHIVinhumansandsimianim- 1 epitopes,allofwhichboostedCTLresponsesinsmallstudieson 3 munodeficiencyvirus(SIV)inmacaques(2–9).InductionofCTL SIV-infectedanimals.Inthepresentstudy,weanalyzedtheim- b y immunity by adenovirus vaccines was not protective in human munogenicity,efficacy,andevolutionofimmuneescapeSIVvari- g trials (10), and a median of only one epitope-specific CTL re- u antsaftervaccinationwithrecombinantinfluenzavirusesexpress- e sponsewasinducedbytheregimen(11).Asieveanalysisofbreak- s ingthreeSIV-specificCTLepitopesinpigtailmacaques. t throughHIVsequenceintheSTEPadenovirusvaccinetrialdid, however, show some impact of the CTL responses in terms of MATERIALSANDMETHODS selection for escape mutations (12). In the absence of complete control of viremia, selection of immune escape variants can re- Animals. Fifteen naive female and two naive male colony-bred pigtail duceviralreplicationcapacity(reduce“fitness”)andslowdown macaques(Macacanemestrina)werestudied,allexpressingthecommon diseaseprogression.MutationsoutsidetheCTLepitopecan,how- majorhistocompatibilitycomplex(MHC)classIalleleMane-A1*08401 ever,partiallycompensateforthefitnesscostofCTLescapemu- (previouslynamedMane-A*10)asconfirmedusinghigh-throughputse- tations (13–17). The degree to which compensatory mutations quencing(23).Animalswereanesthetizedintramuscularlywithketamine negatefitnesscostimputedbyCTLescapemutationsinthevac- cinationsettingisnotclear. BroaderCTLresponsesmayimpartmoresubstantialcontrol Received12October2012 Accepted15January2013 ofviremia(18,19),assuggestedbythe“heterozygousadvantage” Publishedaheadofprint23January2013 seeninsubjectswithawidercomplementofHLAalleles(20,21). AddresscorrespondencetoStephenJ.Kent,[email protected]. Alternatively,elicitingCTLresponsestoasmallnumberofcritical Copyright©2013,AmericanSocietyforMicrobiology.AllRightsReserved. epitopespertinentforSIVcontrolmaybeamoreimportantfactor doi:10.1128/JVI.02645-12 forvaccinedesign(7). 4146 jvi.asm.org JournalofVirology p.4146–4160 April2013 Volume87 Number8 TrivalentLiveAttenuatedInfluenzaVirus-SIVVaccines TABLE1Vaccinegroupsandregimens SIV challenge Influenzavirus-SIVvaccination(route,strain,dose[PFU])at: mac251 (dose[TCID ], 50 Testgroup n Animalno.a Wk0 Wk4 Wk9 Wk17 route)atwk25f Vaccinees 8 25377,26359,B0527*, i.n.,H3N2-SIV,108 i.n.,H1N1-SIV,108 i.n.,H3N2-SIV,108 i.n.,H1N1-SIV,108 104,i.vag. (n(cid:5)10) B0517,B0526, B0440,B0547, B0443* 2 45418†,C0933 i.vag.,H3N2-SIV,108 i.vag.,H1N1-SIV,108 i.n.,H3N2-SIV,108 i.n.,H1N1-SIV,108 104,i.vag. Controls 3 19351,19530†,B0508, i.n.d,H3N2b,108 i.n.,H1N1c,108 i.n.,H3N2,108 i.n.,H1N1,108 104,i.vag. (n(cid:5)7) 2 19341,C3754† i.vag.e,H3N2,108 i.vag.,H1N1,108 i.n.,H3N2,108 i.n.,H1N1,108 104,i.vag. 2 C3751‡,5873‡ 104,i.r. a*,Macaqueseuthanizedatday10afterSIVchallenge;†,3macaquesnotinfectedaftertheSIV challengeatweek25wererechallengedwitha10-fold-higherdoseof mac251 SIV (105TCID )atweek32;‡,malemacaquesinfectedwithSIV atthesametimeusedascontrolsforpyrosequencingstudies. mac251 50 mac251 bX31(H3N2,A/HKx31). cPR8(H1N1,A/PuertoRico/8/1939). D dMacaquesimmunizedintranasally(i.n.). o eMacaquesimmunizedintravaginally(i.vag.). w fNotethatfemalemacaqueswerechallengedi.vag.,andmalemacaqueswerechallengedintrarectally(i.r.). n lo a d e d (10 mg/kg) prior to any procedures. All studies were approved by the vaccinationduringinfection(22).Briefly,swabswereanalyzedusinga f r UniversityofMelbourneanimalethicscommittee. SuperScript III One-Step reverse transcription-PCR (RT-PCR) system o m Recombinantinfluenzavirus-SIVconstructs.Sixseparaterecombi- (Invitrogen)andprimersandaprobetargetingthematrixgeneusingthe nantinfluenzaAvirusesusedinthetrialweregeneratedusinganeight- ABI7500real-timePCRsystem(AppliedBiosciences).Seroconversionto h t plasmid reverse genetics system as previously outlined and studied in influenzaAvirusinserialplasmasampleswasmeasuredbyahemagglu- tp macaques(22,24–27).Briefly,thesixDNAconstructsencodedeightin- tinationinhibition(HI)assayaspreviouslydescribed(29).Briefly,25(cid:1)l :// fluenzavirussegments,includingageneticallymanipulatedneuramini- ofinfluenzaviruswasincubatedatroomtemperaturewith2-folddilu- jvi. dase (NA) segment containing one Mane-A*10-restricted CD8 T cell tions of sera treated with receptor-destroying enzyme (RDE) (Deka a s epitopesequence;eitherKP9(SIVGag164-172),KVA10(SIVTat114-123),or Seiken,Tokyo,Japan)for1h.Turkeyredbloodcells(25(cid:1)l[vol/vol]) m KSA10(SIVTat87-96).TheCD8Tcellepitopeswereinsertedseparately wereadded,andhemagglutinationwasobserved30minlater.Titersare .o intotheNAstalksoftwomouse-adaptedstrainsofinfluenzaAvirususing expressedasthereciprocalofthehighestdilutionofplasmawherehem- rg recombinantPCRtechniques(25).Thesevirusessharethesameinternal agglutinationwasprevented. o/ gene segments but differ in their surface glycoprotein hemagglutinin SIVchallengeofpigtailmacaques.Allfemalemacaques(10recom- n (HA)andNAgenes—X31(H3N2,A/HKx31)andPR8(H1N1,A/Puerto binant influenza virus-SIV-immunized animals and 5 influenza virus- M Rico/8/1939).Thatis,theconstructsconsistedofX31-KP9,X31-KVA10, immunizedanimals)werechallengedi.vag.atweek25witha10450% ar X31-KSA10,PR8-KP9,PR8-KVA10,andPR8-KSA10.Thecontrolinflu- c enzavirusesconsistedofX31andPR8withouttheinsertedCD8Tcell Mtisisluleerc,uNltautrioeninafleIcntisvtietudtoesseo(TfCHIeDal5t0h))o.fISnIVadmdaict2i5o1n(,ktinwdolynparivoevimdeadlebmyNa-. h 2 epitopes. The stability of the inserted peptide epitopes within the ex- 5 caquesusedsolelyforpyrosequencingstudieswerechallengedintrarec- , pandedvirionswasconfirmedbysequencingpriortovaccination. tally(i.r.)witha104TCID doseofSIV (Table1).SIVinfectionwas 2 Infection of pigtail macaques with recombinant influenza virus- 50 mac251 0 assessedbymonitoringSIVplasmaRNAlevelsaspreviouslydescribed 1 SIV.Allthreeseparaterecombinantinfluenzavirus-SIVconstructs(ei- 3 therPR8orX31)wereadministeredto10vaccinatedanimals(Table1).A (22). Three animals that did not become infected after the initial SIV b totalof108PFUofinfluenzaviruswasadministeredviatherespiratory cfohladl-lehniggheewrecroenrceecnhtraallteionngeodfiv.ivraugs.(710w5eTekCsIDlaterof(aStIVweek32)).Twwitohvaac1c0i-- y g tract(intranasally[i.n.]andintratracheally)inphosphate-bufferedsaline 50 mac251 u as previously described (22). Corresponding wild-type influenza virus nated animals (B0443 and B0527) were euthanized at day 10 to study e (108PFU)wasadministeredto“control”animals.Allanimalsreceivedthe tissuesamplesafterSIVmac251challenge,sothetotalnumberofvaccinated st animalsstudiedimmunologicallywas8.Animalsweremonitoredatserial influenzavirusesviatherespiratorytractwiththeexceptionoffourma- timepointsfortotalperipheralCD4Tcelldepletionaspreviouslyde- caques(twovaccineesandtwocontrols)thatreceivedthefirsttwoinoc- scribed(30).(cid:2)7highCD4(cid:3)Tcellsinthebloodwerealsoexaminedsinceit ulationsintravaginally(i.vag.),followedbytwoinoculationsviatherespi- haspreviouslybeendemonstratedthatareductionin(cid:2)7highCD4(cid:3)Tcells ratorytract(Table1).Vaccinationsweregiveni.vag.basedontheresults frompreviousmurinestudieswherei.vag.immunizationwithinfluenza inthebloodduringSIVinfectioninrhesusmacaquescorrelateswiththe Avirusprovidedprotectivemucosalimmunityagainsthomosubtypicand lossofintestinallaminapropriaCD4(cid:3)Tcells,potentiallyprovidinga heterosubtypicviruschallengeviatherespiratorytract(28).Asaresult,we noninvasivemethodtomeasurediseaseprogression(31). hypothesizedthati.vag.inoculationmightresultinsufficientinfectionto CD8(cid:1)CTLresponsesbytetrameranalysis.SIV-specificCD8Tcell initiateanimmuneresponseinmacaques. responsesweremeasuredusingfreshwholeheparinizedbloodbytetramer Thetimingofinfluenzavirus-SIVvaccinationwasasfollows:week0, stainingofCD3(cid:3)CD8(cid:3)lymphocytesusingfluorescentMane-A01*084tetra- X31influenzavirus-SIV;week4,PR8influenzavirus-SIV;week9,X31 mericproteinfoldedaroundeithertheKVA10(SIVTat114-123),theKSA10 influenzavirus-SIV;andweek17,PR8influenzavirus-SIV(Table1).Cor- (SIVTat ),ortheKP9(SIVGag )peptideepitopeaspreviously 87-96 164-172 respondingwild-typeinfluenzavirus(108PFU)wasadministeredtofive described (22, 32). Expression of memory markers was assessed using a “control”animalsasfollows:week0,PR8influenzavirus;week4,X31 monoclonal antibody cocktail of anti-CD3-AF700 (clone SP34-2), anti- influenzavirus;week9,X31influenzavirus;andweek17,PR8influenza CD4-PE Cy7 (clone L200), anti-CD8-APC-H7 (clone SK1), anti-CD28 virus.Infectionwithinfluenzaviruswasmonitoredbyquantitatinginflu- PerCPCy5.5(cloneL293),andanti-CD95fluoresceinisothiocyanate(clone enzavirusRNAlevelsinserialsswabsoftheupperrespiratorytractpost- DX2).Expressionofthemucosalhomingmarker(cid:4)4(cid:2)7integrinontetramer- April2013 Volume87 Number8 jvi.asm.org 4147 Reeceetal. positivecellswasmeasuredbycounterstainingwithratanti-humanintegrin H3N2(X31)andH1N1(PR8)strains(fourvaccinationsintotal). (cid:2)7APC(BDPharmingen,catalogno.551082,cloneFIB504)(31). Five macaques in the control group were inoculated with wild- Real-timePCRforCTLescapeatKP9.Toquantifythevirallevelsof type influenza virus strains at 108 PFU (n (cid:5) 5; Table 1). The wild-type(WT)orescapemutant(EM)quasispeciesattheKP9epitope, vaccinegroupwasgivenamixtureofthreerecombinantinfluenza weusedastrain-specificreal-timePCRassaydevelopedinthelaboratory viruses (108 PFU of each) containing either KP9, KVA10 and (33,34).Thisassayusesaforwardprimerspecificforeitherthenucleotide KSA10insertedintotheneuraminidasestalkofH1N1(PR8)and mutationencodingthedominantK165RKP9escapemutantorwild-type H3N2(X31)(n(cid:5)10;Table1)aspreviouslydescribed(22,40). sequence.BrieflycDNAwasmadebyreversetranscribingRNAextracted All animals received the influenza viruses via the respiratory from EDTA-anticoagulated plasma and amplified by quantitative RT- PCRusingbothWTandEMprimersspecificforKP9onanEppendorf tractwiththeexceptionoffourmacaques(twovaccineesandtwo Realplex cycler. Analysis was performed using the Eppendorf Realplex controls)thatreceivedthefirsttwoinoculationsi.vag.(Table1) software,wherebaselinesweresettwocyclesearlierthanrealreported sincewehypothesizedthati.vag.inoculationmightresultinsuf- fluorescence. ficientinfectiontoinitiateanimmuneresponsebasedonprevious PyrosequencingforescapeatKP9,KVA10,andKSA10.Toexamine murine studies (28). To evaluate humoral recognition of influ- the kinetics of CD8(cid:3) T cell selection, we isolated and pyrosequenced enzavirususingthedifferentroutesofdeliveryoftheinfluenza plasmavirusfrom15femaleanimalsinthevaccinetrialandtwoaddi- virus-SIVconstruct,wemeasuredserumhemagglutinationinhi- tionalmaleunvaccinatedcontrolanimalsat10serialtimepointsfromday bition(HI)titerstobothhomologousparentviruses(H1N1and 10toweek20afterSIVinfectionaspreviouslydescribed(13).Briefly,viral D H3N2) (Fig. 1). HI titers to PR8 (H1N1) and X31 (H3N2) for o RNAfromEDTAanticoagulatedplasmawasextractedusingtheQIAamp w macaquesgiventwoi.vag.immunizationsfollowedbytworespi- MinElutevirusspinkitorQIAampUltrasensRNAkit(Qiagen,Valencia, n CA).ViralRNAwasreversetranscribedandamplifiedusingtheSuper- ratoryimmunizationsinthecontrolgroupandthevaccineegroup lo a ScriptIIIOne-StepRT-PCRsystemwithPlatinumTaqDNAPolymerase comparedtothoseforcontrolsandvaccineesgivenallimmuni- d HighFidelity(Invitrogen,Carlsbad,CA)andMID-taggedprimers(cata- zationsviatherespiratorytractareshowninFig.1.Influenzavirus e d log no. 454; Sigma Aldrich) spanning Gag164-172 (KP9; KKFGAEVVP) infectionoccurredinallmacaquesaftertworespiratoryinocula- fr andTat (KVA10;KKETVEKAVA)andTat (KSA10;KKAKAN tions(Fig.1BandD).ThemeanHItitersweresignificantlyhigher o 114-123 87-96 m TSSA).TheRT-PCRconditionswereasfollows:50°Cfor15min;94°Cfor inbothcontrolsandvaccineesgiventwodosesofinfluenzavirus 2min;40cyclesof94°Cfor15s,58°Cfor30s,and68°Cfor50s;andthen h via the respiratory tract compared to intravaginally (controls: t t 68°Cfor5min.DNAfromPCRproductswaspurifiedbycuttingout PR8,P(cid:5)0.02;X31,P(cid:5)0.03;vaccinees:PR8,P(cid:5)0.05;X31,P(cid:5) p: appropriatebandsfroma1%agarosegelandusingaQiagengelextraction // kAiut.stAramlipanlicGonensowmeereRpeoseoalrecdhaFtaecqiluitiymuoslianrgraatRiooschane/d45s4eqsuyestnecmed.Abmyitnhoe o0.u0s2ly[Mimamnnu-nWizheidtnveiya];tFhieg.v1a)g.inAaslatrreascutltr,etcheeivfeodurthaeniirmtahlisrdpraevnid- jvi.a acidvariationwithinthethreeepitopes(GagKP9,TatKVA10,andTat fourthinoculationsviatherespiratorytract.Thesemacaquessub- sm KSA10)wasexaminedusingacustomdataanalysispipelineinGalaxy,the sequentlyseroconvertedtoinfluenzavirus,withHItiterssimilar .o opensourcesystemforprocessingnext-generationsequencedataasde- tomacaquesthathadreceivedallvirusesviatherespiratorytract rg scribed previously (18, 35–37). Sequence reads were translated and (Fig. 1). Influenza virus RNA could be recovered from nose or / o alignedintosixreadingframesandcomparedtoareferenceSIVsequence larynxswabs2daysafterthefirstandsecondinoculationsinmost n using BLAT (BLAST-Like Alignment Tool) (18, 38). Reads with low- animals immunized by the respiratory route but was recovered M qualitybaseswithinepitopeswerediscarded. a lessofteninanimalsinoculatedi.vag.(Fig.1E). r Calculationofescaperates.WecalculatedtheescaperateEbetween c TcellimmunogenicityaftervaccinationandSIVchallenge. h twotimepointstiandti(cid:3)1(seetheboldlinesegmentsinFig.7A)assum- Toassesstheimmunogenicityoftherecombinantinfluenza-SIV 2 ing exponential growth/decay of viral strains during this time interval 5 (39): vaccinations,weanalyzedserialfreshbloodsamplesforthepres- , 2 (cid:1) (cid:2) enceofKVA10-,KSA10-,andKP9-specificCD8Tcellsusingspe- 0 E(cid:1) 1 ln fEM(ti(cid:2)1) fWT(ti) , cifictetramers.Modest,butsignificantKVA10andKSA10CD8T 13 ti(cid:2)1(cid:3)ti fEM(ti) fWT(ti(cid:2)1) cellresponsesinvaccineescomparedtocontrolswereobserved2 b y wheref andf arethefractionsofEMandWTinthetotalviralload. weeksafterthefirstimmunizationand1weekafterthefinalvac- g TheEtMimeatwWhTichWTdropsto50%(t )wasestimatedusinglinear cination at week 18 (Fig. 2A ; *,P (cid:7) 0.05). CTL responses to u 50% e interpolationoffractions.Forpolymorphicescape,wedefinedtheescape KVA10andKSA10inallvaccineeswereabovethethresholdof s t mutantascomprisingallsequencesdifferentfromtheWTattheconsid- detection(mean(cid:3)3(cid:8)thestandarddeviationoftheindividual eredepitope(fEM(cid:5)1(cid:6)fWT).Inthiscase,t50%liesattheintersectionof tetramerresponsesofallanimalspriortovaccination)onatleast fWTandfEMlines(seeFig.7A). three separate occasions postvaccination (Fig. 2B). In contrast, onlyoneCTLresponsetoKVA10atonetimepointinthecontrol RESULTS groupwasabovethisthresholdofdetection. Influenzavirus-SIVinoculationofmacaques.Inducingbroader Incontrast,thefrequencyofKP9-specificCD8Tcellresponses CTLresponsesisanimportantgoalofCTL-basedHIVvaccines. invaccineespostvaccinationabovethethresholdofdetectionwas WedevelopedsixseparateinfluenzavirusesexpressingthreeSIV lower(only7of10vaccineeshadresponsesabovethethreshold). CTL epitopes that have previously been shown to induce SIV- ThemagnitudeofKP9-specificTcellsresponsespostvaccination specificCD8(cid:3)TcellsresponsesinSIV-infectedpigtailmacaques werealsolower;however,theseresponseswereofsimilarmagni- when administered via the respiratory tract (22) and evaluated tudetothosemeasuredinaprevioustrial,wheretwomacaques these vaccines in naive macaques. To assess the infectivity and werealsoinoculatedviatherespiratorytractwiththeinfluenza immunogenicity of recombinant influenza viruses expressing virus-KP9vaccine(22). threeSIVTatKVA10,TatKSA10,andGagKP9epitopes,weim- To address whether SIV-specific immune responses were munized10Mane-A*10(cid:3)pigtailmacaquesoveraperiodof119 primedbyvaccination,weanalyzedtetramer-specificCD8Tcell days. Influenza inoculation used two alternating doses of both responses following SIV challenge. All female macaques mac251 4148 jvi.asm.org JournalofVirology TrivalentLiveAttenuatedInfluenzaVirus-SIVVaccines D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n M a r c h 2 5 , 2 0 1 3 b y g u e s t FIG1Vaccinationofpigtailmacaqueswithrecombinantinfluenzavirus-SIV.Acomparisonbetweenroutesofdeliveryofinfluenzavirus(controls)and recombinantinfluenzavirus-SIVvaccine(vaccinees)givenintravaginallyorviatherespiratorytract.Hemagglutinationinhibition(HI)titersinserialplasma samplestoPR8(H1N1,shownassolidlines)andX31(H3N2,shownasdashedlines)areillustrated.Linesrepresentindividualanimals;HAtiterstoPR8andX31 forthesameanimalareshownwiththesamesymbol,andindividualanimalsareidentifiedbyspecificsymbolsasshowninthelegend.HItitersofcontrols administeredinfluenzavirusviathevaginaltractandrespiratorytract(A)andtherespiratorytractonly(B)areshown.HItitersofvaccineesadministered recombinantinfluenzavirus-SIVvaccineviathevaginaltractandrespiratorytract(C)andtherespiratorytractonlyarealsoshown(D).(E)Recoveryofinfluenza virusRNAfromnose,larynx,andvaginalswabsfromvaccineesadministeredinfluenzavirus-SIVviatherespiratorytract(black),controlsadministered influenzavirusviatherespiratorytract(gray),andvaccineesandcontrolsadministeredviathevaginaltract(white).RNAwasrecoveredbyPCRatday0andday 2afterthefirstandsecondinfluenzavirusandinfluenzavirus-SIVvaccinations. werechallengedintravaginally(i.vag.)andthetwomalemacaques lenge using tetramers showed that KVA10 and KP9 CD8 T cell withchallengedintrarectally(i.r.)witha104TCID ofSIV responsesinvaccineeswerebothearlierandsignificantlyhigherat 50 mac251 8weeksafterthefinalvaccination(or105TCID ofSIV if 3weekspostchallengecomparedtothecontrols(Fig.2A,KVA10, 50 mac251 theydidnotbecomeinfectedaftertheinitialchallenge).Ananal- P(cid:5)0.011;KP9,P(cid:5)0.045[Mann-Whitneytest]),despitemini- ysisoftheSIV-specificCD8TcellresponsesafterSIV chal- mal KP9 CD8(cid:3) T cell responses after vaccination (Fig. 2B). It mac251 April2013 Volume87 Number8 jvi.asm.org 4149 Reeceetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n M a r c h 2 5 , 2 0 1 3 b y g u e s t 4150 jvi.asm.org JournalofVirology TrivalentLiveAttenuatedInfluenzaVirus-SIVVaccines shouldalsobenotedthatperipheralKSA10-specificCD8(cid:3)Tcell P(cid:5)0.05;KP9,P(cid:5)0.002]andvaccinees[KVA10,P(cid:5)0.006; responses were first detected at 5 weeks postchallenge, which is KSA10, P (cid:5) 0.001; KP9, P (cid:5) 0.01] calculated using the Wil- considerablylaterthanfortheKP9-andKVA10-specificCD8(cid:3)T coxon test, Fig. 3C). The decline in (cid:2)7high tetramer-positive cellresponsesthatwerefirstobservedat2weekspostchallenge. cells in the periphery was observed in both controls and vac- Inductionof(cid:2)7integrin-expressingSIV-specificCD8Tcells cineesandmaybeexplainedbytheirmigrationtoSIV-infected afterinfluenzavirus-SIVvaccinationandSIVchallenge.Studies mucosal tissues after SIV infection or death of this particular in vitro have demonstrated that cells expressing high levels of subsetofcells. (cid:4)4(cid:2)7((cid:4)4(cid:3)(cid:2)7high)canbindtoHIVandSIV withhighaffinity, OutcomeofSIVchallenge.Eightweeksafterthefinalvaccina- smm suggestingthatthesecellscouldbeearlytargetsforviralinfection tion, all 15 vaccinated female macaques were challenged i.vag. invivo(41).Theroleof(cid:4)4(cid:2)7hasalsobeendemonstratedinthe witha104TCID ofSIV Twoadditionalmalemacaques, 50 mac251. mucosalhomingofCD8TcellsinmacaquemodelsofSIVand addedtothestudytobeusedascontrolsforthepyrosequencing otherviralinfections(42,43),andithasbeenfoundthatgp120 studies,werechallengedi.r.witha104TCID doseofSIV 50 mac251 binds to and signals via an activated form of (cid:4)4(cid:2)7 on CD4(cid:3) T (Table1).Fourteenoftheseventeenanimalsbecameinfectedafter lymphocytes (41). In addition, intravenous administration of a this initial challenge with SIV ; however, three macaques mac251 recombinantrhesusmonoclonalantibodyagainstthe(cid:4)4(cid:2)7into (one vaccinee and two controls) did not become infected. As a rhesusmacaquesjustpriortoandduringacuteSIVinfectionre- consequence,thesethreemacaqueswererechallengedwitha10- D sultedinasignificantdecreaseintheplasmaandgastrointestinal fold-higherdoseofSIV (105TCID )atweek32,afterwhich o mac251 50 w tissue viral load compared to control SIV-infected rhesus ma- theybecameinfected.Therewasnosignificantdifferenceinmean n caques (44). To assess the potential for the influenza virus-SIV viralloads(Fig.4A)orsurvival(Fig.4B)betweeninfluenzavirus- lo a inoculationstoinducemucosalhomingCD8Tcells,weexamined SIV-vaccinatedanimalsandinfluenzavirus-vaccinatedanimals. d SIVKVA10-,KSA10-,andKP9-specificCD8Tcellsforhighlevels Themean((cid:9)SE)peakviralloads2weeksafterchallengebetween e d of(cid:2)7expression((cid:2)7high).Althoughthefrequencyofvaccine-in- vaccinatedandcontrolgroupswerealmostidentical:7.70((cid:9)0.54) f r ducedtetramer-specificCD8Tcellswaslow,theproportionof versus7.73((cid:9)0.71)log copies/ml,respectively.Althoughthere o 10 m high (cid:2)7(cid:3) KVA10-, KSA10-, and KP9-specific CD8 T cells was wasasubtledifferenceintheviralloadsbetweencontrolsandvaccin- h greaterafterthefourthinfluenzavirus-SIVboost(week18)com- ees during chronic infection, with the viral loads in the vaccinees t t p paredto1weekafterthefirstinfluenzavirus-SIVboost(datanot beingslightlylowerthanthecontrols(Fig.4A),thedifferencewasnot : / / shown). This suggests that the mucosal vaccination may have in- foundtobestatisticallysignificantwhenwecomparedtheaverage jv ducedSIV-specificCD8Tcellswithmucosalhomingcapabilities. chronicviralloadsfromweek5andweek20betweencontrolsand i.a Sincemacaqueswereimmunizedwiththeinfluenzavirus-SIV vaccineesusingtheMann-Whitneytest(P(cid:5)0.15). sm vaccine via the respiratory tract, we examined mucosal homing LossofCD4(cid:1)Tcellsand(cid:2)7highCD4(cid:1)Tcellspostchallenge. . o characteristicsofSIV-specificCD8TcellsafterSIVchallenge(Fig. AdecreaseintotalperipheralCD4Tcellspostchallengewasob- rg 3). A progressive decline in the proportion of peripheral (cid:2)7high served in both vaccinee and control groups, with no significant / o SIVKVA10-,KSA10-,andKP9-specificCD8Tcellswasobserved difference between the groups (Fig. 4C). It has previously been n out to week 15 after SIV challenge. Note that the percentage of reportedthatmemoryCD4(cid:3)Tcellsinperipheralbloodexpress- M (cid:2)7high tetramer-positive cells could only be measured once te- inghighlevelsofthe(cid:4)4(cid:2)7receptorarepreferentiallyinfectedand ar c tramer-specific CTLs appeared in the periphery, explaining the depletedduringacuteSIVinfection,andthisdepletioncorrelated h absencesintimepointvaluesinthefigures.Forinstance,periph- withdepletionofgutCD4Tcellsinrhesusmacaques(31).We 2 5 eral KSA10-specific cells were not measured in the majority of thereforemeasured(cid:2)7highCD4Tcellsinserialbloodsamples,and , animalsuntilweek5,whereasKP9-specificandKVA10-specific flowcytometrydotplotsofCD95(cid:3)(cid:2)7highCD4(cid:3)Tcellsofarep- 20 1 CTLresponsesweremeasuredatweek2.Flowcytometrydotplots resentativevaccinatedanimalareshowninFig.5A.Adecreasein 3 fromarepresentativevaccinatedmacaqueshowingthedeclinein theproportionofCD95(cid:3)(cid:2)7highCD4Tcellsinmostanimalswas b CD95(cid:3)(cid:2)7highCD8(cid:3)SIVtetramer-positivecellsaftertheemergence observed at week 2 to 3 during acute infection (31, 45) when y g ofSIVtetramerpositivecellsintheperipherycomparedtoatweek15 examining individual macaques before and after challenge with u e areshowninFig.3A.Thisdeclineisalsoevidentwhenexaminingthe SIV (Fig.5B).Surprisingly,however,thisdeclinewasonly s proportionsof(cid:2)7highCD95(cid:3)CD8(cid:3)SIVtetramer-positivecellsin tranmsiaecn25t1,andbyweek10afterSIVchallenge,theproportionsof t individualanimalsatserialtimepointsafterSIV challenge(Fig. peripheralCD95(cid:3)(cid:2)7highCD4Tcellshadreturnedtoprechallenge mac251 3B).Thedecreaseintheproportionof(cid:2)7highCD95(cid:3)CD8(cid:3)SIV levels.ItisalsointerestingthattheproportionsofCD95(cid:3)(cid:2)7high tetramer-positive cells shortly after challenge compared to CD4Tcellsinbloodinallmacaques,withtheexceptionofone, duringchronicinfectionwasstatisticallysignificant(mean(cid:9) increased at day 10 after SIV challenge prior to this decrease thestandarderror[SE]ofcontrols[KVA10,P(cid:5)0.01;KSA10, (Fig.5B).Therewasnosignificantdifferenceintheproportionof FIG2DetectionofSIVGag(KP9)andTat(KVA10andKSA10)specificCD8Tcellsinperipheralblood.Pigtailmacaquesweregivenfourvaccinationsatweeks 0,4,9,and17withrecombinantinfluenzavirus-SIV(vaccinees)orinfluenzavirus(controls)andchallengedintravaginallyatweek25withpathogenicSIV . mac251 (A)Themeans((cid:9)SE)oftheproportionofCD8TcellsstainedforKVA10/ManeA1*08401,KSA10/ManeA1*08401,andKP9/ManeA1*08401tetramersatweeks 2and18postvaccinationandweeks3and5postSIV challengeweremeasuredbyusingflowcytometry.ProportionsofSIV-tetramerpositiveCD8(cid:3)Tcells mac251 invaccineessignificantlyhigherthancontrolsasdeterminedbytheMann-Whitneytest(P(cid:7)0.05)arehighlightedwithanasterisk(*).(BandC)Proportionsof CD8 T cells stained for KVA10/ManeA1*08401, KSA10/ManeA1*08401, and KP9/ManeA1*08401 tetramers for individual macaques in vaccinees (open symbols,solidlines)andcontrols(solidsymbols,dashedlines)aftervaccination(B)andafterSIV challenge(C).Thehorizontallineindicatesthethreshold mac251 ofdetection(mean(cid:3)3(cid:8)thestandarddeviationoftheindividualtetramerresponsesofallanimalspriortovaccination).Symbolsforindividualanimalsare showninFig.1. April2013 Volume87 Number8 jvi.asm.org 4151 Reeceetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n M a r c h 2 5 , 2 0 1 3 b y g u e s t FIG3Expressionof(cid:2)7integrinonSIV/Mane-A1*08401tetramer-positiveCD8Tcells.TheexpressionofperipheralCD95(cid:3)(cid:2)7highcellsonCD3(cid:3)CD8(cid:3)SIV tetramer-positivecellsafterchallengewithSIV wasdeterminedusingflowcytometry.(A)Flowcytometrydotplotsfromarepresentativevaccineemacaque showingtheproportionofCD95(cid:3)(cid:2)7highcellsmwach2e5n1CD3(cid:3)CD8(cid:3)tetramer-positivecellsfirstappearintheperiphery:atweek2postchallengeforKVA10-and KP9-positiveCD8(cid:3)Tcellsandatweek5forKSA10-positiveCD8(cid:3)Tcellsandduringchronicinfectionat15weeksafterSIVchallenge.(B)Individualvaccinees (opensymbols,solidlines)andcontrols(solidssymbols,dashedlines)macaquesshowingtheproportionofCD95(cid:3)CD3(cid:3)CD8(cid:3)SIVtetramer-positivecellswith (cid:2)7highexpressionatserialtimepointsafterSIV challenge.SymbolsforindividualanimalsareasdefinedinFig.1.(C)Means(cid:9)theSEoftheproportions ofCD95(cid:3)(cid:2)7highcellsonCD3(cid:3)CD8(cid:3)SIVtetrammaec2r5-1positivecellsonvaccinees((cid:1))andcontrols((cid:1))atweek2afterSIVchallengeforKVA10andKP9,atweek 5afterSIVchallengeforKSA10,andatweek15afterSIVchallenge. CD95(cid:3) (cid:2)7high CD4 T cells in blood between the vaccinees and aredistributionofcellsbetweentheperipheryandthemucosa. controls(Fig.5C). Thatis,CD95(cid:3)(cid:2)7highCD4Tcellsmigratefromthemucosatothe Anincrease,followedbyatransientdeclineandthenareturn peripheryduringacuteinfection,leadingtoanincreaseinCD95(cid:3) tobaseline,ofperipheralCD95(cid:3)(cid:2)7highCD4Tcellsmayrepresent (cid:2)7highCD4Tcellsintheperiphery.Shortlyafter,CD95(cid:3)(cid:2)7high 4152 jvi.asm.org JournalofVirology TrivalentLiveAttenuatedInfluenzaVirus-SIVVaccines rhesusmacaques(31),thephysiologicalsignificanceof(cid:4)4(cid:2)7dur- ingSIVinfectioninpigtailmacaquesmaybeminimal. EvolutionofimmuneescapeofSIV-specificCD8Tcellsin- duced by influenza virus-SIV vaccines. A possible explanation forthelackofcontrolofSIVviremiadespitetheprimingofmul- tipleCTLresponseswastherapidevolutionofimmuneescape. We initially quantified CTL escape at the KP9 Gag epitope in plasma viral RNA at serial time points from day 10 to week 20 usingastrain-specificPCRassay(33,34)andfoundthatvaccina- tionwithrecombinantinfluenzavirus-SIVgenerallyresultedin anearliergenerationofimmuneescapevariantsattheGagKP9 CD8Tcellepitopecomparedtothecontrolanimalsinoculated with influenza virus alone. The findings for KP9 escape in two representativevaccineesandcontrolsarepresentedinFig.6A. AlthoughtheGagKP9CTLepitopeusuallyescapesinamono- morphicway(K165Ratposition2),thetwopreviouslyobserved D Tatepitopes(KSA10,KVA10)escapeinpolymorphicways(46) o w acrossanimals,soastrain-specificreal-timePCRassayisnotsuit- n ablefortheseepitopes.Asaresult,toassessescapeattheKSA10 lo a andKVA10epitopes,weperformedpyrosequencingacrossthese d epitopes,aswellastheKP9epitope. e d AnalysisofimmuneescapefromplasmaRNAattheGagKP9 f r epitope using pyrosequencing showed that immune escape not o m onlyoccurredearlierinvaccinees,oftenoccurring14daysafter h inoculation,butalsooccurredveryrapidly(i.e.,atahighrate). t t p Thesametworepresentativevaccineesandcontrolsshowinges- : / / capeatKP9bypyrosequencingareillustratedinFig.6B.Pyrose- jv quencing was able to confirm results obtained using the KP9- i.a specificPCRassay,asillustratedinFig.6A(33,34).Inaddition, sm pyrosequencing revealed early and very rapid escape at the Tat . o KVA10andKSA10epitopes(Fig.6CandD).Asmentionedabove, rg thisescapewaspolymorphicinnature.Thedivergentnatureof / o escapeatthetwoTatepitopesincontrolandvaccineeanimalsis n representedinFig.6CandD. M a Sinceweobtainedanaverageof500readsforeachsequencing r c timepointusingpyrosequencing,wecouldconfidentlydetectthe h emergenceofarangeofviralvariantswithescapemutationswith 2 5 frequenciesaslowas1%ofcirculatingvirus,whichisconsistent , 2 withtherecentlypublishedpyrosequencingerrorrate(18). 0 1 The rate of CTL escape provides an estimate of the pressure 3 appliedbytheCTLresponse(39,47).Wecalculatedbothmaximal b y escape rate assuming exponential growth/decay of WT and EM g strainsduringthistimeinterval(shownasboldlinesinFig.7A) u e (39)andthetimefortheEMtoreach50%ofthetotalvariants s SFIIVG.E4aOchumtcoamcaequoefSwIaVsmcahc2a5ll1enchgaeldleinngteraovfagminaaclalqyuweisthva1c0c4inTatCeIdDwithSIiVnfluenzaa-t (indicated as “t50%” in Fig. 7A). For polymorphic escape, we t 50 mac251 week25(8weeksafterthefinalimmunization).Threemacaques(onevaccinee definedtheescapemutantascomprisingallsequencesdifferent andtwocontrols)thatdidnotbecomeinfectedwererechallengedintravaginally fromWTattheconsideredepitope.Theanalysisofthetimetaken witha10-fold-higherdoseofSIV (105TCID )atweek32,afterwhichthey mac251 50 for the virus to escape from 100 to 50% wild-type (WT) at the cameinfected.Bloodsamplesfromvaccinees((cid:1))andcontrols((cid:2))wereanalyzed forSIVRNAbyRT-PCR.(A)Mean((cid:9)theSE)ofviralloads.(B)Kaplan-Meier threeCTLepitopesrevealedthatKP9andKVA10escapeinthe survivalgraphforSIV-infectedpigtailmacaques.(C)CD4Tcelllossforeach vaccineesemergedsignificantlyearlierthaninthecontrolgroup. vaccinegroup.Themeanvalues((cid:9)theSE)ofthepercentageofCD4Tcellsat Thatis,50%WTvirusattheKP9andKVA10epitopeoccurred baselinearegiven.Therewerenosignificantdifferencesbetweenvaccineesand significantly earlier in vaccinees compared to controls (Mann- controls. Whitneytest;KP9,50(cid:9)11daysversus38(cid:9)12days,P(cid:5)0.02; KVA10,31(cid:9)6daysversus21(cid:9)1days,P(cid:5)0.037;Fig.7BandC) but did not occur significantly faster for KSA10 (90 (cid:9) 14 days CD4Tcellsareeitherkilledormigratebacktotheperipheryand versus 68 (cid:9) 5 days, P (cid:5) 0.73) (Fig. 7D). In addition to escape return to baseline levels as a result of an equilibration forming occurringearlier,therateofescapewasshowntobealsosignifi- betweenredistributionandlossofcellsbetweenthemucosaand cantlyquickeronlyforKVA10(Mann-Whitneytest;P(cid:5)0.0041) theperiphery.Althoughtheseresultsarenotconsistentwiththe (Fig.7C).TherapidemergenceofKP9andKVA10escapemu- loss of (cid:2)7high CD4 T cells observed after challenge with SIV in tantsmayexplainthefailuretoobservesignificantlylowerviremia April2013 Volume87 Number8 jvi.asm.org 4153 Reeceetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n M a FIG5Expressionof(cid:2)7highintegrinonperipheralCD4Tcells.(A)FlowcytometrydotplotdemonstratingtransientlossofCD4(cid:3)CD95(cid:3)(cid:2)7highTcellsinblood rc 3(fiwlleeedkssyamftberolcsh)ailnlebnlgoeodwibtehfoSrIVeamnacd25a1ftienraSIrVepmraecs2e5n1tcahtaivlleevnagcecfionratineddimviadcuaaqlume.a(cBaq)uPerso.pSoyrmtiboonlssofofr(cid:2)i7nhdigihviCdDua4l(cid:3)anTimcealllssoafrevaacscdinefieense(doipneFnigsy.m1.b(Col)s)Maenadncso(n(cid:9)trtohles h 25 SE)oftheproportionsof(cid:2)7highCD4Tcellsinbloodinvaccineesandcontrols. , 2 0 1 3 levelsinvaccinatedanimalscomparedtocontrols.Theemergence efficacy,wehypothesizedthatrapiddevelopmentofcompensa- b y ofbothKSA10-specificCTLandKSA10escapemutantviruswas tory mutations may have evolved. We therefore examined the g delayed in both vaccinated and control animals, and occurred pyrosequencingdataoutsidetheimmunodominantepitopesfor u e significantly after the establishment of a “set-point” viral load. evidenceofmutationslinkedtotheGagK165Rmutation. s t Thissuggeststhatthisepitopemaynotbecrucialtoviralcontrol Wefoundthatamutation20aminoacidsupstreamoftheKP9 intheseanimals.Thefailureofvaccinationtosignificantlyaccel- epitope(V145A)thatcommonlyfollowedtheemergenceofthe eratethedevelopmentofKSA10responsesmaysuggestthatthe K165Rmutationandwasdetectedin9of15animals.Thismuta- delayed response occurs as a result of late presentation of this tion always emerged at a later time point relative to the KP9 epitope,whichisnotacceleratedbyvaccination. (K165R)escapemutation.TheV145Amutationcouldpotentially Compensatorymutations.Compensatorymutationsoutside beeitheranewlyidentifiedescapemutationoracompensatory anepitopecanpartiallyrestorethereplicativecapacityofviruses. mutationthatoccurstoovercomethesubstantialfitnesscostof CertainpatternsoflinkedmutationsassociatedwithCD8(cid:3)Tcell theK165Rmutation.ThelikelihoodthattheV145Amutationis epitopeescapeinhighlyconservedregionsmayalsoleadtovari- compensatoryisstronglysupportedby(i)significantlevelsofthe ablelevelsofviralfitness(13).TheK165RGagCTLescapemuta- V145Amutationabovebackgroundsequencingerrors((cid:10)0.9%) tionhasbeenshowntoincurasignificantfitnesscostsincethe only developed as the percentage of the K165R mutation ap- mutationrapidlyrevertstoWTfollowinginvivopassageinMHC- proached100%andnotbeforeand(ii)thefactthatnoCD4or mismatchedanimals(39,48).Thismightsuggestthat,intheab- CD8 T cell responses were detected across the V145A site from sence of compensatory mutations, the more rapid CTL escape peripheral blood mononuclear cell samples obtained from ani- observedinthevaccineeswouldincurafitnesscostandleadto malsdespiterepeatedeffortstodetectthemusingpeptide-stimu- reducedviremia.Sincewedidnotinfactobserveanyvirological latedintracellularcytokinestainingassays(datanotshown). 4154 jvi.asm.org JournalofVirology D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n M a r c h 2 5 , 2 0 1 3 b y g u e s t FIG6EvolutionofKP9,KVA10andKSA10CTLescape.(A)ExamplesofK165RCTLescapemutationkineticsbyusingastrain-specificreal-timePCRassayinserial plasmaRNAsamplesfromcontrolmacaques(leftpanel)andvaccinees(rightpanel).(BtoD)ExamplesofCTLescapebypyrosequencingincontrols(leftpanels)and vaccinees(rightpanels)forthethreeCTLepitopesKP9(B),KVA10(C),andKSA10(D).TheCTLaminoacidsequenceisshowninthefirstcolumn,withthepercentage ofthesequenceinthesubsequentcolumnsandthetimepointafterSIVchallengeatthetopofthecolumn.Themutationidentifiedisshownateachtimepoint,withthe totalreadsshowninthebottomrow.Commonvariantsateachtimepointareshaded.Rarervariantsaccountfortheremainingsequences. April2013 Volume87 Number8 jvi.asm.org 4155
Description: