ebook img

Trigonometry For Dummies PDF

387 Pages·2014·7.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trigonometry For Dummies

Mary Jane Sterling is the author of Algebra I For Dummies and many other For Dummies titles. She has been teaching mathematics at Bradley University in Peoria, Illinois, for more than 30 years and has loved working with future business executives, physical therapists, teachers, and many others. Cover Image: ©Peter Hermes Furian/Alamy Go to Dummies.com® for videos, step-by-step photos, how-to articles, or to shop! Open the book and find: • Definitions of trigonometry functions • How to get down with Pythagoras and his theorem • Ways to use Cartesian coordinates • The lowdown on the sine, cosine, and tangent functions • How to go 'round and 'round with circular functions • The scoop on inverse trigonometry • Details on graphing trig functions • Ten basic identities and ten not-so-basic identities $19.99 USA / $23.99 CAN / £15.99 UK 9 781118 827413 51999 ISBN:978-1-118-82741-3 Mathematics/Trigonometry Your guide to getting an angle on sines, cosines, and tangents Confused by cosines? Perplexed by polynomials? Don’t worry! This friendly guide takes the torture out of trigonometry by explaining everything in plain English, offering lots of easy-to-grasp examples, and adding a dash of humor and fun. You’ll see the ways trig applies to everyday life, and how it’s an important tool for a variety of careers. • Start with basics — get up and running with an overview of trig functions, radians, and more • Learn tricky trig functions — take things to the next level with SOH-CAH-TOA and circular functions • Identify identities — dig into reciprocal, ratio, opposite-angle, and Pythagorean identities • Make trig work — get practical with trig, find out how to use your calculator for complex solutions, and solve trig equations • Graph functions — figure out the basics of graphing sine, cosine, tangent, cotangent, and more Trigonometry Sterling 2nd Edition Mary Jane Sterling Author of Algebra I For Dummies Learn to: • Solve tricky trig equations • Graph functions and figure out formulas • Use trigonometry to solve practical problems Trigonometry 2nd Edition Making Everything Easier!™ Start with FREE Cheat Sheets Cheat Sheets include • Checklists • Charts • Common Instructions • And Other Good Stuff! Get Smart at Dummies.com Dummies.com makes your life easier with 1,000s of answers on everything from removing wallpaper to using the latest version of Windows. Check out our • Videos • Illustrated Articles • Step-by-Step Instructions Plus, each month you can win valuable prizes by entering our Dummies.com sweepstakes. * Want a weekly dose of Dummies? Sign up for Newsletters on • Digital Photography • Microsoft Windows & Office • Personal Finance & Investing • Health & Wellness • Computing, iPods & Cell Phones • eBay • Internet • Food, Home & Garden Find out “HOW” at Dummies.com *Sweepstakes not currently available in all countries; visit Dummies.com for official rules. Get More and Do More at Dummies.com® To access the Cheat Sheet created specifically for this book, go to www.dummies.com/cheatsheet/trigonometry by Mary Jane Sterling Trigonometry 2nd Edition Trigonometry For Dummies®, 2nd Edition Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit- ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748- 6008, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRAN- TIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA- TIVES OR WRITTEN SALES MATERIALS. THE ADVISE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPRO- PRIATE. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit www.wiley.com/techsupport. Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley prod- ucts, visit www.wiley.com. Library of Congress Control Number: 2013954199 ISBN 978-1-118-82741-3 (pbk); ISBN 978-1-118-82746-8 (ebk); ISBN 978-1-118-82757-4 (ebk) Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Contents at a Glance Introduction ................................................................ 1 Part I: Getting Started with Trigonometry...................... 5 Chapter 1: Trouncing Trig Technicalities.......................................................................7 Chapter 2: Coordinating Your Efforts with Cartesian Coordinates..........................29 Chapter 3: Functioning Well ...........................................................................................47 Chapter 4: Getting Your Degree.....................................................................................57 Chapter 5: Dishing Out the Pi: Radians.........................................................................67 Chapter 6: Getting It Right with Triangles ....................................................................81 Part II: Trigonometric Functions.................................. 91 Chapter 7: Doing Right by Trig Functions ....................................................................93 Chapter 8: Trading Triangles for Circles: Circular Functions ..................................109 Chapter 9: Defining Trig Functions Globally ..............................................................121 Chapter 10: Applying Yourself to Trig Functions ......................................................135 Part III: Identities ................................................... 155 Chapter 11: Identifying Basic Identities ......................................................................157 Chapter 12: Operating on Identities ............................................................................171 Chapter 13: Proving Identities: The Basics.................................................................189 Chapter 14: Sleuthing Out Identity Solutions.............................................................207 Part IV: Equations and Applications.......................... 223 Chapter 15: Investigating Inverse Trig Functions......................................................225 Chapter 16: Making Inverse Trig Work for You..........................................................233 Chapter 17: Solving Trig Equations .............................................................................243 Chapter 18: Obeying the Laws .....................................................................................265 Part V: The Graphs of Trig Functions ......................... 289 Chapter 19: Graphing Sine and Cosine........................................................................291 Chapter 20: Graphing Tangent and Cotangent...........................................................307 Chapter 21: Graphing Other Trig Functions...............................................................317 Chapter 22: Topping Off Trig Graphs..........................................................................329 Part VI: The Part of Tens .......................................... 343 Chapter 23: Ten Basic Identities . . . Plus Some Bonuses .........................................345 Chapter 24: Ten Not-So-Basic Identities......................................................................349 Appendix: Trig Functions Table ................................. 353 Index ...................................................................... 357 Table of Contents Introduction................................................................. 1 About This Book..............................................................................................1 Foolish Assumptions.......................................................................................2 Icons Used in This Book .................................................................................3 Beyond the Book .............................................................................................3 Where to Go from Here...................................................................................4 Part I: Getting Started with Trigonometry....................... 5 Chapter 1: Trouncing Trig Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . 7 Taking Trig for a Ride: What Trig Is ..............................................................7 Sizing up the basic figures....................................................................8 Angling for position ...............................................................................9 Triangulating your position................................................................11 Circling the wagons .............................................................................12 Understanding Trig Speak............................................................................18 Defining trig functions.........................................................................18 Taming the radicals.............................................................................21 Equating and Identifying...............................................................................23 Graphing for Gold..........................................................................................25 Describing graphing scales.................................................................25 Recognizing basic graphs ...................................................................25 Chapter 2: Coordinating Your Efforts with Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Starting Out Simple: Plotting Points............................................................29 Axes, axes, we all fall down ................................................................29 Determining the origin of it all ...........................................................30 Plotting x versus y ...............................................................................30 Cutting the graph into four parts.......................................................31 From Here to There: Calculating Distances ...............................................32 Counting on vertical and horizontal distances................................32 Another slant: Diagonal distances.....................................................34 Using exact values or estimating distances .....................................35 Getting to the Center of It All .......................................................................36 Finding the midpoint of a line segment.............................................36 Locating the center of a circle............................................................37 Partitioning line segments further.....................................................38 Pinpointing the center of a triangle...................................................41 Trigonometry For Dummies, 2nd Edition vi Racing Down the Slope .................................................................................43 Slaloming slope formula......................................................................43 Recognizing parallel and perpendicular lines..................................45 Defining Circles with Numbers ....................................................................45 Centering circles at the origin............................................................46 Wandering centers...............................................................................46 Chapter 3: Functioning Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Relations versus Functions ..........................................................................47 Function junction, what’s your function?.........................................48 Using function notation.......................................................................48 Determining domain and range..........................................................49 In-Verse Functions: Rhyme or Reason? ......................................................50 Which functions have inverses? ........................................................50 Finding an inverse function ................................................................52 Transforming Functions ...............................................................................54 Translating a function .........................................................................54 Reflecting like a mirror........................................................................56 Chapter 4: Getting Your Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Angles, Angles Everywhere: Measuring in Degrees ..................................57 Slicing a coordinate plane...................................................................57 Looking elsewhere for degree measures ..........................................59 Graphing Angles in Standard Position........................................................62 Positioning initial and terminal sides................................................62 Measuring by quadrants.....................................................................62 What’s Your Angle? Labeling in Various Ways..........................................64 Using negative angle measures..........................................................64 Comingling with coterminal angles ...................................................64 Renaming angles: So many aliases.....................................................65 Chapter 5: Dishing Out the Pi: Radians . . . . . . . . . . . . . . . . . . . . . . . . . . 67 What’s in a Radian? .......................................................................................67 Relating to a circle...............................................................................68 Converting degrees and radians........................................................68 Highlighting favorites..........................................................................72 Making a Clone of Arc ...................................................................................73 Taking chunks out of circles ..............................................................73 Sweeping hands ...................................................................................76 Going out and about............................................................................78 Chapter 6: Getting It Right with Triangles . . . . . . . . . . . . . . . . . . . . . . . 81 Sizing Up Right Triangles..............................................................................81 What’s so right about them? ..............................................................81 The anatomy of a right triangle..........................................................82 vii Table of Contents Pythagoras Schmythagoras: Demystifying the Pythagorean Theorem..84 Hitting a Pythagorean triple ...............................................................85 Solving for a missing length................................................................86 In a League of Their Own: Special Right Triangles....................................88 30-60-90 right triangles........................................................................89 Isosceles right triangles ......................................................................90 Part II: Trigonometric Functions .................................. 91 Chapter 7: Doing Right by Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . 93 SohCahToa to the Rescue: How Trig Functions Work..............................93 The name game: A right triangle’s three sides.................................94 The six ratios: Relating the three sides.............................................94 The sine function: Opposite over hypotenuse.................................95 The cosine function: Adjacent over hypotenuse.............................96 The tangent function: Opposite over adjacent ................................97 All together, now: Using one function to solve for another ...........99 Similar right triangles within a right triangle ...................................99 Socking the rules away: The legend of SohCahToa.......................101 Taking It a Step Further: Reciprocal Functions .......................................101 The cosecant function: Sine flipped upside down.........................102 The secant function: Cosine on its head.........................................103 The cotangent function: Tangent, tails side up .............................103 Angling In on Your Favorites......................................................................104 Identifying the most popular angles................................................104 Determining the exact values of functions.....................................105 Chapter 8: Trading Triangles for Circles: Circular Functions . . . . . . 109 Getting Acquainted with the Unit Circle...................................................109 Placing points on the unit circle......................................................110 Finding a missing coordinate ...........................................................112 Sticking to rational coordinates.......................................................114 Going Full Circle with the Angles...............................................................116 Staying positive..................................................................................116 Being negative or multiplying your angles .....................................117 Locating and computing reference angles......................................118 Chapter 9: Defining Trig Functions Globally . . . . . . . . . . . . . . . . . . . . 121 Defining Trig Functions for All Angles ......................................................121 Putting reference angles to use........................................................122 Labeling the optimists and pessimists............................................122 Combining all the rules .....................................................................123 Using Coordinates of Circles to Solve for Trig Functions ......................125 Calculating with coordinates on the unit circle.............................127 Calculating with coordinates on any circle at the origin..............128 Trigonometry For Dummies, 2nd Edition viii Defining Domains and Ranges of Trig Functions.....................................130 Friendly functions: Sine and cosine.................................................132 Close cousins of their reciprocals: Cosecant and secant.............132 Brothers out on their own: Tangent and cotangent......................133 Chapter 10: Applying Yourself to Trig Functions . . . . . . . . . . . . . . . . . 135 First Things First: Elevating and Depressing ...........................................135 Measuring Tall Buildings with a Single Bound.........................................137 Rescuing a damsel from a tower......................................................137 Determining the height of a tree......................................................139 Measuring the distance between buildings....................................140 Measuring Slope ..........................................................................................142 The Sky’s (Not) the Limit............................................................................143 Spotting a balloon..............................................................................144 Tracking a rocket...............................................................................146 Measuring the view of satellite cameras.........................................148 Calculating Odd Shapes and Maneuvering Corners................................149 Finding the area of a triangular piece of land ................................149 Using Heron’s Formula......................................................................151 Moving an object around a corner ..................................................152 Part III: Identities .................................................... 155 Chapter 11: Identifying Basic Identities . . . . . . . . . . . . . . . . . . . . . . . . 157 Flipping Functions on Their Backs: Reciprocal Identities......................157 Function to Function: Ratio Identities ......................................................159 Opposites Attract: Opposite-Angle Identities..........................................159 Revisiting the Classic Theorem: Pythagorean Identities........................162 The mother of all Pythagorean identities.......................................163 Extending to tangent and secant .....................................................164 Finishing up with cotangent and cosecant.....................................165 Rearranging the Pythagorean identities .........................................166 Combining the Identities ............................................................................168 The many faces of sine......................................................................168 Working out the versions..................................................................168 Chapter 12: Operating on Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Summing It Up..............................................................................................171 Overcoming the Differences.......................................................................176 Doubling Your Money .................................................................................179 One plus one equals two sines.........................................................180 Three’s a crowd .................................................................................182 Halving Fun Yet? ..........................................................................................184 Explaining the ± .................................................................................... 185 Half a tangent is double the fun .......................................................185 Using half-angle identities.................................................................186 ix Table of Contents Chapter 13: Proving Identities: The Basics . . . . . . . . . . . . . . . . . . . . . . 189 Lining Up the Players..................................................................................189 Picking Sides ................................................................................................191 Working on Both Sides................................................................................195 Going Back to Square One..........................................................................198 Changing to sines and cosines.........................................................198 Factoring .............................................................................................201 Using a little bit of both.....................................................................203 Chapter 14: Sleuthing Out Identity Solutions . . . . . . . . . . . . . . . . . . . . 207 Fracturing Fractions....................................................................................207 Breaking up is hard to do .................................................................207 Finding a common denominator......................................................210 Using Tricks of the Trig Trade...................................................................212 Multiplying by a conjugate ...............................................................212 Squaring both sides...........................................................................214 Identifying With the Operations ................................................................216 Adding it up ........................................................................................216 What difference does it make?.........................................................217 Multiplying your fun..........................................................................219 Halving fun, wish you were here......................................................221 Part IV: Equations and Applications........................... 223 Chapter 15: Investigating Inverse Trig Functions . . . . . . . . . . . . . . . . 225 Writing It Right.............................................................................................225 Using the notation .............................................................................226 Distinguishing between the few and the many ..............................227 Determining Domain and Range of Inverse Trig Functions....................229 Inverse sine function .........................................................................229 Inverse cosine function.....................................................................230 Inverse tangent function...................................................................230 Inverse cotangent function...............................................................230 Inverse secant function.....................................................................230 Inverse cosecant function.................................................................231 Summarizing domain and range ......................................................231 Chapter 16: Making Inverse Trig Work for You . . . . . . . . . . . . . . . . . . 233 Working with Inverses ................................................................................233 Getting Friendly with Your Calculator......................................................235 Changing the mode............................................................................235 Interpreting notation on the calculator ..........................................236 Multiplying the Input...................................................................................238 Solving Some Mixed Problems...................................................................240 Trigonometry For Dummies, 2nd Edition x Chapter 17: Solving Trig Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Generating Simple Solutions ......................................................................244 Factoring In the Solutions...........................................................................245 Finding a greatest common factor...................................................246 Factoring quadratics .........................................................................247 Increasing the degrees in factoring .................................................249 Factoring by grouping.......................................................................252 Using the Quadratic Formula.....................................................................253 Incorporating Identities..............................................................................254 Finding Multiple-Angle Solutions...............................................................258 Squaring Both Sides ....................................................................................259 Multiplying Through ...................................................................................262 Solving with a Graphing Calculator...........................................................262 Chapter 18: Obeying the Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Describing the Parts of Triangles..............................................................265 Standardizing the parts.....................................................................266 Determining a triangle.......................................................................266 Following the Law of Sines .........................................................................268 Continuing with the Law of Cosines..........................................................272 Defining the law of cosines...............................................................272 Law of cosines for SAS ......................................................................273 Law of cosines for SSS.......................................................................276 Being ambiguous................................................................................277 Finding the Areas of Triangles...................................................................281 Finding area with base and height...................................................282 Finding area with three sides...........................................................284 Finding area with SAS........................................................................285 Finding area with ASA .......................................................................287 Part V: The Graphs of Trig Functions.......................... 289 Chapter 19: Graphing Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . 291 The ABCs of Graphing.................................................................................291 Waving at the Sine.......................................................................................292 Describing amplitude and period ....................................................292 Formalizing the sine equation..........................................................295 Translating the sine...........................................................................296 Graphing Cosine ..........................................................................................298 Comparing cosine to sine .................................................................298 Using properties to graph cosine ....................................................299 xi Table of Contents Applying the Sines of the Times ................................................................300 Sunning yourself ................................................................................300 Averaging temperature .....................................................................301 Taking your temperature..................................................................303 Making a goal......................................................................................304 Theorizing with biorhythms.............................................................305 Chapter 20: Graphing Tangent and Cotangent . . . . . . . . . . . . . . . . . . . 307 Checking Out Tangent.................................................................................307 Determining the period.....................................................................308 Assigning the asymptotes.................................................................308 Fiddling with the tangent..................................................................310 Confronting the Cotangent.........................................................................314 Chapter 21: Graphing Other Trig Functions . . . . . . . . . . . . . . . . . . . . . 317 Seeing the Cosecant for What It Is.............................................................317 Identifying the asymptotes...............................................................317 Using the sine graph..........................................................................318 Varying the cosecant.........................................................................320 Unveiling the Secant....................................................................................321 Determining the asymptotes............................................................321 Sketching the graph of secant..........................................................322 Fooling around with secant..............................................................323 Laying Out the Inverse Functions..............................................................324 Graphing inverse sine and cosine....................................................325 Taking on inverse tangent and cotangent ......................................326 Crafting inverse secant and cosecant .............................................327 Chapter 22: Topping Off Trig Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 The Basics of Trig Equations .....................................................................329 Flipping over a horizontal line .........................................................330 Interpreting the equation..................................................................331 Graphing with the General Form ...............................................................332 Adding and Subtracting Functions............................................................337 Applying Yourself to the Task ...................................................................339 Measuring the tide.............................................................................339 Tracking the deer population...........................................................340 Measuring the movement of an object on a spring.......................341 Trigonometry For Dummies, 2nd Edition xii Part VI: The Part of Tens........................................... 343 Chapter 23: Ten Basic Identities . . . Plus Some Bonuses . . . . . . . . . 345 Reciprocal Identities ...................................................................................345 Ratio Identities.............................................................................................346 Pythagorean Identities................................................................................347 Opposite-Angle Identities ...........................................................................347 Multiple-Angle Identities.............................................................................348 Chapter 24: Ten Not-So-Basic Identities . . . . . . . . . . . . . . . . . . . . . . . 349 Product-to-Sum Identities...........................................................................349 Sum-to-Product Identities...........................................................................350 Reduction Formula......................................................................................351 Mollweide’s Equations................................................................................352 Appendix: Trig Functions Table.................................. 353 Index....................................................................... 357 Introduction M any of the more practical and exciting accomplishments of early man were performed using trigonometry. Even before trigonometry was formalized into a particular topic to study or used to solve problems, trigo- nometry helped people to sail across large bodies of water, build gigantic structures, plot out land, and measure heights and distances — even to the stars. We still use trigonometry for all these reasons and more. If you’re going to get your pilot’s license, you’ll need trigonometry. Trigonometry is also the basis for many courses in mathematics — starting in grade school with geometric shapes and map reading and moving on through calculus. Trig is all over the place. You can get as deeply into this topic or as little into it as you want, and you’ll still come out of it thinking, “Gee, I didn’t realize that trigonometry was used to do this! Wasn’t that just loads of fun!” Well, maybe I’m pushing it a bit — loads may be a slight exaggeration. Whether you’re pursuing trigonometry so that you can go on in calculus or prepare for architecture or drafting or do that piloting thing, or even if you’re just curious, you’ll find what you need here. You can get as technical as you want. You can skip through the stuff you don’t need. Just know that you’ll be on the same adventure as that early man — you’ll just have the advantage of a few more tools. About This Book So, what’s in it for you? What’s in a book on trigonometry that’ll ring your bell or strike your fancy or just make you pretty happy? Where do I begin? You can start anywhere in the book, jump around, and just go any direction you please. If you’re really excited about triangles and how they can be used to your advantage, check them out. Everything you need to read about them is here. What if you’ve got another angle? Or, maybe you didn’t have one to begin with but wish you did. If you’re looking for angles, you’ve come to the right

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.